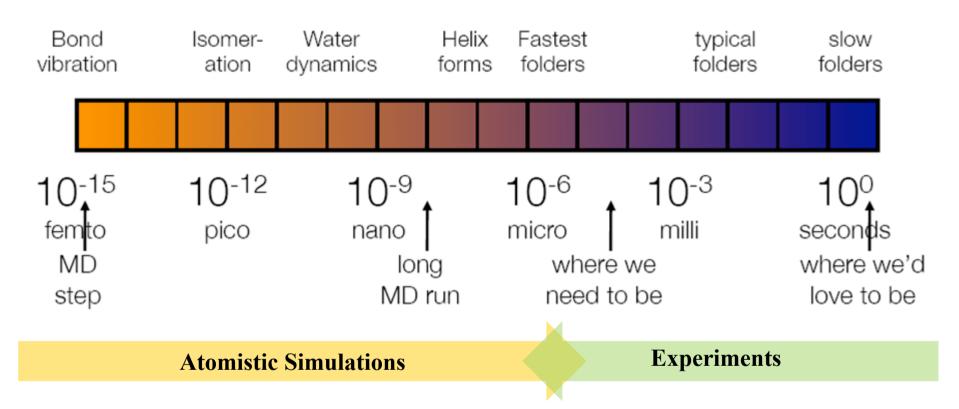
Markov State Models in Molecular Dynamics

姚 远
yuany@math.pku.edu.cn
2014.3.29

Key Challenge: Timescale Gap



Solution:

Use short simulations to predict long timescale dynamics

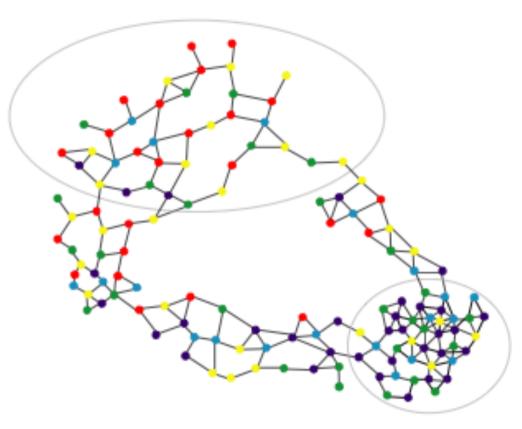
Conformation Network is Too Huge!

Data: A large amount of conformations

Directly work on conformations

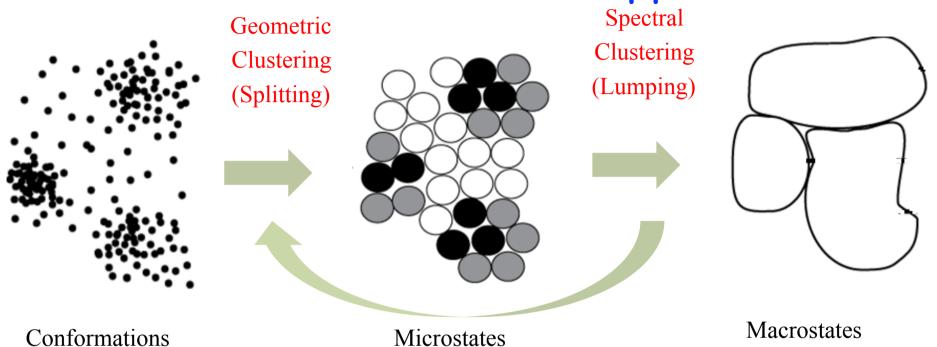
Network nodes are snapshots from multiple simulations.

800,000 nodes, 7.4 billion edges



Very Expensive!

