Linearization theorems, Koopman operator and its application

Yueheng Lan Department of Physics

Tsinghua University

April, 2014

Introduction

- Linear and nonlinear dynamics
- Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Introduction

- Linear and nonlinear dynamics
- Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Introduction

- Linear and nonlinear dynamics
- Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- **③** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Summary

Introduction

- Linear and nonlinear dynamics
- Local and global linearization
- 2 linearization in large
 - Extensions of Hartman's theorem
 - Examples
- **③** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

5 Summary

Introduction

- Linear and nonlinear dynamics
- Local and global linearization
- 2 linearization in large
 - Extensions of Hartman's theorem
 - Examples
- **③** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Introduction

linearization in large The Koopman operator Applications Summary

Linear and nonlinear dynamics Local and global linearization

Main contents

1 Introduction

• Linear and nonlinear dynamics

• Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- **3** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Linear and nonlinear dynamics Local and global linearization

Complex systems-its characterization

• Hierarchical Structure

Many agents interconnected in a complex manner, resulting in a multi-scale, highly heterogeneous system.

• Self-organized dynamics

Nonlinear, non-equilibrium dynamics leads to the emergent behavior, which is non-reducible and unpredictable from single agent behavior.

Adaptability

Robust while flexible, evolvable.

• Uncertainties

The determination of parameters and relations are hard.

Introduction

Linear and nonlinear dynamics

The internetiverse

< E

Linear and nonlinear dynamics

Turbulence

Yueheng Lan Linearization theorems, Koopman operator and its applic

Linear and nonlinear dynamics Local and global linearization

Structure of macromolecules

<ロト <回ト < 回ト < 回

Introduction

linearization in large The Koopman operator Applications Summary

Linear and nonlinear dynamics Local and global linearization

Cell regulatory networks

Yueheng Lan

Linearization theorems, Koopman operator and its application

Linear and nonlinear dynamics Local and global linearization

Nonlinear dynamics: triumph and challenge

- Triumph of theory of nonlinear dynamical systems Local: linear stability analysis, bifurcation theory, normal form theory, ...
 - Global: Asymptotic analysis, topological methods, symbolic dynamics,...
- Troubles when treating complex systems
 - (1) Huge number of interacting agents (high-dimensional)
 - (2) Heterogeneity in spatiotemporal scales (numerical challenge)
 - (3) Hierarchical structure and great many dynamic modes
 - (4) Lack of exact mathematical description
 - (5) Uncertainty in data or parameters (noise or ignorance)

Nonlinear dynamics: triumph and challenge

- Triumph of theory of nonlinear dynamical systems Local: linear stability analysis, bifurcation theory, normal form theory, ...
 - Global: Asymptotic analysis, topological methods, symbolic dynamics,...
- Troubles when treating complex systems
 - (1) Huge number of interacting agents (high-dimensional)
 - (2) Heterogeneity in spatiotemporal scales (numerical challenge)
 - (3) Hierarchical structure and great many dynamic modes
 - (4) Lack of exact mathematical description
 - (5) Uncertainty in data or parameters (noise or ignorance)

Linear and nonlinear dynamics Local and global linearization

Linear systems and their solution

• General form: $\dot{\mathbf{x}} = A\mathbf{x}$ with

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & \cdots \\ \cdots & \cdots & \cdots & a_{n,1} \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- Idea: separate solutions into independent modes by assuming $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$.
- We then obtain an **eigenvalue equation**

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

٠

Linear and nonlinear dynamics Local and global linearization

Linear systems and their solution

• General form: $\dot{\mathbf{x}} = A\mathbf{x}$ with

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

• Idea: separate solutions into independent modes by assuming $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$.

