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Linear and nonlinear dynamics
Local and global lineariz

Complex systems-its characterization

Hierarchical Structure
Many agents interconnected in a complex manner, resulting
in a multi-scale, highly heterogeneous system.

Self-organized dynamics

Nonlinear, non-equilibrium dynamics leads to the emergent
behavior, which is non-reducible and unpredictable from
single agent behavior.

Adaptability

Robust while flexible, evolvable.

Uncertainties

The determination of parameters and relations are hard.
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Nonlinear dynamics: triumph and challenge

o Triumph of theory of nonlinear dynamical systems
Local: linear stability analysis, bifurcation theory, normal
form theory, ...

Global: Asymptotic analysis, topological methods, symbolic
dynamics,...
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Nonlinear dynamics: triumph and challenge

o Triumph of theory of nonlinear dynamical systems
Local: linear stability analysis, bifurcation theory, normal
form theory, ...

Global: Asymptotic analysis, topological methods, symbolic
dynamics,...

o Troubles when treating complex systems
(1) Huge number of interacting agents (high-dimensional)
(2) Heterogeneity in spatiotemporal scales (numerical
challenge)

(3) Hierarchical structure and great many dynamic modes
(4) Lack of exact mathematical description
(5) Uncertainty in data or parameters (noise or ignorance)
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o General form: x = Ax with
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a1 a2 €2
A= ’ ' and x =

an1 Gp2 - dnn Tn

o Idea: separate solutions into independent modes by
assuming x(t) = eMv.
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Linear and nonlinear dynamics
Local and global lineari

Linear systems and their solution

o General form: x = Ax with

a1 air2 -+ Qin €1

a1 a2 €2
A= ’ ' and x =

an1 Gp2 - dnn Tn

o Idea: separate solutions into independent modes by
assuming x(t) = eMv.

o We then obtain an eigenvalue equation

Av = \v.
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on theorems, Koopman oper



Introduction
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Linearization of nonlinear

o Hartman’s theorem and Poincaré-Siegel theorem.

o Global linearization: weak nonlinearity or symmetry by lie
group theory.
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Linearization in large

o Extension of Hartman’s theorem for differential flows.

o The theorem can be extended to diffeomorphic mappings or
flows with periodic driving.

e Linearization around an attractive or repulsive periodic
orbit.
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Extensions of Hartman’s theorem

Examples

Linearization in large

o Extension of Hartman’s theorem for differential flows.

The theorem can be extended to diffeomorphic mappings or
flows with periodic driving.

Linearization around an attractive or repulsive periodic
orbit.

How to treat saddles?
The above theorems are applicable to flows on stable or
unstable manifolds.
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Extension

of Hartman’s
Examples

Two examples

o Consider the 1-d equation & = z — 23. The transformation

r=by) = /1%!—71/2

results in § = y, valid for z € [-1,1].

[Y. Lan and I. Mezic, Physica D. 242, 42(2013)]
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Two examples

o Consider the 1-d equation & = z — 23. The transformation
_Yy
1+ 92

results in § = y, valid for z € [-1,1].

z=bly) =

o Consider the 2-d system 77 = 221,20 = 429 + zf. The
transformation

21 =y, 22 = Y2 + ty1, v2)yi
where t(y1,y2) = %ln y? results in

Y1 = 2y1,y2 = 4y

[Y. Lan and I. Mezic, Physica D. 242, 42(2013)]
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The Koopman operator Koopman operator and partition of the phase space

Remarks on the linearization theorem

o According to Morse theory, the whole phase space of a
hyperbolic system can be viewed as a gradient(-like) system
modulo the minimal invariant sets. The phase space is a
juxtaposition of linearizable patches.
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The Koopman operator Koopman operator and partition of the phase space

Remarks on the linearization theorem

o According to Morse theory, the whole phase space of a
hyperbolic system can be viewed as a gradient(-like) system
modulo the minimal invariant sets. The phase space is a
juxtaposition of linearizable patches.

o Problems:

(1) Hard to identify the linearization transformation.
(2) Works only for equilibria and periodic orbits.