MSM as Coarse-Grained Approximation



Statistical
Inference of
MSM

$$T(\tau) = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{15} \\ p_{21} & p_{22} & & \\ \vdots & & \ddots & \\ p_{51} & & & p_{55} \end{bmatrix}$$

Chodera. et. al. *J. Chem. Phys.* 2007
Noé. et.al. *J. Chem. Phys.* 2007
Deuflhard and Weber, *ZIB-report*, 2003
Weber, *ZIB-report*, 2004
Bowman, Huang, and Pande. *Methods* 2009.
Barcalado, et al. *J. Chem. Phys.* 2009

Conformational Dynamics: Nearly Uncoupled Markov Chains

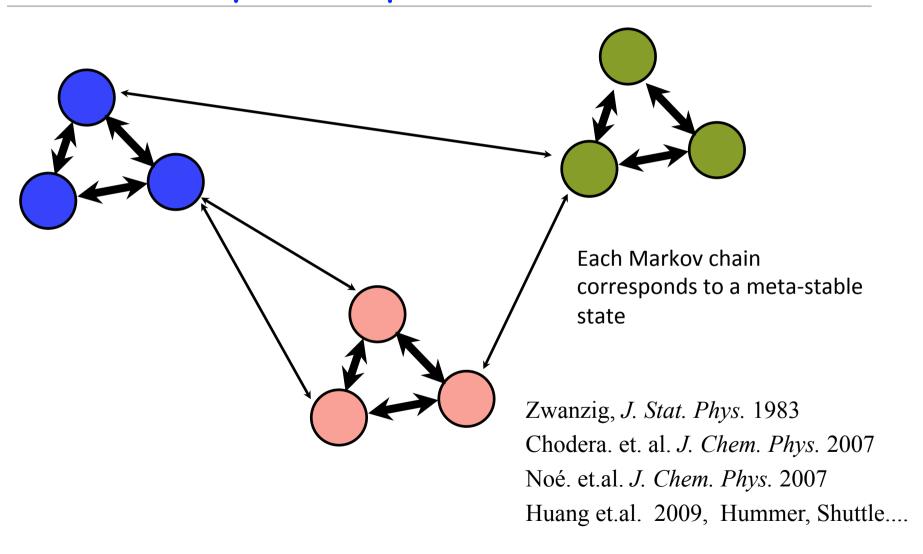
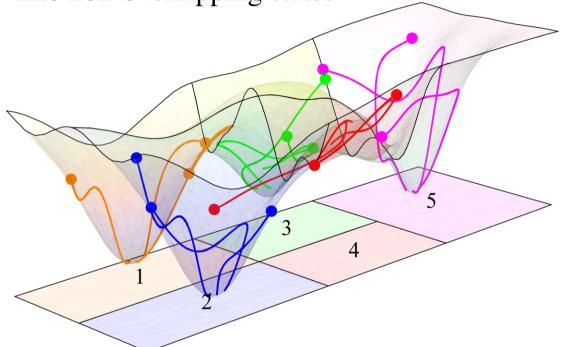


Figure Courtesy John Chodera

Free Energy Landscape vs. MSM

The configuration space is decomposed into non-overlapping states



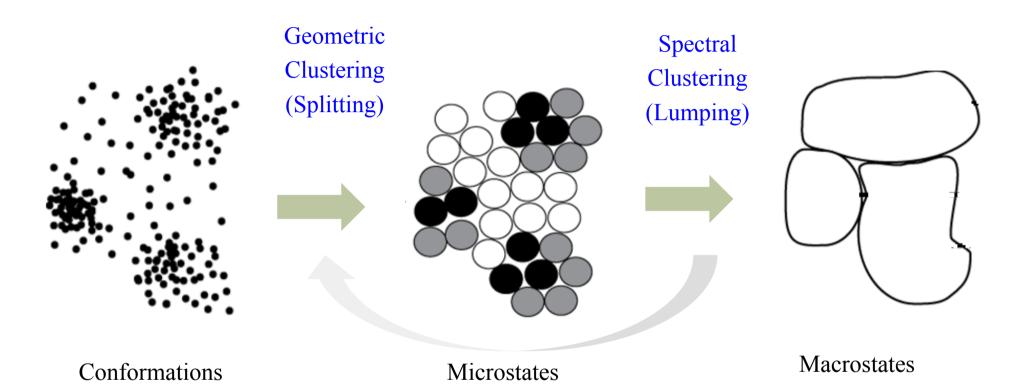
Define transition probabilities between states

$$T(\tau) = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{15} \\ p_{21} & p_{22} & & \\ \vdots & & \ddots & \\ p_{51} & & p_{55} \end{bmatrix}$$

We can extract long time dynamics from MSMs built from short simulations

$$P(n\tau) = [T(\tau)]^n P(0)$$
 The time is coarse-grained in τ

Clustering in Biomolecular Dynamics



K-center Clustering with RMSD metric:

Form an epsilon-net to cover the sampled space

Spectral Clustering with Transition Counts:

Find non-spherical metastable states

分子动力系统中的聚类分析

- I. Geometric Clustering (距离度量)
 - K-means/K-medoids vs. K-center, etc.
- II. Kinetic Clustering
 - Spectral clustering, etc.