• We then obtain an eigenvalue equation

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Linear and nonlinear dynamics Local and global linearization

Linear systems and their solution

• General form: $\dot{\mathbf{x}} = A\mathbf{x}$ with

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & \cdots \\ \cdots & \cdots & \cdots & a_{n,1} \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \text{ and } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

- Idea: separate solutions into independent modes by assuming $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$.
- We then obtain an eigenvalue equation

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Introduction

linearization in large The Koopman operator Applications Summary

Linear and nonlinear dynamics Local and global linearization

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization
- 2 linearization in large
 - Extensions of Hartman's theorem
 - Examples
- **3** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Linear and nonlinear dynamics Local and global linearization

Linearization of nonlinear systems

- Hartman's theorem and Poincaré-Siegel theorem.
- Global linearization: weak nonlinearity or symmetry by lie group theory.

Linear and nonlinear dynamics Local and global linearization

Linearization of nonlinear systems

- Hartman's theorem and Poincaré-Siegel theorem.
- Global linearization: weak nonlinearity or symmetry by lie group theory.

Extensions of Hartman's theorem $\operatorname{Examples}$

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- **3** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Extensions of Hartman's theorem $\operatorname{Examples}$

Linearization in large

• Extension of Hartman's theorem for differential flows.

- The theorem can be extended to diffeomorphic mappings or flows with periodic driving.
- Linearization around an attractive or repulsive periodic orbit.
- How to treat saddles?

Extensions of Hartman's theorem $\operatorname{Examples}$

Linearization in large

- Extension of Hartman's theorem for differential flows.
- The theorem can be extended to diffeomorphic mappings or flows with periodic driving.
- Linearization around an attractive or repulsive periodic orbit.
- How to treat saddles?

Extensions of Hartman's theorem $\operatorname{Examples}$

Linearization in large

- Extension of Hartman's theorem for differential flows.
- The theorem can be extended to diffeomorphic mappings or flows with periodic driving.
- Linearization around an attractive or repulsive periodic orbit.
- How to treat saddles?

Linearization in large

- Extension of Hartman's theorem for differential flows.
- The theorem can be extended to diffeomorphic mappings or flows with periodic driving.
- Linearization around an attractive or repulsive periodic orbit.
- How to treat saddles?

Extensions of Hartman's theorem $\mathbf{Examples}$

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- **3** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Two examples

• Consider the 1-d equation $\dot{x} = x - x^3$. The transformation

$$x = b(y) = \frac{y}{\sqrt{1+y^2}}$$

results in $\dot{y} = y$, valid for $x \in [-1, 1]$.

• Consider the 2-d system $\dot{z_1} = 2z_1$, $\dot{z_2} = 4z_2 + z_1^2$. The transformation

$$z_1 = y_1, z_2 = y_2 + t(y_1, y_2)y_1^2$$

where $t(y_1, y_2) = \frac{1}{4} \ln y_1^2$ results in

 $\dot{y}_1 = 2y_1, \dot{y}_2 = 4y_2.$

[Y. Lan and I. Mezic, Physica D. 242, 42(2013)]

Two examples

• Consider the 1-d equation $\dot{x} = x - x^3$. The transformation

$$x = b(y) = \frac{y}{\sqrt{1+y^2}}$$

results in $\dot{y} = y$, valid for $x \in [-1, 1]$.

• Consider the 2-d system $\dot{z_1} = 2z_1$, $\dot{z_2} = 4z_2 + z_1^2$. The transformation

$$z_1 = y_1, z_2 = y_2 + t(y_1, y_2)y_1^2$$

where $t(y_1, y_2) = \frac{1}{4} \ln y_1^2$ results in

$$\dot{y}_1 = 2y_1, \dot{y}_2 = 4y_2.$$

[Y. Lan and I. Mezic, Physica D. 242, 42(2013)]

Its introduction Koopman operator and partition of the phase spac

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization

2 linearization in large

- Extensions of Hartman's theorem
- Examples
- (3) The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Its introduction Koopman operator and partition of the phase space

Remarks on the linearization theorem

- According to Morse theory, the whole phase space of a hyperbolic system can be viewed as a gradient(-like) system modulo the minimal invariant sets. The phase space is a juxtaposition of linearizable patches.
- Problems:
 - (1) Hard to identify the linearization transformation.
 - (2) Works only for equilibria and periodic orbits.
 - (3) Hard to treat systems with conservation laws, e.g. Hamiltonian systems.

