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Key Challenge: Timescale Gap
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Solution:

Use short simulations to predict long timescale dynamics






Conformation Network is Too Huge!

800,000 nodes, 7.4 billion edges

Data: A large amount of
conformations

Directly work on
conformations
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Network nodes are snapshots from
multiple simulations.

Very Expensive!

Andrec, Felts, Gallicchio & Levy (2005) PNAS, 102, 6801



MSM as Coarse-Grained Approximation
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Conformational Dynamics:
Nearly Uncoupled Markov Chains
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Each Markov chain
corresponds to a meta-stable
? ? state
Chodera. et. al. J. Chem. Phys. 2007

Zwanzig, J. Stat. Phys. 1983

Noé¢. et.al. J. Chem. Phys. 2007

Huang et.al. 2009, Hummer, Shuttle....

Figure Courtesy John Chodera



Free Energy Landscape vs. MSM

The configuration space is decomposed Define transition
probabilities between states

_pu Pno = Pis |
T(1)= p.21 P
| DPsy Pss

We can extract long time dynamics from MSMs built from short simulations

P(nt) =[T ()] P(Q) "¢ time!s coarse-grained
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Clustering in Biomolecular Dynamics

Geometric
. Clustering
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Conformations

K-center Clustering with RMSD

metric:

Form an epsilon-net to cover the

sampled space

Microstates

Spectral
Clustering
(Lumping)

Macrostates

Spectral Clustering with
Transition Counts:

Find non-spherical metastable

states
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3)
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Geometric Clustering (JE & K =)
K-means/K-medoids vs. K-center, etc.

Kinetic Clustering
Spectral clustering, etc.

R T E
Flat clustering vs. Hierarchical clustering
Batch vs.Streaming (online) data
Complexity and Approximate Algorithms
Statistical Consistency



Geometric Clustering
based on
metric (RMSD)
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linkage center k<a(k)<k”*log(3)
Single-linkage Minimal v v v

spanning (Persistent [Hartigen81,S

tree Homology) tuetzle03]



Recall K-center clustering

e input: conformations in a metric space (RMSD) and a number &

e goal: obtain a partition of the points into
clusters Cq,--- ,Cg with centers uq,--- , lig.
o condition: minimize the maximum cluster radius:

max max d(z, ;)

e NP-hard problem

e 2-approximation algorithm (greedy k-center algorithm)
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K-center JL{a[ {4 5

Farthest-first-traversal {5 Al 1 FEAR 2 (0] 1 — N B & R-net
— Any two points in C are R-distance away
— Points in C form a R-cover of sample space

K-center is NP-hard, but the 2-approx. algorithm is O(kn), much faster
than K-means etc.
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Molecular dynamics application [Sun, Y, Huang, et al. JPC, 09]
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Kinetic Clustering

Spectral Method



Nearly Block Structure of Transition Matrix
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Lumpability of Markov Chains

e LetT be the transition matrix of a Markov chain defined
on n states S={1,...,n}.

* P={S,,...,S;} 1s a partition of S into k macrostates.
* Sequences {X,,...,X.,...} generated by T, i.e.
Prob(x.=j ; x,,=1)=T;
* Induced dynamics: relabel x, by y, from corresponding
states in partition P
 [Kemeny-Snell’76] T is called lumpable if
Prob(y,=k,; v;.1=K, - Yim=k,,) = Prob(y.=k,; v, 1=k;)
1.e. the induced dynamics is markovian.



Lumpability of Markov Chains

* [Kemeny-Snell’76] T is lumpable w.r.t. partition P={S,,...,S,}
iff for any s, t chosen from P, and for any i, j lying in S_, the
following holds

T= Tjt
where T,.=sum, ¢, T,.

Tia




Spectral Theory of Lumpability

[Meila-Shi 2001] T is lumpable w.r.t. P iff T has k independent piece-wise
constant right eigenvectors in the span of characteristic functions of P=

{Sy,-,Sik-

Special case: If T is block diagonal, i.e. uncoupled Markov chain, then T is
lumpable with piece-wise constant right eigenvectors associated with
multiple eigenvalue 1.

If T is nearly block diagonal, then there are top (k) eigenvectors which fix signs
within the block [Belkin-Shi-Yu 2009].

[E-Li-Vanden_Eijnden 2007] Let T be an n-dim reversible Markov chain, then
the best approximation of T from k-dim lumpable chains solves the following
optimization

Ming norm(T-Q, Hilbert-Schmidt’)
where the Hilbert-Schmidt norm of a reversible chain T = D'1W, is defined to
be sqrt((DT)’(DT))=sqrt(W’'W).



Spectral Clustering Theories

e 3 equivalent descriptions of Lumpability

 Markovian
e Spectral properties

— Piecewise constantr.ev

— Transition matrix
— Mean-first-passage

* Approximate Graph min-cut

— Cheeger’s inequalities

The two theories are different!



Example T
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e Consider 2n nodes on a linear chain

* Markov Chain: a node will jump to its
neighbors with equal probability
— T(i, i-1) = T(i, i+1) = %, for 2n>i>1
—T(1,2) =T(2n,2n-1) = 1



Example I: Lumpable States
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* Tislumpable w.r.t. I:)*z(sevenlsodd)
— S.yen: €Ven nodes

— S q4q: 0dd nodes

 P* corresponds to eigenvector with
eigenvalue -1



Example I: Graph min-cut
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* One graph min-cut given by second largest right
eigenvector of T

* n=§,

— v,=[0.4714 0.4247 0.2939 0.1049 -0.1049
-0.2939 -0.4247 -0.4714]

— Eigenvalue is 0.9010



When two theories meet?

* [Meila-Shi 2001, E-L-V 2008]

— If the top k eigenvectors are piecewise constant
functions w.r.t. partition P={S,,...,S,}

— Or, Tis nearly uncoupled Markov chain (nearly
block diagonal)
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Free Energy Landscape drives MSM

The configuration space is decomposed Define transition
probabilities between states

_pu Pno = Pis |
T(1)= p.21 P
| DPsy Pss

We can extract long time dynamics from MSMs built from short simulations

P(nt) =[T ()] P(Q) "¢ time!s coarse-grained

InT



Spectral Clustering Algorithm

e Typical spectral algorithm to find approximate lumpable
states in nearly uncoupled systems [Ng-Jordan-Weiss'02]:

* Find top k right eigenvectors of T where a large
spectral gap occurs, v,...,V,

* Embed the data into R* by those eigenvectors
e Use k-means (or alternatives) to find k clusters in R¥

* |n biomolecular dynamics, this type algorithm is named after
Perron, or PCCA [Weber’'04].



Problems

e Standard spectral clustering algorithms may fail due to
* Sparsely sampled microstates are isolated
e Discovered as spurious metastable states

e Solutions:

— Hierarchical/Multiresolution Nystrom method ([Huang et al. 2010, Yao
et al. 2013])

— Other non-spectral methods? Yes, Milestoning ([Schutte et al. 2011])



Statistical Inference of MSM

e Maximum Likelihood

* Bayesian Inference of Reversible Markov Chains [Bacallado et
al. 2011, 2013]



Analysis of MSM

 What can we do with a discrete Markov State Model?
— Mean-first-passage-time from state a to state b

— Transition path theory: reaction current (flux) from source set A to

sink set B
* Continuous space [E and Vanden-Eijden, 2006]
* Discrete space [Metzner et al. 2009; Noe et al. 2009]

— Topological landscape [ E, Lu and Yao, 2014 ]
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