III. 聚类分析的性质

- 1) Flat clustering vs. Hierarchical clustering
- 2) Batch vs. Streaming (online) data
- 3) Complexity and Approximate Algorithms
- 4) Statistical Consistency

Geometric Clustering based on metric (RMSD)

几种聚类算法比较

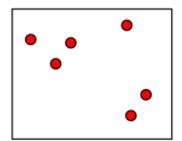
类别	复杂性	近似算法	在线算法	Hierarchical	统计一致性
K-means	NP	50-app	X	X	✓[Pollard81]
K-center	NP	2-app. O(kn)	✓ (8-app)	✓ (8-app)	<pre>// // // // // // // // // // // // //</pre>
Average- linkage	Close to k- means	Ş	?	•	?
Complete- linkage	Close to k- center	a(k)-app k <a(k)<k^log(3)< td=""><td>?</td><td>•</td><td>?</td></a(k)<k^log(3)<>	?	•	?
Single-linkage	Minimal spanning tree		(Persistent Homology)		✓ [Hartigen81,S tuetzle03]

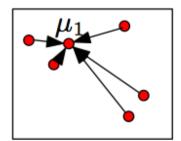
Recall K-center clustering

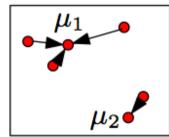
- input: conformations in a metric space (RMSD) and a number k
- goal: obtain a partition of the points into clusters C_1, \dots, C_k with centers μ_1, \dots, μ_k .
 - o condition: minimize the maximum cluster radius:

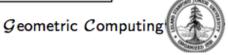
$$\max_i \max_{x \in C_i} d(x, \mu_i)$$

- NP-hard problem
- 2-approximation algorithm (greedy k-center algorithm)







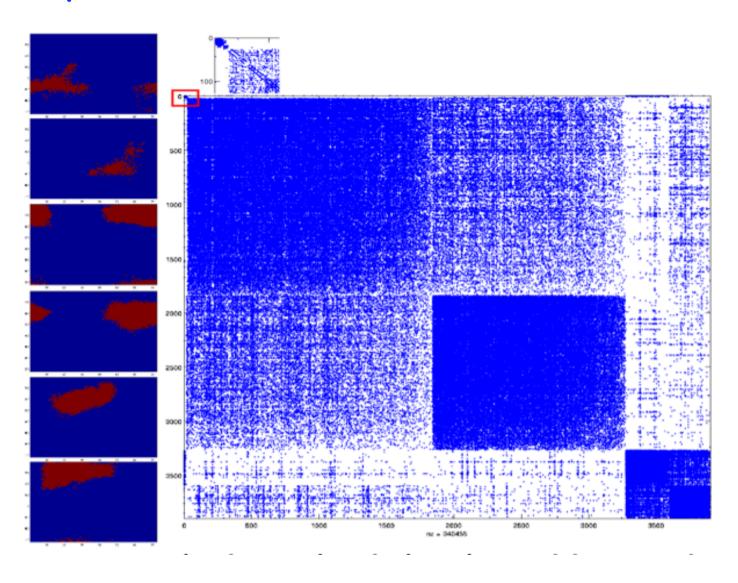


K-center 几何性质

- Farthest-first-traversal算法形成了样本空间的一个度量R-net
 - Any two points in C are R-distance away
 - Points in C form a R-cover of sample space
- K-center is NP-hard, but the 2-approx. algorithm is O(kn), much faster than K-means etc.
- 只依赖于度量结构
- K-center在ISOMAP(TdL'2000, Science)中被采用,称为Landmark技术
- Molecular dynamics application [Sun, Y, Huang, et al. JPC, 09]
- 缺点:
 - 对样本空间边缘的outlier和noise比较敏感 (Good or bad?)
 - 没有statistical consistency theory

Kinetic Clustering
--Spectral Method

Nearly Block Structure of Transition Matrix



Lumpability of Markov Chains

- Let T be the transition matrix of a Markov chain defined on n states S={1,...,n}.
- $P={S_1,...,S_k}$ is a partition of S into k macrostates.
- Sequences $\{x_0,...,x_t,...\}$ generated by T, i.e.