Its introduction Koopman operator and partition of the phase spac

Remarks on the linearization theorem

• According to Morse theory, the whole phase space of a hyperbolic system can be viewed as a gradient(-like) system modulo the minimal invariant sets. The phase space is a juxtaposition of linearizable patches.

• Problems:

- (1) Hard to identify the linearization transformation.
- (2) Works only for equilibria and periodic orbits.
- (3) Hard to treat systems with conservation laws, e.g. Hamiltonian systems.

Its introduction Koopman operator and partition of the phase space

Koopman operator, a way out?

• Statistical treatment of dynamical systems: Evolution of densities: the Perron-Frobenius Operator in analogy with the Schrödinger picture;

Evolution of observables: the Koopman operator in analogy with the Heisenberg picture.

- For a map $x_{n+1} = f(x_n)$ and a function g(x), the Koopman operator $U \circ g(x) = g(f(x))$
- For a flow $\phi(x,t)$ and a function g(x), a semigroup of Koopman operators could be defined as $U_t \circ g(x) = g(\phi(x,t)).$

Its introduction Koopman operator and partition of the phase space

Koopman operator, a way out?

• Statistical treatment of dynamical systems: Evolution of densities: the Perron-Frobenius Operator in analogy with the Schrödinger picture;

Evolution of observables: the Koopman operator in analogy with the Heisenberg picture.

- For a map $x_{n+1} = f(x_n)$ and a function g(x), the Koopman operator $U \circ g(x) = g(f(x))$
- For a flow φ(x,t) and a function g(x), a semigroup of Koopman operators could be defined as Ut ∘ g(x) = g(φ(x,t)).

Its introduction Koopman operator and partition of the phase space

Koopman operator, a way out?

• Statistical treatment of dynamical systems: Evolution of densities: the Perron-Frobenius Operator in analogy with the Schrödinger picture;

Evolution of observables: the Koopman operator in analogy with the Heisenberg picture.

- For a map $x_{n+1} = f(x_n)$ and a function g(x), the Koopman operator $U \circ g(x) = g(f(x))$
- For a flow $\phi(x,t)$ and a function g(x), a semigroup of Koopman operators could be defined as $U_t \circ g(x) = g(\phi(x,t)).$

Eigenvalues and eigenmodes

- It is linear so its eigenvalues and eigenmodes are interesting objects.
- Examples:

(1) For a 1-d linear map $x_{n+1} = \lambda x_n$ and the observable $g(x) = x^m$,

$$U \circ g(x) = (\lambda x)^m = \lambda^m x^m = \lambda^m g(x).$$

• In fact, for C^1 observables, the most general form of the eigenfunction with eigenvalue λ^a is

$$g(x) = x^a \hat{g}(\ln x) \,,$$

where $\hat{g}(\cdot)$ is periodic with period $\ln \lambda$.

Eigenvalues and eigenmodes

- It is linear so its eigenvalues and eigenmodes are interesting objects.
- Examples:

(1) For a 1-d linear map $x_{n+1} = \lambda x_n$ and the observable $g(x) = x^m$,

$$U \circ g(x) = (\lambda x)^m = \lambda^m x^m = \lambda^m g(x) \,.$$

• In fact, for C^1 observables, the most general form of the eigenfunction with eigenvalue λ^a is

$$g(x) = x^a \hat{g}(\ln x) \,,$$

where $\hat{g}(\cdot)$ is periodic with period $\ln \lambda$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Eigenvalues and eigenmodes

- It is linear so its eigenvalues and eigenmodes are interesting objects.
- Examples:

(1) For a 1-d linear map $x_{n+1} = \lambda x_n$ and the observable $g(x) = x^m$,

$$U \circ g(x) = (\lambda x)^m = \lambda^m x^m = \lambda^m g(x) \,.$$

• In fact, for C^1 observables, the most general form of the eigenfunction with eigenvalue λ^a is

$$g(x) = x^a \hat{g}(\ln x) \,,$$

where $\hat{g}(\cdot)$ is periodic with period $\ln \lambda$.

