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Coulombic systems and biology

• Biomolecules are charged (DNA, RNA, 
proteins)

• water is the solvent

• salts and small ions in solution

• membranes may be charged 

It is thus important to understand the 
properties of systems with Coulombic 

interactions: electrolytes, 
polyelectrolytes, colloids, etc...

lundi 21 avril 14



Outline
• Phenomenological derivation

• The double layer problem

• Debye-Huckel

• Field-Theory

• Steric effects

• The dipolar solvent

• Short range interactions
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Consider a system of charges in a 
solution with dielectric constant     

molecules of charge Ni qie
"

Poisson equation: �r2'(~r) =
⇢c(~r)

"

where          is the electrostatic potential'(~r)

and                is the charge density⇢c(~r)

At thermodynamical equilibrium, the charge density is 
given by the sum of the fixed charges and a Boltzmann
distribution

fixed charges

⇢c(~r) = ⇢f (~r) +
X

i

Niqie
e��qie'(~r)

Zi
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where Zi =

Z
d3e��qie'(~r)

In an infinite system: Zi = V

�r2'(~r) =
⇢f (~r)

"
+

X

i

ciqie

"
e��qie'(~r)

Example: (1:1) salt

�r2'(~r) =
⇢f (~r)

"
� 2

ce

"
sinh(�e'(~r)

concentration of ion i
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Poisson-Boltzmann
• Very non-linear partial differential equation 

(PDE)

• Very few cases are exactly solvable 

• a charged plane with counterions (double 
layer problem)

• a charged cylinder with counterions 
(Manning condensation)

• a charged plane wih salt (implicit solution 
very complicated)

• Usually must resort to numerical solution
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The double layer: a charged 
plane with counterions

• consider a plane with charge density 

• counterions of charge -1

• note that     as it can be absorbed in 

• Boundary condition

�

�'00(z) =
�

"
�(z)� �

"
e+�e'(z)

� '

'0(0) = ��

"
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Try a solution of the type: '(z) = A log(z + µ)

Solution: A = � 2

�e
� = 2"

�e

µ = 2"
�e�

Gouy-Chapmann length: 
size of the double layer

Counterion density

⇢c(z) = � 2"
�e

1
(z+µ)2

R +1
0 dz ⇢(z) = ��

All couterions are bound to the plane: charge neutrality

⇢c(z) = ��

"
e+�e'(z)
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The cylindrical case: Manning 
condensation

• Consider an infinite cylinder with charge 
density        surrounded by its counterions.

• There is an exact solution.

• There is a critical surface charge      such 
that

• if              , the couterions are unbound

• if              , a fraction of the counterions 
are bound to the cylinder, and the rest is 
unbound. 

��

�c

� < �c

� > �c
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Debye-Huckel approximation

�r2' =
X

i

ciqie

"
e��qie'

Assume              small. Expand to order 1�qie'

Charge neutrality implies
X

i

ciqie = 0

r2' = 2'

2 =
1

l2DH

=
�e2

"

X

i

ciq
2
iDebye-Huckel 

length
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• Debye-Huckel potential decays 
exponentially: electrostatic screening

• Debye-Huckel length proportional to the 
inverse of the square root of the ionic 
concentrations.
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Numerical solution

• Standard numerical method: solve by 
iterations:

• start from a guess 

• solve the equation

• iterate the procedure until convergence

• discretize the Laplacian

• sometimes need to refine the grid near 
fixed charges

• partition fixed charges on grid points

'0

�r2' = V ('0)
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What is absent from PB

• Steric effects: ions are supposed to be 
punctual

• Water has no structure. It is a continuous 
medium. Necessary to treat is as dipoles

• Interactions of water molecules.

• PB is mean-field: need to introduce 
fluctuations.
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Natural method to generalize 
PB: field theory of Coulombic 

systems.

lundi 21 avril 14



Why Field-Theory?

• Statistical mechanics of Coulombic liquids

• Derivation of Mean-Field theories

• Calculation of fluctuations to all orders

• Non-perturbative approaches
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Field Theory for 
Electrolytes

Z =

1

N !

Z
dr1 . . . drN exp

✓
��

2

Z
drdr0⇢c(r)vc(r � r0

)⇢c(r
0
)

◆

vc(r) =
1

4⇡✏0r
�vc(r) = ��(r)

✏0

⇢c(r) =
NX

i=1

qi�(r � ri)
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Gaussian integrals
R +1
�1 dxe

� a
2 x

2+ux =
q

2⇡
a

e

u2

2a

R +1
�1

Q
N

i=1 dxi

e

� 1
2

P
i,j xiAijxj+

P
i uixi = (2⇡)N/2

(detA)1/2
e

1
2

P
i,j uiA

�1
ij uj

generalize to a field: 

xi ! '(r)
Aij ! A(r, r0)

R QN
i=1 dxi !

R
D'(r)
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Stratanovich-Hubbard = Gaussian identity

exp

✓
��

2

Z
⇢(r)v(r � r0)⇢(r0)

◆
=

Z
D�(r) exp

✓
��

2

Z
drdr0�(r)v�1

(r � r0)�(r0) + i�

Z
dr⇢(r)�(r)

◆

Poisson equation for a unit point-like charge:

r2vc(r) = ��(r)

"0

v�1
c (r, r0) = �"0r2�(r � r0)
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Poisson-Boltzmann

PB = Saddle-Point method  on � then �! i�

Example: salt 1:1

�2� =
2�e

✏0
sinh(�e�)

Z =

Z
D'(r)e�

�"0
2

R
dr(r')2�i�

R
dr⇢c(r)'(r)

Z =

Z
D'(r)e�

�"0
2

R
dr(r')2+

P
i �ie

�i�qie'(r)
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Poisson-Boltzmann with 
hard-cores

Lattice Gas

II. THE MODIFIED POISSON–BOLTZMANN EQUATION

A. Lattice Gas Formulation

Consider an aqueous solution of charged ions. For simplicity we will assume that both

co-ions and counter-ions have the same size a. This assumption can be justified when all

the surface charges are of the same sign, since only counterions are then attracted to the

surface and reach high charge densities. Another simplification is that we do not distinguish

between the counterions which dissociate from the charged surfaces and the ones originating

from the added salt.

For the valencies of the ions we will consider three cases: (i) a symmetric z:z electrolyte,

(ii) an asymmetric 1:z electrolyte, and (iii) z-valent counterions without additional salt. The

different cases will be used to study the application of the modified equation in different

physical systems.

For a symmetric z:z electrolyte the solution contains two charge carriers, with charges

equal to ±ze. In order to derive the free energy we will use a discrete lattice gas formulation.

In this approach, the charge carriers are placed on a three dimensional cubic lattice where

the dimensions of a single cell are a × a × a (Fig. 2). Thus, by dividing space into discrete

cells (lattice sites) and limiting the occupation of each cell to a single ion we introduce a

short range repulsion between the ions. The size of a cell represents the volume of an ion

up to a numerical prefactor.