Prob(
$$x_{t}=j ; x_{t-1}=i$$
)= T_{ij}

- Induced dynamics: relabel x_t by y_t from corresponding states in partition P
- [Kemeny-Snell'76] T is called *lumpable* if

$$Prob(y_t=k_0; y_{t-1}=k_1, ..., y_{t-m}=k_m) = Prob(y_t=k_0; y_{t-1}=k_1)$$

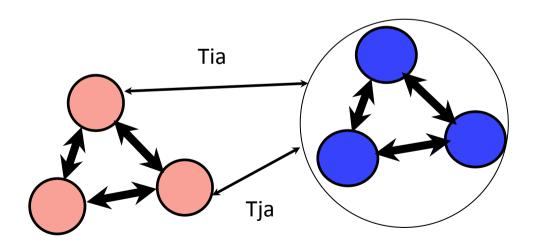
i.e. the induced dynamics is markovian.

Lumpability of Markov Chains

• [Kemeny-Snell'76] T is *lumpable* w.r.t. partition $P=\{S_1,...,S_k\}$ iff for any s, t chosen from P, and for any i, j lying in S_s , the following holds

$$T_{it} = T_{jt}$$

where T_{it} =sum_{k ϵ St} T_{ik} .



Spectral Theory of Lumpability

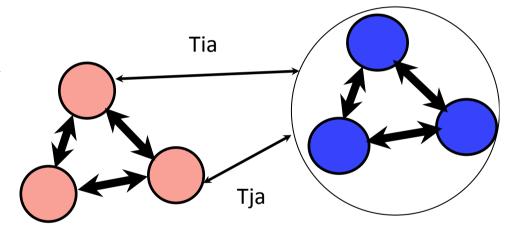
- [Meila-Shi 2001] T is *lumpable w.r.t. P* iff T has k independent piece-wise constant right eigenvectors in the span of characteristic functions of P= $\{S_1,...,S_k\}$.
- Special case: If T is block diagonal, i.e. uncoupled Markov chain, then T is lumpable with piece-wise constant right eigenvectors associated with multiple eigenvalue 1.
- If T is nearly block diagonal, then there are top (k) eigenvectors which fix signs within the block [Belkin-Shi-Yu 2009].
- [E-Li-Vanden_Eijnden 2007] Let T be an n-dim reversible Markov chain, then the best approximation of T from k-dim lumpable chains solves the following optimization

Min_o norm(T-Q,`Hilbert-Schmidt')

where the Hilbert-Schmidt norm of a reversible chain $T = D^{-1}W$, is defined to be sqrt((DT)'(DT))=sqrt(W'W).

Spectral Clustering Theories

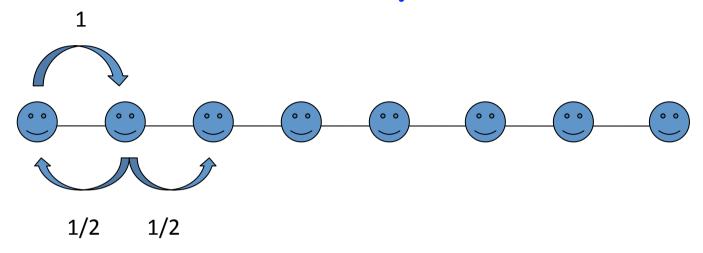
- 3 equivalent descriptions of Lumpability
 - Markovian
 - Spectral properties
 - Piecewise constant r.ev
 - Transition matrix
 - Mean-first-passage



- Approximate Graph min-cut
 - Cheeger's inequalities

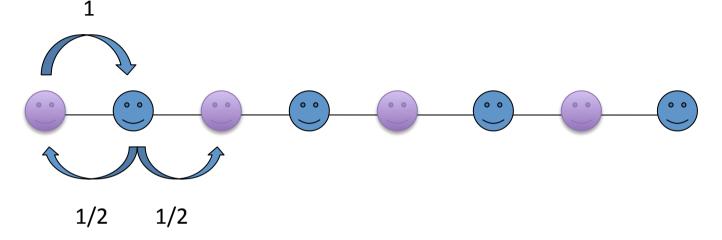
The two theories are different!