Its introduction

Koopman operator and partition of the phase space

Eigenvalues and Eigenmodes (continued)

• Examples:

(2) For a 1-d equation $\dot{x} = \lambda x$ and observable $g(x) = x^n$

$$U_t \circ g(x) = (xe^{\lambda t})^n = e^{n\lambda t}x^n = e^{n\lambda t}g(x)$$

- In fact, for C^1 observables, it can be proven that the general form of the eigenfunction is just as above.
- Extension to multi-dimensional linear systems and time periodic linear systems with a hyperbolic fixed point.

[Y. Lan and I. Meziź, Spectrum of the Koopman operator based on linearization, in preparation]

Its introduction

Koopman operator and partition of the phase space

Eigenvalues and Eigenmodes (continued)

• Examples:

(2) For a 1-d equation $\dot{x} = \lambda x$ and observable $g(x) = x^n$

$$U_t \circ g(x) = (xe^{\lambda t})^n = e^{n\lambda t}x^n = e^{n\lambda t}g(x)$$

- In fact, for C^1 observables, it can be proven that the general form of the eigenfunction is just as above.
- Extension to multi-dimensional linear systems and time periodic linear systems with a hyperbolic fixed point.

[Y. Lan and I. Meziź, Spectrum of the Koopman operator based on linearization, in preparation]

Its introduction

Koopman operator and partition of the phase space

Eigenvalues and Eigenmodes (continued)

• Examples:

(2) For a 1-d equation $\dot{x} = \lambda x$ and observable $g(x) = x^n$

$$U_t \circ g(x) = (xe^{\lambda t})^n = e^{n\lambda t}x^n = e^{n\lambda t}g(x)$$

- In fact, for C^1 observables, it can be proven that the general form of the eigenfunction is just as above.
- Extension to multi-dimensional linear systems and time periodic linear systems with a hyperbolic fixed point.

[Y. Lan and I. Meziź, Spectrum of the Koopman operator based on linearization, in preparation]

イロト イポト イヨト イヨト

The Koopman operator

Its introduction

Nontrivial examples

• Note that a(x) in the Hartman-Grobman's theorem satisfies

$$U_t a(x) = a \circ \phi(x, t) = e^{At} a(x)$$

• Suppose

$$V^{-1}a \circ \phi(x,t) = V^{-1}e^{At}a(x),$$

$$k \circ \phi(x_0, t) = e^{\Lambda t} k(x_0)$$

Its introduction Koopman operator and partition of the phase space

Nontrivial examples

• Note that a(x) in the Hartman-Grobman's theorem satisfies

$$U_t a(x) = a \circ \phi(x, t) = e^{At} a(x)$$

• Suppose

$$V^{-1}AV = \Lambda \,,$$

then we get

$$V^{-1}a \circ \phi(x,t) = V^{-1}e^{At}a(x),$$

and so $k = V^{-1}a$ satisfies

$$k \circ \phi(x_0, t) = e^{\Lambda t} k(x_0)$$

i.e. each component function of k is an eigenfunction of U_t .

< E

Its introduction Koopman operator and partition of the phase space

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization
- 2 linearization in large
 - Extensions of Hartman's theorem
 - Examples
- (3) The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Its introduction Koopman operator and partition of the phase space

Construction of eigenmodes along trajectories

• For the map $x_{n+1} = T(x_n)$ and function g(x), consider

$$g^*(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} g(T^j x),$$

which is an eigenfunction of the Koopman operator with eigenvalue 1.