In order to describe the occupation of cells by ions we assign to each cell j, which is

located at rj, a spin-like variable sj. This variable can have one of three values: sj = 0 if

the cell is empty (occupied by a water molecule), and sj = ±1 according to the sign of the

ion that occupies the cell. The partition function of the system can now be written in the

form [30]

Z =
∑

sj=0,±1

exp



−β

2
z2e2

∑

j,j′
sjvc(rj − rj′)sj′ +

∑

j

βµjs
2
j



 (1)

The first term in the exponent is the electrostatic energy, where vc(r) = 1/ε|r| is the Coulomb

3

Since the exponential is quadratic in ρc, its functional integral can be performed.

Z =
∫
Dϕc exp

(
− βε

8π

∫
dr |∇ϕc|2

+
1

a3

∫
dr ln{1 +βµ+−izβeϕc(r) +βµ−+izβeϕc(r)}

)
(7)

The chemical potentials µ± are related to the total number of positive and negative ions

in the solutions through

N± =
1

Z

∂Z

∂(βµ±)
=

〈
1

a3

∫
dr

βµ±∓izβeϕc(r)

1 +βµ+−izβeϕc(r) +βµ−+izβeϕc(r)

〉

(8)

Where 〈O〉 denotes the grand canonical average of the operator O.

In the bulk, the total number of positive and negative ions is equal, N+ = N− = N/2.

It is useful to define the volume fraction occupied by both the co- and counter-ions as

φ0 = Na3/V = 2cba3 where V is the total volume and cb is the bulk concentration of the

electrolyte. In the thermodynamic limit N, V → ∞ while cb and φ0 remain finite. Using

eq. 8 the chemical potentials can be expressed in terms of φ0:

βµ+ =βµ−=
1

2

φ0

1 − φ0
(9)

In the mean field approximation, the partition function is approximated by the value of

the functional integral at its saddle point ψ(r) ≡ iϕc. The free energy of the system is then

given by

F

kBT
= − ln Z

= −βε

8π

∫
dr |∇ψ|2 − 1

a3

∫
dr ln

{

1 +
φ0

1 − φ0
cosh [βzeψ(r)]

}

(10)

where ψ(r) satisfies the modified Poisson–Boltzmann equation for a symmetric z:z electrolyte

[19]:

∇2ψ =
8πze

ε

cb sinh(zβeψ)

1 − φ0 + φ0 cosh(zβeψ)
(11)

5

Figures

x

Fig. 1. Schematic view of the adsorption of large ions to a charged monolayer
[18]. The surface charge is carried by amphiphilic molecules which are confined to
the air/water interface. The surface charge density can be varied continuously by
changing the area per amphiphilic molecule.
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j

j
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r

j

a

Fig. 2. Schematic view of an electrolyte on a lattice model. The lattice cells are
located at rj and assigned a spin-like variable sj = 0,±1.
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Since the exponential is quadratic in ρc, its functional integral can be performed.

Z =
∫
Dϕc exp

(
− βε

8π

∫
dr |∇ϕc|2

+
1

a3

∫
dr ln{1 +βµ+−izβeϕc(r) +βµ−+izβeϕc(r)}

)
(7)

The chemical potentials µ± are related to the total number of positive and negative ions

in the solutions through

N± =
1

Z

∂Z

∂(βµ±)
=

〈
1

a3

∫
dr

βµ±∓izβeϕc(r)

1 +βµ+−izβeϕc(r) +βµ−+izβeϕc(r)

〉

(8)

Where 〈O〉 denotes the grand canonical average of the operator O.

In the bulk, the total number of positive and negative ions is equal, N+ = N− = N/2.

It is useful to define the volume fraction occupied by both the co- and counter-ions as

φ0 = Na3/V = 2cba3 where V is the total volume and cb is the bulk concentration of the

electrolyte. In the thermodynamic limit N, V → ∞ while cb and φ0 remain finite. Using

eq. 8 the chemical potentials can be expressed in terms of φ0:

βµ+ =βµ−=
1

2

φ0

1 − φ0
(9)

In the mean field approximation, the partition function is approximated by the value of

the functional integral at its saddle point ψ(r) ≡ iϕc. The free energy of the system is then

given by

F

kBT
= − ln Z

= −βε

8π

∫
dr |∇ψ|2 − 1

a3

∫
dr ln

{

1 +
φ0

1 − φ0
cosh [βzeψ(r)]

}

(10)

where ψ(r) satisfies the modified Poisson–Boltzmann equation for a symmetric z:z electrolyte

[19]:

∇2ψ =
8πze

ε

cb sinh(zβeψ)

1 − φ0 + φ0 cosh(zβeψ)
(11)

5

z : z salt

In the zero size limit, a → 0, (namely, φ0 → 0 while cb remains fixed) the above equation

reduces to the regular Poisson–Boltzmann equation:

∇2ψ =
8πze

ε
cb sinh(zβeψ) (12)

For an asymmetric 1:z electrolyte the derivation is very similar and the modified PB

equation is:

∇2ψ =
4πzecb

ε

zβeψ−−βeψ

1 − φ0 + φ0(zβeψ+z−βeψ)/(z + 1)
(13)

where φ0 = (z + 1)a3cb is the combined bulk volume fraction of the positive and negative

ions.

Finally, if the solution is salt free and contains only negative counterions of valency −|z|,

the modified PB equation becomes

∇2ψ =
4πzec0

ε

zβeψ

1 − φ0 + φzβeψ
0

(14)

where φ0 = a3c0 is the volume fraction at an arbitrary reference point r0 where ψ(r0) = 0

and c(r0) = c0. Note that the reference point of zero potential does not lie at infinity. The

salt-free system contains only the counterions which neutralize the surface charges. Since

the surface is taken to be infinite in its size, the potential does not go to zero as x → ∞,

but it diverges to −∞. Physically this divergence is not a problem because the electric field

and counterion density tend to zero at large distances.

B. Phenomenological Free Energy Derivation

The modified PB equation (eqs. 11, 13 and 14) can also be derived from a phenomeno-

logical free energy [19]. Let us consider again the symmetric z:z case. This is done by

expressing the free energy of the system F = Uel − TS in terms of the local electrostatic

potential ψ(r) and the ion concentrations c±(r). The electrostatic contribution is

Uel =
∫

dr
[
− ε

8π
|∇ψ|2 + zec+ψ − zec−ψ − µ+c+ − µ−c−

]
(15)

6

l*

l* l*l*

Fig. 3. (a) Concentration profiles of negative multivalent ions c−(x) near a positively
charged surface as obtained from the numerical solution of eq. 23 for two different
ion size a = 7.5Å (dotted line) and a = 10Å (dashed line). The saturated layer
width l∗ ! 2Å and 5Å, respectively, is indicated by small arrows. The solid line
represents the concentration profile of the standard PB equation. (b) Calculated
electrostatic potential profiles near the surface plotted together with the parabolic
approximation (eqs. 24, 26). The dotted, dashed and solid lines are as in (a). The
bulk concentration is cb = 0.1M for a 1:z electrolyte with z=4. The surface charge
density σ is taken as one electron charge per 50Å2. The aqueous solution with ε = 80
is at room temperature so that the Bjerrum length is lB = 7Å.
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Poisson-Boltzmann with 
dipoles