Example I



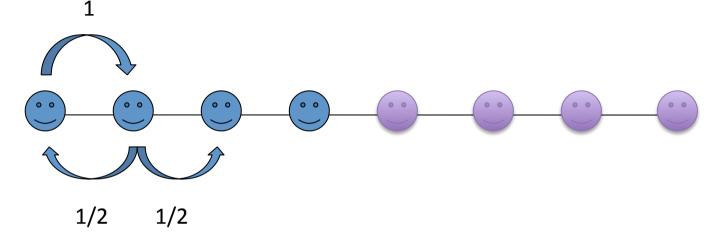
- Consider 2n nodes on a linear chain
- Markov Chain: a node will jump to its neighbors with equal probability
 - $T(i, i-1) = T(i, i+1) = \frac{1}{2}$, for 2n > i > 1
 - -T(1,2) = T(2n,2n-1) = 1

Example I: Lumpable States



- T is lumpable w.r.t. P*=(S_{even}, S_{odd})
 - S_{even}: even nodes
 - S_{odd}: odd nodes
- P* corresponds to eigenvector with eigenvalue -1

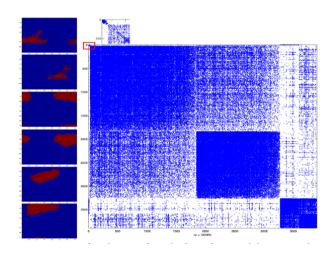
Example I: Graph min-cut



- One graph min-cut given by second largest right eigenvector of T
- n=8,
 - $-v_2$ =[0.4714 0.4247 0.2939 0.1049 -0.1049 -0.2939 -0.4247 -0.4714]
 - Eigenvalue is 0.9010

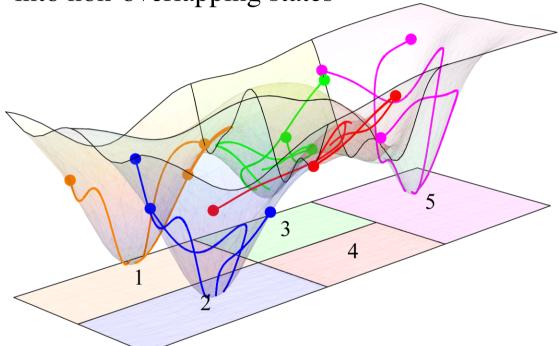
When two theories meet?

- [Meila-Shi 2001, E-L-V 2008]
 - If the top k eigenvectors are piecewise constant functions w.r.t. partition $P=\{S_1,...,S_k\}$
 - Or, T is nearly uncoupled Markov chain (nearly block diagonal)



Free Energy Landscape drives MSM

The configuration space is decomposed into non-overlapping states



Define transition probabilities between states

$$T(\tau) = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{15} \\ p_{21} & p_{22} & & \\ \vdots & & \ddots & \\ p_{51} & & p_{55} \end{bmatrix}$$

We can extract long time dynamics from MSMs built from short simulations

$$P(n\tau) = [T(\tau)]^n P(0)$$
 The time is coarse-grained in τ

Spectral Clustering Algorithm

- Typical spectral algorithm to find approximate lumpable states in nearly uncoupled systems [Ng-Jordan-Weiss'02]:
 - Find top k right eigenvectors of T where a 1arge spectral gap occurs, $v_1,...,v_k$
 - Embed the data into R^k by those eigenvectors
 - Use k-means (or alternatives) to find k clusters in Rk
- In biomolecular dynamics, this type algorithm is named after Perron, or PCCA [Weber'04].