• Furthermore, the construction

$$g^{\omega}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} e^{i2\pi j\omega} g(T^j x)$$

defines an eigenfunction of the Koopman operator with eigenvalue $e^{-i2\pi\omega}$.

The Koopman operator

Koopman operator and partition of the phase space

Construction of eigenmodes along trajectories

• For the map $x_{n+1} = T(x_n)$ and function g(x), consider

$$g^*(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} g(T^j x),$$

which is an eigenfunction of the Koopman operator with eigenvalue 1.

• Furthermore, the construction

$$g^{\omega}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} e^{i2\pi j\omega} g(T^j x)$$

defines an eigenfunction of the Koopman operator with eigenvalue $e^{-i2\pi\omega}$.

→ 3 → 4 3

Its introduction Koopman operator and partition of the phase space

Connection with Liouville operator

• In a Hamiltonian system with H(p,q), the Liouville operator L may be defined as

$$L \circ f(x) = -i \sum_{j} \left[\frac{\partial H}{\partial p_j} \frac{\partial f}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial f}{\partial p_j} \right],$$

which could be written with the Poisson bracket $L \circ f(x) = -i[f, H].$

- \bullet It is related to Koopman operator by the exponentiation $U_t = \exp(itL) \,. \label{eq:Ut}$
- On a transitive invariant set, Koopman operator is unitary, *i.e.*

$$U_t g(x) = e^{it\alpha} g(x) = e^{i(t\alpha + \arg(g))} |g(x)|.$$

|g(x)| is invariant and the phase increases linearly. Hence, they constitute the action-angle variable.

Its introduction Koopman operator and partition of the phase space

Connection with Liouville operator

• In a Hamiltonian system with H(p,q), the Liouville operator L may be defined as

$$L \circ f(x) = -i \sum_{j} \left[\frac{\partial H}{\partial p_j} \frac{\partial f}{\partial q_j} - \frac{\partial H}{\partial q_j} \frac{\partial f}{\partial p_j} \right],$$

which could be written with the Poisson bracket $L \circ f(x) = -i[f, H].$

• It is related to Koopman operator by the exponentiation

$$U_t = \exp(itL) \,.$$

• On a transitive invariant set, Koopman operator is unitary, *i.e.*

$$U_t g(x) = e^{it\alpha} g(x) = e^{i(t\alpha + \arg(g))} |g(x)|.$$

|g(x)| is invariant and the phase increases linearly. Hence, they constitute the action-angle variable.

Its introduction Koopman operator and partition of the phase space

Spectral decomposition of evolution equations

- For an evolution equation in an infinite-dimensional Hilbert space $v(x)^{n+1} = N(v(x)^n, p)$ and if the attractor M is of finite dimension with the evolution $m^{n+1} = T(m^n)$. For an observable g(x, m), we have $Ug(x, m) = U_s g(x, m) + U_r g(x, m)$ $= g^*(x) + \sum_{j=1}^k \lambda_j f_j(m) g_j(x) + \int_0^1 e^{i2\pi\alpha} dE(\alpha) g(x, m)$.
- U_s : the singular part of the operator corresponding to the discrete part of the spectrum, viewed as a deterministic part.

 U_r : the regular part of the operator corresponding to the continuous part of the spectrum, modeled as a stochastic process.

[I. Mezic, Nonlinear Dynamics 41, 309(2005)], (B) (B)

Yueheng Lan

Linearization theorems, Koopman operator and its applic

Its introduction Koopman operator and partition of the phase space

Spectral decomposition of evolution equations

- For an evolution equation in an infinite-dimensional Hilbert space $v(x)^{n+1} = N(v(x)^n, p)$ and if the attractor M is of finite dimension with the evolution $m^{n+1} = T(m^n)$. For an observable g(x, m), we have $Ug(x, m) = U_s g(x, m) + U_r g(x, m)$ $= g^*(x) + \sum_{j=1}^k \lambda_j f_j(m) g_j(x) + \int_0^1 e^{i2\pi\alpha} dE(\alpha) g(x, m)$.
- U_s : the singular part of the operator corresponding to the discrete part of the spectrum, viewed as a deterministic part.