Represent water as point-dipoles

Dipolar Poisson-Boltzmann Equation: Ions and Dipoles Close to Charged Surfaces

Ariel Abrashkin,1 David Andelman,1 and Henri Orland2

1School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, 69978 Ramat Aviv, Israel

2Service de Physique Théorique, CE-Saclay, 91191 Gif-sur-Yvette Cedex, France

We present an extension to the Poisson-Boltzmann model where the dipolar features of solvent
molecules are taken explicitly into account. The formulation is derived at mean-field level and can be
extended to any order in a systematic expansion. It is applied to a two-plate system with oppositely
charged surfaces. The ion distribution and profiles in the dipolar order parameter are calculated
and can result in a large correction to the inter-plate pressure.

PACS numbers: 61.20.Qg, 82.60.Lf, 82.70.Dd

Charged objects (ions, interfaces and particles) im-
mersed in liquids play a central role in electrochemistry,
colloidal science and biology ranging from electrolyte ap-
plications, stabilization of colloidal suspensions, protein
folding and its biological activity, and even in protein
aggregation [1–5].

The most commonly used model — the Poisson-
Boltzmann model (PB) [1, 3] — assumes point-like ions
immersed in a continuum dielectric media and treats the
system in a mean-field approximation. The medium is
modeled by a homogeneous and isotropic dielectric con-
stant. This model is simple, elegant and e⇥cient. It is
in good agreement with experiments for monovalent ions
up to energies of order of kBT . However, careful mea-
surements of the forces between two charged surfaces at
nanometric scale show strong deviation from the simple
PB picture [3]. In particular, the assumption that the
continuum dielectric medium is homogeneous does not
take into account the strong dielectric response of water
molecules around charges. The discrete moments of wa-
ter molecules will orient themselves close to charged ions
and surfaces giving rise to hydration shells and to hy-
drophobic interactions, which can be measured at short
distances, for example, between two charged plates (sur-
face force balance apparatus). These hydration phenom-
ena are very important in many biological processes such
as protein folding, protein crystallization and interactions
between charged biopolymers inside the cell.

Most studies other than the PB rely on one of sev-
eral theoretical techniques. Monte Carlo (MC) [6] or
Molecular Dynamic (MD) [7] computer simulations take
into account the discrete nature of the dipolar molecules.
A second approach relies on liquid state theory, integral
equation and other methods [8, 9]. In simple planar ge-
ometry the latter gives good agreement with the MC and
MD simulations. However, all these methods are rather
cumbersome and involve heavy computation resources.
In addition, they lack the simple physical picture pro-
vided by a Poisson-Boltzmann type of approach.

In this Letter we propose another approach called the
Dipolar Poisson-Boltzmann (DPB). Unlike the PB model
where the solution is characterized by a homogeneous
dielectric constant, in the DPB model we coarse grain

the interaction of individual ions and dipoles interact-
ing together. This makes the DPB an analytic extension
of the PB formalism. Although it is done on a mean-
field level, it includes some aspects of the discrete nature
of the dipolar solvent molecules and how they modify
the ion–solvent interactions. We show that such correc-
tions to the PB treatment are important in predicting
dipolar profiles close to charged surfaces and result in a
strong deviation from their average value. Furthermore,
the DPB model can, in principle, be expanded to any
desired higher order in a systematic expansion.

Consider a system composed of Nd mobile dipoles each
with a dipolar moment p and I species of ions immersed
in a continuum dielectric medium with a weak dielectric
response (the justification for this system set-up is elab-
orated below), ⇤ & ⇤0, ⇤0 being the vacuum permittivity.
Each ionic species has Nj ions of charge qje, j = 1 . . . I,
where e is the electron charge. In addition, the system
includes a fixed charge distribution ⇧f (r). The charge
density created by a point dipole p at point r0 is given
by ⇧d(r) = �p·⇤⇥(r�r0). Thus, the total charge density
is

⇧(r) = �
Nd⇤

i=1

pi ·⇤⇥(r�ri)+
I⇤

j=1

Nj⇤

i=1

qje⇥(r�R(j)
i )+⇧f (r)

(1)
where ri denotes the position of dipoles of moment pi and
R(j)

i are the positions of ions of type j. The canonical
partition function is given by

Z =
1

Nd!�I
j=1Nj !

⌅
�Nd

i=1d
3rid

3pi�I
j=1�

Nj

i=1d
3R(j)

i

⇥e�
�
2

�
d3rd3r0⇥(r)vc(r�r0)⇥(r0) (2)

where vc(r) denotes the Coulomb potential. Using a stan-
dard Hubbard–Stratonovich transformation,

Z =
⌅

D⌃(r) exp
�
��⇤

2

⌅
d3r [⇤⌃(r)]2

+ ⌅d

⌅
d3r d3p e�i�p·⇥⇤ +

I⇤

i=1

⌅i

⌅
d3r e�i�qie⇤

�i�

⌅
d3r ⌃(r)⇧f (r)

⇥
(3)
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⌅
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I⇤

i=1

⌅i

⌅
d3r e�i�qie⇤

�i�

⌅
d3r ⌃(r)⇧f (r)

⇥
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Z
d3r

sin(�p0|r�(r)|)
�p0|r�(r)|)
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More importantly, the PBE method contains a very rough
approximation which consists in using a constant and
somewhat arbitrary value for the dielectric constant of the
protein (usually set at 2–4), that abruptly jumps to 80 at the
interface between the protein and the solvent. Moreover,
because of polarization effects in the vicinity of charges, it is
expected that the representation of the solvent as a homo-
geneous dielectric medium is bound to be erroneous close to
the interface. The need to have a smooth dielectric profile at
the border of the solute has long been recognized and this
problem still attracts a lot of attention and controversy (23),
especially as the concept of dielectric constant is not, per se, a
microscopic one (24). A number of attempts have been made
to derive the function eð~rÞ from first principles. The most
complete derivation comes from Ehrenson (25) for a dipolar
fluid in the electric field of an ion or a dipole. This was ap-
plied to proteins by Hassan et al. (26) to derive a screened
Coulomb potential with a distance-dependent e(r) that can
then be used in molecular dynamics simulations without
explicit solvent (27).
In this article, we are interested in a solvent model with

built-in eð~rÞ dependence that allows the rapid prediction of
solvent density around macromolecular solutes. We show
how to introduce (free) dipolar charges representing the
solvent molecules in a Poisson-Boltzmann formalism. The
system self-consistently adjusts its position-dependent sol-
vent density and the electric potential is obtained numeri-
cally, not analytically. For a solute with a complex shape, the
resulting dielectric profile and solvent density are not
spherically symmetric but depend on the chemical nature and
partial charge of the exposed nearby solute atom(s).
There is a variety of situations on both the experimental and