Problems

- Standard spectral clustering algorithms may fail due to
 - Sparsely sampled microstates are isolated
 - Discovered as spurious metastable states
- Solutions:
 - Hierarchical/Multiresolution Nystrom method ([Huang et al. 2010, Yao et al. 2013])
 - Other non-spectral methods? Yes, Milestoning ([Schutte et al. 2011])

Statistical Inference of MSM

- Maximum Likelihood
- Bayesian Inference of Reversible Markov Chains [Bacallado et al. 2011, 2013]

Analysis of MSM

- What can we do with a discrete Markov State Model?
 - Mean-first-passage-time from state a to state b
 - Transition path theory: reaction current (flux) from source set A to sink set B
 - Continuous space [E and Vanden-Eijden, 2006]
 - Discrete space [Metzner et al. 2009; Noe et al. 2009]
 - Topological landscape [E, Lu and Yao, 2014]

Reference

- Shi, Belkin, and Yu, Data spectroscopy: Eigenspaces of convolution operators and clustering. Annals of Statistics, 37 (6B): 3960-3984. 2008.
- Chodera, J. D., Singhal, N., Pande V. S., Dill, K. A., and Swope W. C. (2007) J. Chem. Phys., 126, 155101-.
- E, Li, and Vanden Eijnden. Optimal partition and effective dynamics of complex networks. PNAS, 105 (23): 7907–7912, 2008.
- T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985.
- J.A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the American Statistical Association, 76:388-394, 1981.
- Kemeny and Snell 1976. Finite Markov Chains. Springer-Verlag.
- Meila and Shi, A random walk view of spectral segmentation, AISTATS 2001.
- Andrew Y. Ng, Michael I. Jordan and Yair Weiss. On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems (NIPS) 14, 2002.
- D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135-140, 1981
- W. Stuetzle. Estimating the cluster tree of a density by analyzing the minimal spanning tree of a sample. Journal of Classification, 20(5): 25-47, 2003.
- Deuflhard, P. and M. Weber, Robust Perron Cluster Analysis in Conformation Dynamics, ZIB-Report 03-19, 2003.
- Weber, M. Clustering by using a simplex structure, ZIB-Report 04-03, 2004
- Ulrike von Luxburg, A Tutorial on Spectral Clustering, Max Planck Institute for Biological Cybernetics, TR-149, 2006
- Huang, X., Y. Yao, J. Sun, L. Guibas, G. Carlsson and V.S. Pande. Constructing Multi-Resolution Markov State Models (MSMS) to Elucidate RNA Hairpin Folding Mechanisms. Proceedings of the Pacific Symposium on Biocomputing, 15, 228-239, 2010.
- Yuan Yao, Raymond Z. Cui, Gregory R. Bowman, Daniel Silva, Jian Sun, Xuhui Huang. Hierarchical Nystrom Methods for Constructing Markov State Models for Conformational Dynamics. *J. Chem. Phys.*, 138 (17):174106. arXiv:1301.0974, 2013.
- C Schütte, F Noé, J Lu, M Sarich, E Vanden-Eijnden (2011). Markov state models based on milestoning. J Chem Phys., 134 (20): 204105
- Weinan E and Eric Vanden-Eijnden, Towards a theory of transition paths, *J. Stat. Phys.* 123 (2006), 503–523.
- Weinan E and Eric Vanden-Eijnden, Transition-path theory and path-finding algorithms for the study of rare events, Annual Review of Physical Chemistry 61 (2010), 391–420.
- Philipp Metzner, Christof Schu tte, and Eric Vanden-Eijnden, Transition path theory for markov jump processes, Multiscale Model. Simul. 7 (2009), 1192.
- F. Noe, C. Schu'tte, E. Vanden–Eijnden, L. Reich, and T. R. Weikl, Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations, Proceedings of the National Academy of Sciences of the United States of America, 106:45 (2009), pp. 19011–19016.
- Sergio A. Bacallado. Bayesian analysis of variable-order, reversible Markov chains. The Annals of Statistics, (39), 2, pp. 838-864, 2011.
- Sergio A. Bacallado, Stefano Favaro, Lorenzo Trippa. Bayesian nonparametric analysis of reversible Markov chains. The Annals of Statistics, (41), 2, pp. 870-896, 2013.

Some material at -- http://www.math.pku.edu.cn/teachers/yaoy/Spring2011/