 U_r : the regular part of the operator corresponding to the continuous part of the spectrum, modeled as a stochastic process.

[I. Mezic, Nonlinear Dynamics 41, 309(2005)], (3)

The standard map Application to fluid dynamics

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization
- 2 linearization in large
 - Extensions of Hartman's theorem
 - Examples
- **3** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

Summary

The standard map Application to fluid dynamics

The standard map

• The Chirikov standard map is

 $x_1^* = x_1 + 2\pi\epsilon \sin(x_2)(mod2\pi)$

 $x_2^* = x_1^* + x_2(mod2\pi)$

• The embedding of dynamics into space of three observables.

[M. Budisic and I. Mezic, 48th IEEE Conference on Decision and Control]

The standard map Application to fluid dynamics

Organizing invariant set by diffusion map

The standard map Application to fluid dynamics

Main contents

Introduction

- Linear and nonlinear dynamics
- Local and global linearization
- 2 linearization in large
 - Extensions of Hartman's theorem
 - Examples
- **3** The Koopman operator
 - Its introduction
 - Koopman operator and partition of the phase space

Applications

- The standard map
- Application to fluid dynamics

5 Summary

Fluid dynamics

• The Navier-Stokes equation

$$\mathbf{v}_t + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{v}$$

with $\nabla\cdot\mathbf{v}=0$ describes incompressible Newtonian fluids.

- With different Reynold's number $Re = Lv/\nu$, the system experience a series of bifurcation: laminar \rightarrow periodic \rightarrow turbulent
- Turbulence is a spatiotemporal chaos with enormous space-time structures and scales.
- Jet in cross flow: turbulent but with large eddies. Could we describe it with the Koopman operator approach?

Fluid dynamics

• The Navier-Stokes equation

$$\mathbf{v}_t + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{v}$$

with $\nabla\cdot\mathbf{v}=0$ describes incompressible Newtonian fluids.

- With different Reynold's number $Re = Lv/\nu$, the system experience a series of bifurcation: laminar \rightarrow periodic \rightarrow turbulent
- Turbulence is a spatiotemporal chaos with enormous space-time structures and scales.
- Jet in cross flow: turbulent but with large eddies. Could we describe it with the Koopman operator approach?

Fluid dynamics

• The Navier-Stokes equation

$$\mathbf{v}_t + \mathbf{v} \cdot
abla \mathbf{v} = -rac{
abla p}{
ho} +
u
abla^2 \mathbf{v}$$

with $\nabla \cdot \mathbf{v} = 0$ describes incompressible Newtonian fluids.

- With different Reynold's number $Re = Lv/\nu$, the system experience a series of bifurcation: laminar \rightarrow periodic \rightarrow turbulent
- Turbulence is a spatiotemporal chaos with enormous space-time structures and scales.
- Jet in cross flow: turbulent but with large eddies. Could we describe it with the Koopman operator approach?

Fluid dynamics

• The Navier-Stokes equation

$$\mathbf{v}_t + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{v}$$

with $\nabla \cdot \mathbf{v} = 0$ describes incompressible Newtonian fluids.

- With different Reynold's number $Re = Lv/\nu$, the system experience a series of bifurcation: laminar \rightarrow periodic \rightarrow turbulent
- Turbulence is a spatiotemporal chaos with enormous space-time structures and scales.
- Jet in cross flow: turbulent but with large eddies. Could we describe it with the Koopman operator approach?