computational sides where onewould like to have access to the
solvent density map, starting from just the PDB atomic co-
ordinates and the partial charges of the molecule (28). On the
experimental level, such a solvent map could be very helpful
to interpret x-ray electron density maps in the final stages of
model building, when water molecule assignment starts. It
would also help interpreting both SAXS and SANS experi-
mental data, where the hydration shell is usually modeled as a
mere cushion of constant width around the solute (29).
On the modeling level, it would be very useful for quickly

computing the electrostatic part of solvation energies with a
more realistic model than PBE, especially as a molecular
understanding of the nature of the hydrophobic effect is still
lacking for macromolecules and remains a subject of active
research (30–33). The structure of water around both polar
and apolar solutes is also still actively studied (34–36).
Knowledge of the solvent density profile has clear implica-
tions for the calculation of solvation energies and the mod-
eling of the hydrophobic effect at different length scales (31).
Indeed, as included in the van der Waals theory of capillarity
(37), it has been proposed that the free energy contains a term
proportional to the integral of the squared gradient of the
solvent density profile (32,33).

Here we show how a simple solvent description based on
an assembly of freely orienting and interacting dipoles on a
grid can be readily incorporated into and solved within the
Poisson-Boltzmann formalism. This is in effect a generali-
zation of the Langevin Dipoles-Protein Dipoles model de-
veloped by Warshel and Levitt (38), Warshel and Russell
(39), Russell and Warshel (40), and Warshel and Papazyan
(41), with the key additional feature that the dipoles are now
allowed to have a variable density at each allocation grid
point around the solute. The use of a lattice ensures that size
exclusion effects are included in this Poisson-Boltzmann-
Langevin (PBL) model.
A preliminary account of the method and its implemen-

tation through a web site has been presented recently (42),
and detailed numerical applications to the case of a charged
planar surface have just been described by Abrashkin et al.
(43). Here we give a full description of the method, starting
with a phenomenological derivation of the free energy of
the system. Minimization of the free energy then leads to
a Poisson-Boltzmann-Langevin equation (PBLE), which we
solve by rapid numerical methods.

THEORY

The PBL equation

Let us consider a fixed charged biomolecule (the solute) im-
merged in a solvent, and surrounded by an ion atmosphere.We
represent the solvent as an assembly of freely orientable di-
poles p~j in a z/z electrolyte with the free ions carrying a charge
6 ze, where e is the charge of the electron and z the valency of
the free ions. The solute and the free dipoles and ions are
embedded in a lattice where each site j bears a spinlike oc-
cupancy dj¼ 0, 1 and sj¼$1, 0, 1 for the free dipoles and the
free ions (see Fig. 1), with chemical potential mdip and mion,
respectively. The lattice allows for imposing directly steric
hindrance between the different species, without recourse to an
additional repulsion potential. We suppose for the moment that
both ions and dipoles have the same diameter a (seeAppendixB
for the case where ions and dipoles have a different size). The
dipoles and the ions create a local charge density in the sol-
vent that is to be added to the fixed charge density rfð~rÞ ¼
+qidð~r $~riÞ of the solute, all of them interacting solely
through Coulomb potential

R
d~rd~r9rð~rÞvðj~r $~r9jÞrð~r9Þ and

rð~rÞ ¼ rfð~rÞ1relecionsð~rÞ1relecdip ð~rÞ:
As shown in Appendix A the free energy of the system

described in Fig. 1 is a function of the electric potentialFð~rÞ;

bF ¼$ b

2

Z
d~r e0j~=Fð~rÞj2 1b

Z
d~r rfð~rÞFð~rÞ

$ 1

a3

Z

Solvent

d~r ln

 

11 2lioncoshðbezFð~rÞÞ

1 ldip

sinhðbpoj~=Fð~rÞjÞ
bpoj~=Fð~rÞj

!

; (1)
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where ⇤ = ⇤0⇤r is the medium dielectric constant (in SI
units) and � = 1/T is the inverse temperature (where the
Boltzmann constant, kB , is set to unity). The fugacities
of the dipoles and ith ion species, ⌅d and ⌅i, respectively,
are derived from the relations: Nd = ⌅d

⌅
⌅⇤d

log Z and
Ni = ⌅i

⌅
⌅⇤i

log Z.
Assuming that each molecular dipole has a fixed mag-

nitude, |p| = p0 we sum now over the {p} degrees
of freedom and obtain the dipolar term in the form
⌅d

⇧
d3r sin(�p0|⌅⌥|)/�p0|⌅⌥|.

The DPB equation is then obtained as the saddle-point
of the action (3) [where we have used ⇥(r) = i⌥(r) to
denote the physical electrostatic potential]

�⇤⌅2⇥ =
⌃

i

⌅iqie e��qie� + ⇧f (r)

+ ⌅dp0⌅ · [(⌅⇥/|⌅⇥|)G (�p0|⌅⇥|)] (4)

and the function G(u) = coshu/u � sinh u/u2 is related
to the Langevin function L(u) = cothu � 1/u by G =
(sinhu/u)L. One recognizes in (4) the usual terms of
the Poisson-Boltzmann equation (the first two terms on
the RHS), while the last term is the divergence of the
polarization contributing to the induced charge density.
The local polarization density (square brackets) in eq. (4)
is the product of the dipole density, sinhu/u, and the
average dipole moment given (on a mean-field level) by
the Langevin function.

In the following we study a dipolar solvent with 1:1
salt confined between two oppositely charged planes [10].
While the spatial variation of the dielectric constant is
pronounced near any charged surface, the dipolar con-
tribution to the osmotic pressure is much larger for two
anti-symmetric plates than for equally charged ones (as
will be explained below). Choosing the charge density
to be ⇥⌃ for the two plates located at z = ±d/2, the
potential, ionic profiles and dipole density depend only
on the z coordinate perpendicular to the planes and (4)
becomes

� ⇤⇥⇥⇥(z) = �2cse sinh �e⇥ + ⌃⇥(z + d/2)

� ⌃⇥(z � d/2) + cdp0
d

dz

⌥
G(�p0⇥⇥)

�
(5)

where we assume that the system is in contact with a
reservoir containing a dipolar fluid of concentration cd

and salt of concentration cs so that ⌅d = cd and ⌅s = cs.
The boundary condition at the z = �d/2 charged

plane is �⇤⇥⇥
s = cdp0G(�p0⇥⇥

s) + ⌃ and the electric field
E = �⇥⇥ is the same, for the anti-symmetric system,
as on the other plane. Note that the usual Neumann
boundary conditions for the PB equation includes now
the polarization induced surface charges. We find that for
strong enough surface charge densities the induced charge
can be substantial and corresponds to a large modifica-
tion of the standard boundary condition.

From (5) we obtain the first integral which is equiva-
lent to the contact theorem expression for the pressure

di⇤erence � = Pin � Pout

� = � ⇤

2
⇥⇥2(z) + 2csT (cosh�e⇥� 1)

� cdp0⇥⇥G(�p0⇥⇥) + cdT

⇤
sinh �p0⇥⇥

�p0⇥⇥ � 1
⌅

(6)

This equation allows to express ⇥(z) as a function of
⇥⇥ and thus solves (5) by a simple quadrature. The first
two terms in � are the usual PB contributions, the first
being the electric field and the second the mixing entropy
of the ions. The other two terms are the specific terms of
the DPB model. The first is the enthalpic contribution
related to the orientation of the dipoles in a local elec-
tric field. The last term is the rotational entropy of the
dipoles. The pressure at any point z is calculated with
respect to the pressure exerted by the bulk reservoir out-
side the plates.

Another way to interpret (5) is to write it as a PB
equation with an e⇤ective field-dependent dielectric con-
stant ⇤e⇥(E) = ⇤0⇤e⇥r (E) replacing the ⇤ on the LHS. The
non-linear dielectric response is given by

⇤e⇥(E) = ⇤ +
cdp0

E
G(�p0E) (7)

For weak fields one can expand the function G to first or-
der and obtain the standard PB equation ⇤e⇥⇥⇥⇥(z) ⇤
2cse sinh �e⇥ with an e⇤ective homogeneous dielectric
constant ⇤e⇥ = ⇤ + �cdp2

0/3.
This result for dielectric response of molecules with

intrinsic dipoles in dilute systems is well known. Since
we are interested in aqueous solutions, we have chosen
as a fit parameter the molecular dipole moment of water
to be p0 = 4.86 Debye (instead of the physical value
p0 = 1.85). This allows us to obtain ⇤e⇥r = 80 for ⇤ = ⇤0
(vacuum permittivity) and cd = 55 M.

When the dipolar e⇤ects are strong (see below) there
is a crowding of dipoles and ions between the plates, and
their densities can reach values higher than close packing.
To avoid this problem, we can generalize our theory to
take into account the finite molecular size [11]. Assuming
that the 1:1 ions and dipoles are constrained on a lattice
of spacing a (roughly equal to their molecular size), and
imposing the condition that each site of the lattice is oc-
cupied by only one of the three species (incompressibility
condition), the free energy becomes

��F = �⇥
2

⇧
d3r[⌅⇥(r)]2

+ 1
a3

⇧
d3r log

�
cd

sinh �p0|⇤�|
�p0|⇤�| + 2cs cosh(�e⇥)

⇥
(8)

where cd + 2cs = a�3. Minimizing the above free en-
ergy, the Modified Dipolar Poisson-Boltzmann (MDPB)
equation is obtained

�⇤⇥⇥⇥(z) = ⌃⇥(z + d/2)� ⌃⇥(z � d/2)

+ cdp0
a3

d
dz

⌥
L(�p0�

0)
D

�
� 2cse

a3
sinh �e�

D (9)
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3

where D = cd sinh(�p0⇥�)/�p0⇥� + 2cs cosh(�e⇥). The
presence of the denominator D in (9) leads to saturation
of the local ionic and dipolar densities, which is quite im-
portant close to charged boundaries. Without the dipolar
e⇤ect p0 = 0, the MDPB equation reduces to the modi-
fied PB equation which also displays an ionic saturation
e⇤ect because of solvent entropy [11].

A large deviation of the DPB treatment from the stan-
dard PB one may occur in the strong E field regime. Such
a case is presented now by solving numerically eq. (5)
with its boundary condition for a system composed of
two planar surfaces located at z = ±d/2, with opposite
surface charge densities ⇥⇤ and with small amounts of
1:1 salt to avoid strong screening e⇤ects. In this anti-
symmetric system the potential at the mid-plane van-
ishes, while the electric field there is non zero. The
DPB pressure, in turn, deviates substantially from its
corresponding PB value due to the coupling between the
dipole density and the non-zero electric field. This is in
contrast with a symmetric planar system where the elec-
tric field vanishes at the mid-plane.
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FIG. 1: The DPB rescaled dielectric constant �e�(z)/�bulk and
the dipole density cd(z)/cd profiles between two oppositely
charged plates at separation d = 20 Å. The surface charge
density is ⇥ = �e/50 Å2. The reservoir contains 1:1 salt of
concentration cs = 10°5 M and dipoles of density cd = 10 M.
The dielectric constant is rescaled with respect to its bulk
value �bulk = 18.2. The profiles have a strong variation in the
vicinity of the plates (up to 2 Å) and then saturate to a value
that is somewhat higher than their bulk values.

Had we modeled the water solvent as dipoles in vac-
uum (⇥ = ⇥0), the dipole density in the mid region (see
Fig. 1) would have reached unphysical values above the
close packing ones, because nothing in our model pre-
vents over-crowding. In order to avoid this artifact we
use a background of low dielectric solvent (e.g., ⇥r = 4.5
for ether) and treat explicitly the strong water dielectric
response by the dipolar term in the DPB equation (5). In
this fashion the water bulk density is lower than its close
packing value, yielding a dipole profile density which is

higher than the bulk value but below the close packing
one. Note that all other mixture enthalpic and entropic
terms are not considered at present [12].

In Fig. 1 we present the DPB profiles for the dipole
density and local dielectric constant between two charged
plates with separation of d = 20 Å. The figure shows
a strong accumulation of dipoles between the charged
plates leading to high e⇤ective dielectric constant. The
profile of the dipole density (dashed line) is rescaled by
its bulk value. It can be seen that in the surface vicinity
(up to about 2Å), the density rises to above four times its
bulk value due to the strong attraction with the charged
surface. In the mid-region the density saturates at about
1.4 times its bulk value. The corresponding local e⇤ec-
tive dielectric constant (solid line in the figure) can be
calculated from (7). The profile resembles that of the
dipole density. In rescaled units, it saturates at a value
of about 1.2 in the mid-region and reaches about 2.3 at
the surfaces.

Compared to a PB theory with the same bulk and
homogeneous ⇥e� taken as constant throughout the sys-
tem, the DPB demonstrates strong deviations, not only
in the surface proximity but also in its saturated mid-
range value (for strong enough ⇤ and/or small d).

The ionic concentration is much less a⇤ected by the
presence of the dipoles. We have computed the ion den-
sities as a function of the distance to the surface. Because
of the di⇤erent boundary condition the ionic density is
strongly suppressed at the surface with respect to PB (to
about half of its original value). However, it comes back
to its PB value at distances as close as 0.5 Å from the
surface.

In Fig. 2 we plot the relative osmotic pressure di⇤er-
ence (�DBP � �PB)/�PB as a function of the surface
separation d. The pressure is a global quantity, and is
sensitive to the strength of the electric field throughout
the system rather than to its value on the surface. As
a result, �DPB deviates strongly from �PB for small d,
while �DPB ⇤ �PB at larger separation.