The standard map Application to fluid dynamics

Jet in cross flow

[C. W. Rowley et al, J. Fluid Mech. 641, 115(2009)]

The Arnoldi algorithm

• Consider a linear dynamical system $x_{k+1} = Ax_k$ and construct the matrix

$$K = [x_0, x_1, \cdots, x_{m-1}] = [x_0, Ax_0, \cdots, A^{m-1}x_0].$$

If the *m*th iterate $x_m = Ax_{m-1} = \sum_{k=0}^{m-1} c_k x_k + r$, the we can write $AK \approx KC$, where

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & c_0 \\ 1 & 0 & 0 & \cdots & c_1 \\ 0 & 1 & 0 & \cdots & c_2 \\ & \cdots & & & \cdots & \\ 0 & \cdots & 0 & 1 & c_0 \end{pmatrix}$$

• If $Ca = \lambda a$, then the value λ and the vector v = Ka are approximate eigenvalue and eigenvector of the original matrix A.

The Arnoldi algorithm

• Consider a linear dynamical system $x_{k+1} = Ax_k$ and construct the matrix

$$K = [x_0, x_1, \cdots, x_{m-1}] = [x_0, Ax_0, \cdots, A^{m-1}x_0].$$

If the *m*th iterate $x_m = Ax_{m-1} = \sum_{k=0}^{m-1} c_k x_k + r$, the we can write $AK \approx KC$, where

$$C = \begin{pmatrix} 0 & 0 & 0 & \cdots & c_0 \\ 1 & 0 & 0 & \cdots & c_1 \\ 0 & 1 & 0 & \cdots & c_2 \\ & \cdots & & \cdots & & \\ 0 & \cdots & 0 & 1 & c_0 \end{pmatrix}$$

• If $Ca = \lambda a$, then the value λ and the vector v = Ka are approximate eigenvalue and eigenvector of the original matrix A.

The standard map Application to fluid dynamics

Two structure functions

- Linearization is possible in the basin of attraction of a hyperbolic set.
- Koopman operator provides a way to identify the linearization transformation.
- On the minimal invariant set, the spectrum of the Koopman operator is on the unit circle.
- The eigenmodes could be constructed through numerical computation, revealing the most important dynamics.
- Generalizations and challenges:
 - (1) Can deal with stochastic systems.
 - (2) How to deal with uncertainty in complex systems.
 - (3) How to construct eigenmodes from pieces of informa

- Linearization is possible in the basin of attraction of a hyperbolic set.
- Koopman operator provides a way to identify the linearization transformation.
- On the minimal invariant set, the spectrum of the Koopman operator is on the unit circle.
- The eigenmodes could be constructed through numerical computation, revealing the most important dynamics.
- Generalizations and challenges:
 - (1) Can deal with stochastic systems.
 - (2) How to deal with uncertainty in complex systems.
 - (3) How to construct eigenmodes from pieces of information

- Linearization is possible in the basin of attraction of a hyperbolic set.
- Koopman operator provides a way to identify the linearization transformation.
- On the minimal invariant set, the spectrum of the Koopman operator is on the unit circle.
- The eigenmodes could be constructed through numerical computation, revealing the most important dynamics.
- Generalizations and challenges:
 - (1) Can deal with stochastic systems.
 - (2) How to deal with uncertainty in complex systems.
 - (3) How to construct eigenmodes from pieces of informatic

- Linearization is possible in the basin of attraction of a hyperbolic set.
- Koopman operator provides a way to identify the linearization transformation.
- On the minimal invariant set, the spectrum of the Koopman operator is on the unit circle.
- The eigenmodes could be constructed through numerical computation, revealing the most important dynamics.
- Generalizations and challenges:
 - (1) Can deal with stochastic systems.
 - (2) How to deal with uncertainty in complex systems.
 - (3) How to construct eigenmodes from pieces of informatio

- Linearization is possible in the basin of attraction of a hyperbolic set.
- Koopman operator provides a way to identify the linearization transformation.
- On the minimal invariant set, the spectrum of the Koopman operator is on the unit circle.
- The eigenmodes could be constructed through numerical computation, revealing the most important dynamics.
- Generalizations and challenges:
 - (1) Can deal with stochastic systems.
 - (2) How to deal with uncertainty in complex systems.
 - (3) How to construct eigenmodes from pieces of information