We have presented an analytical modification of the
PB equation by including the dipole degrees of freedom.
We calculated the correction to the potential, electric
field and densities for a system of two oppositely charged
plates (Fig. 1). The results are compared with those of
the usual PB equation with an e⇤ective dielectric con-
stant. We find that when the electric field is strong
(p0E ⇤ kBT ), there are strong deviations from the PB
model. The spatial dependence of the dielectric constant
signals an ordering of the dipoles at the surfaces. This
spatial dependence is also a signature of non-linearity in
the dielectric response. The inter-plate pressure is sensi-
tive to the value of the electric field at the mid-plane and
can deviate considerably from the PB results for small
enough separation and/or large surface charges (Fig. 2).

The formalism presented here is general and opens up
the way to several interesting applications. Even on a
mean-field level, as used in this paper to compute pro-
files and osmotic pressure, we find large deviations from
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):

#F ¼##

2

Z
d~r%0j ~r"ð~rÞj2

þ #

2v0

Z
d~r
!
j ~r!ð ~rÞj2þ!ð~rÞ2

b2

"

þ#
Z
d~r!fð~rÞ"ð ~rÞ# 1

a3

Z
d~rlnðZlð ~rÞÞ: (2)

Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
##!ð ~rÞ:

~r
!
%0 ~r"ð ~rÞþ"ð ~rÞ#p2

0

$dipe
##!ð ~rÞF1ðuÞ
a3Zlð ~rÞ

~r"ð ~rÞ
"
¼#!fð ~rÞ;

(3)

where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
1

v0

!
#!#!ð ~rÞ

b2

"
¼ "ð~rÞ 1

a3
$dipe

##!ð~rÞ sinhcðuÞ
Zlð~rÞ

: (4)

The bulk dipole concentration cbdip verifies
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ
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(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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PB with dipoles and 
Yukawa

and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):

#F ¼##

2

Z
d~r%0j ~r"ð~rÞj2

þ #

2v0

Z
d~r
!
j ~r!ð ~rÞj2þ!ð~rÞ2

b2

"

þ#
Z
d~r!fð~rÞ"ð ~rÞ# 1

a3

Z
d~rlnðZlð ~rÞÞ: (2)

Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
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where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
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The bulk dipole concentration cbdip verifies
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ
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3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):
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Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
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(3)

where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
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The bulk dipole concentration cbdip verifies
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As $dip ¼ e#'dip , we get
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):
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Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
equations.

(1) A PBL equation [12] in " in which $dip is replaced

by $dipe
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where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
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The bulk dipole concentration cbdip verifies
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ
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(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al.
[14], the grand canonical partition function Zlð~rÞ for the
lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.

The free energy functional for the whole lattice includes
the electrostatic energy, the functional form for the energy
of the Yukawa field, the energy of the fixed charges, and the
logarithm of the partition function Zl defined in Eq. (1):
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The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
(i.e., with one dipole for each lattice site) leads to a
maximum water density of 1=a3, i.e., approximately twice
the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY ¼ 7:0 $A (see below).
The two equations (3) and (4) are solved numerically on

a finite domain % with boundaries &%. The domain % is

set to be large enough so that " ¼ 0, ~E ¼ ~0, and ! ¼
!bulk at the boundary &%. The distance between the solute
surface and the boundary is required to be at least 2lB,
where lB is the Bjerrum length (equal to 7 Å in water at
T ¼ 300 K). From Eqs. (4) and (6), we get #!bulk ¼
#lYb

2N Ac
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dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac
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dip. The density of dipoles is given
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(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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and bulk concentration cbdip. These water dipoles are dis-

tributed on a lattice to approximate the excluded-volume
effects in the lattice gas formalism, the domain outside the
boundary of the molecule is represented as a three-
dimensional lattice with N uniformly sized cuboids, of
size a3, where a, the lattice spacing, is set to the geomet-
rical dimension of the dipoles. As a first approximation, we
assume that the dipoles are hard spheres of fixed sizes. The
solute is described by a constant charge density !f and a
solvent accessibility function "ð~rÞ that is zero for points
inside the envelope of the solute and one otherwise. This
envelope can be taken as the molecular surface or the
accessible surface of the solute.

Each site in the lattice can contain at most one dipole. If
it is empty, its energy is zero. The energy of one dipole of
constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction # ~p0 $ ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean-field approach, we add a
Yukawa field !ð~rÞ to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric
repulsion in their lattice field theory of a Coulomb gas
with finite size particles [13]. This Yukawa field is derived
from a Yukawa potential VYðrÞ ¼ #v0ðe#r=b=rÞ with two
characteristic lengths b and lY ¼ #v0 where# ¼ 1

kBT
. This

Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.
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lattice site at position ~r is then given by

Z lð ~rÞ ¼ 1þ $dipe
##!ð ~rÞ sinhcðuÞ; (1)

where $dip is the fugacity of the dipoles, u ¼ #p0j ~Eð ~rÞj
and sinhcðuÞ ¼ sinhðuÞ=u.
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the electrostatic energy, the functional form for the energy
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#F ¼##

2

Z
d~r%0j ~r"ð~rÞj2

þ #

2v0

Z
d~r
!
j ~r!ð ~rÞj2þ!ð~rÞ2

b2

"

þ#
Z
d~r!fð~rÞ"ð ~rÞ# 1

a3

Z
d~rlnðZlð ~rÞÞ: (2)

Writing &F
&" ¼ 0 and &F

&! ¼ 0, we get a system of two
differential equations, which we refer to as the YULP
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by $dipe
##!ð ~rÞ:

~r
!
%0 ~r"ð ~rÞþ"ð ~rÞ#p2

0

$dipe
##!ð ~rÞF1ðuÞ
a3Zlð ~rÞ

~r"ð ~rÞ
"
¼#!fð ~rÞ;

(3)

where F1ðuÞ ¼ sinhcðuÞ
u LðuÞ; LðuÞ ¼ 1= tanhðuÞ # 1=u is

the Langevin function.
(2) A second order differential equation in !ð ~rÞ:
1

v0

!
#!#!ð ~rÞ

b2

"
¼ "ð~rÞ 1

a3
$dipe

##!ð~rÞ sinhcðuÞ
Zlð~rÞ

: (4)

The bulk dipole concentration cbdip verifies

N Ac
b
dip ¼ # @F

@'dip

########(¼0;!¼!bulk

; (5)

As $dip ¼ e#'dip , we get

$dip ¼ e#!bulk
N Ac

b
dipa

3

1#N Ac
b
dipa

3 : (6)

The YULP equations include five parameters: the lattice
size a, strength p0, bulk concentration cbdip, and the pa-

rameters of the Yukawa field lY and b. We fix a ¼ 2:4 $A.
We set cbdip to 55M, and p0 to its value in solution, i.e.,

2.35 D.
b defines the range of the Yukawa potential; it is usually

set to )=1:8 $A, i.e., to a fraction of the diameter ) of the
hard spheres representing the water [15]. Setting ) ¼ 2:8
gives b ¼ 1:55 $A. Note that full saturation of the lattice
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of the potential. We set lY ¼ 7:0 $A (see below).
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#lYb

2N Ac
b
dip. With cbdip ¼ 55M and b and lY set to the

values given above, we get #!bulk ¼ #0:55.
We use a self-consistent iterative algorithm to solve for

"ð ~rÞ and !ð ~rÞ. Full details on the algorithm will be pub-
lished separately (see also [12]).
We define !b ¼ N Ac

b
dip. The density of dipoles is given

by #@F =@'dip:

!ð~rÞ ¼ !b
e##½!ð ~rÞ#!bulk( sinhcðuÞ

1# !ba
3½1# e##ð!ð~rÞ#!bulkÞ sinhcðuÞ(

(7)

for any position ~r inside the lattice gas. When u ! 0 and
!ð ~rÞ ! !bulk, we get as expected !ð ~rÞ ¼ !b, i.e., the bulk
density of water.
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Application: hydratation 
of proteins

• Fixed protein (taken from the PDB)

• water: dipoles+ Yukawa

• small ions: Na, Cl, ...

• Web Server: PDB Hydro

http://lorentz.immstr.pasteur.fr/pdb_hydro.php

Program available: Aquasol (P. Koehl and M. Delarue)

lundi 21 avril 14
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As an illustration of the usefulness of the method, we give
two examples where the knowledge of the water density pro-
file clearly correlates with known molecular properties. One is
a homodimeric protein (4TMK) whose preferred sites of
hydration clearly are excluded from the dimerization zone
(Figure 2A). The other is the KcsA membrane protein,
where again the lipid binding region is clearly highlighted
in the colored surface output by the program and displayed
using a simple PyMol script (Figure 2B). We have checked
the generality of these results on a number of different
homodimeric and membrane proteins, which will be

reported elsewhere (C. Azuara, H. Orland and M. Delarue,
unpublished data).

In addition to the dipole density map, we can calculate
the radial solvent density profile, as a function of the nearest
surface atom type (C, N or O). The resulting profiles (Sup-
plementary Data) indeed show the expected behavior, with a
higher hydration peak for N and O, compared to C atoms.

CONCLUSION AND FUTURE WORK

In the present state of the server, the user can calculate the
electrostatic properties of a macromolecule (protein or a
nucleic acid) using a new methodology which effectively
merges the two existing PBE and LDPD methods. The solvent
is accounted for by an assembly of non-overlapping orientable
dipoles of variable density. The major advantage of the
method is that it generates a solvent density map and a variable
dielectic constant map of the solvent. All parameters of the
theory are given their physical values. Already, this has proved
useful for identifying hydrophobic patches on the surface of
proteins.

A number of options and refinements of the method are
currently under way; they include: (i) the possibility to
have a pH-dependency of the solute charges (30), (ii) the
possibility to include the effect of the flexibility of the solute
molecule in a dielectric response described by Normal Modes,

A B

Figure 2. (A) Coloredmolecular surface of thymidine kinase 4TMK(as amonomer) as a functionof surface area buried upon addition ofwatermolecules in the peaks
of the solvent densitymap. The dimerization area appears as the largest poorly solvated (red) patch.Drawnwith PyMol (27) (http://pymol.sourceforge.net). (B) KcsA
membrane protein: molecular surface and added water molecules at preferred hydration sites. Drawn with PyMol (27) (http://pymol.sourceforge.net). [Supple-
mentary Figure: Radial density profile of the solvent as a function of the surface atom type (see text)].

Table 1. CPU needed for the GPBLE solver in different grid conditions.

Comparison with APBS

Grid
size

Nb
lB

Grid
spacing (Å)

GPBLE PBE (APBS)
CPU
time (s)

DGelec
sol ðkTÞ CPU

time (s)
DGelec

sol ðkTÞ

333 1 2.0 34.5 #4581.4 3.5 #3947.3
333 2 2.6 33.5 #5018.4 2.9 #3190.7
333 3 3.0 30.7 #4956.4 2.2 #2813.4
653 1 1.0 295.7 #3579.0 14.8 #3944.3
653 2 1.3 291.2 #3717.9 18.7 #3957.0
653 3 1.5 298.5 #3832.8 17.6 #3940.6
1293 1 0.5 4759.3 #3261.5 94.3 #4030.7
1293 2 0.65 4788.5 #3291.0 84.0 #3994.4
1293 3 0.75 4854.2 #3326.7 102.9 #3974.4
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F1(u) ) [sinh(u)/u2]L(u) and L(u) ) 1/tanh(u) - 1/u is the
Langevin function.

The PL equation includes three parameters: the bulk dipole
concentration, cdip

b , the dipole strength, p0, and the lattice size,
a. We set cdip

b to 55 M, p0 to its value in solution, i.e., 2.35 D,
and a to approximately the diameter of a water molecule, i.e.,
3.0 Å. Using these values, we compute the electrostatics
contribution to the solvation free energies of five monovalent
(Li+, Na+, K+, Rb+, Cs+) and five divalent (Mg2+, Mn2+, Ca2+,
Sr2+, Ba2+) cations. Equation 3 is solved numerically on a cubic
grid with 2573 vertices, with two adjacent vertices distant by
0.08 Å. Comparisons of the resulting values with those
computed using the Born equation and the corresponding
experimental values are shown in Figure 1 and Table 1. We
also provide in the latter the solvation free energies of the same
ions computed with three other implicit solvent models that
modify the dielectric profile in the neighborhood of the ions,
namely, theLangevindipolemodelofWarshelandco-workers,12,15

the mean sphere approximation model (MSA) of Wertheim16

and Chan et al.,13 and the charge-dependent Langevin-Debye
model (qLD) of Jha and Freed.14

As previously observed,1,17 the Born equation systematically
overestimates the ion solvation free energy. The agreement
between the experimental solvation free energy and the Born
energy computed with eq 1 can be improved by considering
the radius of the ion as a parameter, thereby defining an effective
Born radius. Using this approach, Babu and Lim obtained a
much better fit, with an rms between the computed solvation
free energies and the corresponding experimental values of 3
kcal/mol.1 In this approach, however, the Born radius is adjusted
differently for each ion type, leading to a large number of
parameters, which casts doubt on its potential extension to larger
systems. Another option is to increase the contribution of the
solvent by reducing its dielectric constant. We tested ε ) 20
instead of 80 and only observed a marginal improvement.

The Langevin dipole model, as developed by Warshel and
co-workers,12,15,18 treats the solvent molecules as polarizable
point dipoles; the position of these dipoles is kept fixed (usually
defined by a 3D grid around the solute), while their strength
and orientation are optimized simultaneously, accounting for
the solute and interactions between the dipoles. The solvation
free energy is then computed as the sum of the contribution of

Figure 1. Comparing experimental and computed ion solvation free energies. The experimental values are taken from Burgess,10 and the ionic
radii are taken from Cotton and Wilkinson.11 The Born solvation energies are computed using 1 with ε ) 80 and ε ) 20. The PL solvation energies
are computed by solving eq 3 with a ) 3 Å and p0 ) 2.35 D. The solid line shows the first diagonal (i.e., perfect match).

TABLE 1: Computed versus Experimental Solvation Free Energies of Ions

ion radiusa (Å) ∆Gexp
b

(kcal/mol)
∆GPL

c

(kcal/mol)
∆GBorn80

d

(kcal/mol)
∆GBorn20

e

(kcal/mol)
∆GW

f

(kcal/mol)
∆GMSA

g

(kcal/mol)
∆GqLD

h

(kcal/mol)

Li+ 0.78 -122.1 -132.7 -210.0 -202.1 -223.1 -122.0 -142.5
Na+ 0.98 -98.2 -114.1 -167.2 -160.8 -210.8 -106.0 -121.5
K+ 1.33 -80.6 -94.8 -123.2 -118.5 -177.3 -86.5 -98.2
Rb+ 1.49 -75.5 -88.5 -110.0 -105.0 -162.3 -79.8 -90.6
Cs+ 1.65 -67.8 -82.4 -99.3 -95.5 -149.4 -74.0 -84.1
Mg2+ 0.78 -455.5 -474.5 -840.2 -808.3 -555.5 -487.9 -517.2
Mn2+ 0.91 -437.8 -422.4 -720.2 -692.9 -552.5 -444.8 -462.0
Ca2+ 1.06 -380.8 -377.3 -618.3 -594.8 -537.5 -403.8 -414.3
Sr2+ 1.27 -345.9 -333.0 -516.0 -496.5 -517.3 -357.5 -365.1
Ba2+ 1.43 -315.5 -307.5 -458.0 -440.9 -493.0 -328.8 -336.4
RMSi (kcal/mol) 14 187 169 124 15 28

a Goldschmidt ionic radius from Cotton and Wilkinson.11 b Experimental values from Burgess.10 c This work (see text for details). d Born
solvation energy computed using eq 1 with ε ) 80. e Born solvation energy computed using eq 1 with ε ) 20. f Solvation free energies using
Warshel’s Langevin dipole model, computed using ChemSol.12 g Computed using the MSA approximation.13 h Computed using the
charge-dependent Langevin-Debye model.14 i Root mean square deviation between computed and experimental solvation free energies,
averaged over all 10 ions.
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F1(u) ) [sinh(u)/u2]L(u) and L(u) ) 1/tanh(u) - 1/u is the
Langevin function.

The PL equation includes three parameters: the bulk dipole
concentration, cdip

b , the dipole strength, p0, and the lattice size,
a. We set cdip

b to 55 M, p0 to its value in solution, i.e., 2.35 D,
and a to approximately the diameter of a water molecule, i.e.,
3.0 Å. Using these values, we compute the electrostatics
contribution to the solvation free energies of five monovalent
(Li+, Na+, K+, Rb+, Cs+) and five divalent (Mg2+, Mn2+, Ca2+,
Sr2+, Ba2+) cations. Equation 3 is solved numerically on a cubic
grid with 2573 vertices, with two adjacent vertices distant by
0.08 Å. Comparisons of the resulting values with those
computed using the Born equation and the corresponding
experimental values are shown in Figure 1 and Table 1. We
also provide in the latter the solvation free energies of the same
ions computed with three other implicit solvent models that
modify the dielectric profile in the neighborhood of the ions,
namely, theLangevindipolemodelofWarshelandco-workers,12,15

the mean sphere approximation model (MSA) of Wertheim16

and Chan et al.,13 and the charge-dependent Langevin-Debye
model (qLD) of Jha and Freed.14

As previously observed,1,17 the Born equation systematically
overestimates the ion solvation free energy. The agreement
between the experimental solvation free energy and the Born
energy computed with eq 1 can be improved by considering
the radius of the ion as a parameter, thereby defining an effective
Born radius. Using this approach, Babu and Lim obtained a
much better fit, with an rms between the computed solvation
free energies and the corresponding experimental values of 3
kcal/mol.1 In this approach, however, the Born radius is adjusted
differently for each ion type, leading to a large number of
parameters, which casts doubt on its potential extension to larger
systems. Another option is to increase the contribution of the
solvent by reducing its dielectric constant. We tested ε ) 20
instead of 80 and only observed a marginal improvement.

The Langevin dipole model, as developed by Warshel and
co-workers,12,15,18 treats the solvent molecules as polarizable
point dipoles; the position of these dipoles is kept fixed (usually
defined by a 3D grid around the solute), while their strength
and orientation are optimized simultaneously, accounting for
the solute and interactions between the dipoles. The solvation
free energy is then computed as the sum of the contribution of

Figure 1. Comparing experimental and computed ion solvation free energies. The experimental values are taken from Burgess,10 and the ionic
radii are taken from Cotton and Wilkinson.11 The Born solvation energies are computed using 1 with ε ) 80 and ε ) 20. The PL solvation energies
are computed by solving eq 3 with a ) 3 Å and p0 ) 2.35 D. The solid line shows the first diagonal (i.e., perfect match).
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∆GBorn20

e

(kcal/mol)
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f

(kcal/mol)
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g

(kcal/mol)
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h

(kcal/mol)

Li+ 0.78 -122.1 -132.7 -210.0 -202.1 -223.1 -122.0 -142.5
Na+ 0.98 -98.2 -114.1 -167.2 -160.8 -210.8 -106.0 -121.5
K+ 1.33 -80.6 -94.8 -123.2 -118.5 -177.3 -86.5 -98.2
Rb+ 1.49 -75.5 -88.5 -110.0 -105.0 -162.3 -79.8 -90.6
Cs+ 1.65 -67.8 -82.4 -99.3 -95.5 -149.4 -74.0 -84.1
Mg2+ 0.78 -455.5 -474.5 -840.2 -808.3 -555.5 -487.9 -517.2
Mn2+ 0.91 -437.8 -422.4 -720.2 -692.9 -552.5 -444.8 -462.0
Ca2+ 1.06 -380.8 -377.3 -618.3 -594.8 -537.5 -403.8 -414.3
Sr2+ 1.27 -345.9 -333.0 -516.0 -496.5 -517.3 -357.5 -365.1
Ba2+ 1.43 -315.5 -307.5 -458.0 -440.9 -493.0 -328.8 -336.4
RMSi (kcal/mol) 14 187 169 124 15 28

a Goldschmidt ionic radius from Cotton and Wilkinson.11 b Experimental values from Burgess.10 c This work (see text for details). d Born
solvation energy computed using eq 1 with ε ) 80. e Born solvation energy computed using eq 1 with ε ) 20. f Solvation free energies using
Warshel’s Langevin dipole model, computed using ChemSol.12 g Computed using the MSA approximation.13 h Computed using the
charge-dependent Langevin-Debye model.14 i Root mean square deviation between computed and experimental solvation free energies,
averaged over all 10 ions.
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