(3) Hard to treat systems with conservation laws,e.g.
Hamiltonian systems.
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Koopman operator, a way out?

o Statistical treatment of dynamical systems:
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analogy with the Schrédinger picture;

Evolution of observables: the Koopman operator in analogy
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The Koopman operator Koopman operator and partition of the phase space

Koopman operator, a way out?

o Statistical treatment of dynamical systems:
Evolution of densities: the Perron-Frobenius Operator in
analogy with the Schrédinger picture;

Evolution of observables: the Koopman operator in analogy
with the Heisenberg picture.

o For a map z,4+1 = f(z,) and a function g(z), the Koopman
operator U o g(x) = g(f(x))

o For a flow ¢(z,t) and a function g(z), a semigroup of
Koopman operators could be defined as

Uiog(z) = g(p(z,1)).
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o It is linear so its eigenvalues and eigenmodes are interesting
objects.
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Eigenvalues and eigenmodes

o It is linear so its eigenvalues and eigenmodes are interesting
objects.

o Examples:
(1) For a 1-d linear map x,+1 = Az, and the observable

g(z) = 2™,

Uog(z) = (Ax)™ = A"2™ = \"g(x).
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The Koopman operator Koopman operator and partition of the phase space

Eigenvalues and eigenmodes

o It is linear so its eigenvalues and eigenmodes are interesting
objects.

o Examples:
(1) For a 1-d linear map x,+1 = Az, and the observable

g(z) = 2™,

Uog(z) = (Ax)™ = A"2™ = \"g(x).

o In fact, for C'!' observables, the most general form of the
eigenfunction with eigenvalue \* is

g(x) = z*g(Inx),
where g(+) is periodic with period In A.

ion theorems, Koopman operator and its applic



; Its introduction
The Koopman operator

Eigenvalues and Eigenmodes (continue

o Examples:

n

(2) For a 1-d equation & = Az and observable g(z) = x

)\t)n — 6n)\tmn — en)\t

Urog(x) = (we g(x).
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The Koopman operator Koopman operator and partition of the phase space

Eigenvalues and Eigenmodes (continue

o Examples:

n

(2) For a 1-d equation & = Az and observable g(z) = x

)\t)n — 6n)\tmn — en)\t

Urog(x) = (we g(x).

o In fact, for C'! observables, it can be proven that the general
form of the eigenfunction is just as above.
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The Koopman operator Koopman operator and partition of the phase space

Eigenvalues and Eigenmodes (continue

o Examples:

n

(2) For a 1-d equation & = Az and observable g(z) = x

)\t)n — 6n)\tmn — en)\t

Urog(x) = (we g(x).

o In fact, for C'! observables, it can be proven that the general
form of the eigenfunction is just as above.

o Extension to multi-dimensional linear systems and time
periodic linear systems with a hyperbolic fixed point.

[Y. Lan and I. Meziz, Spectrum of the Koopman operator
based on linearization, in preparation]
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The Koopman operator man operator and partition of the phase space

Nontrivial examples

o Note that a(z) in the Hartman-Grobman’s theorem satisfies

Uia(z) = ao ¢(x,t) = ea(x)
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; Its introduction
The Koopman operator Koopran

operator and partition of the phase space

Nontrivial examples

o Note that a(z) in the Hartman-Grobman’s theorem satisfies
Usa(z) = a o é(z,t) = e*a(x)
e Suppose

VAV = A,
then we get

V7 3tao p(x,t) =V ieMa(n),
and so k = V1la satisfies
ko ¢(xg,t)

i.e. each component function of k is an eigenfunction of Uy.

M (o)

ion theorems, Koopman operat

r and its applic



Its introduction

The Koopman operator : .
T T Koopman operator and partition of the ph,

Main contents

© The Koopman operator

o Koopman operator and partition of the phase space

on theorems, Koopman oper



Its introduction

The Koopman operator : .
T T Koopman operator and partition of the p

Construction of eigenmodes along trajectories

o For the map z,,+1 = T'(x,) and function g(x), consider
1 n—1
g (@) T}ggonzog(T z),
]:

which is an eigenfunction of the Koopman operator with
eigenvalue 1.
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The Koopman operator : .
T T Koopman operator and partition of the phas

Construction of eigenmodes along trajectories

o For the map z,,+1 = T'(x,) and function g(x), consider

g (z) = lim — Zg (T?x

n—oo N

which is an eigenfunction of the Koopman operator with
eigenvalue 1.

o Furthermore, the construction

¢“(x) = lim — Zez%w T] )

n—oo M

defines an eigenfunction of the Koopman operator with
eigenvalue e 2™,
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The Koopman operator : .
T T Koopman operator and partition of the phas

Connection with Liouville operator

o In a Hamiltonian system with H(p,¢), the Liouville
operator L may be defined as

Lot Z—ZZ [8H af OH of

Op; 0q;  Oq; Opj

which could be written With the Poisson bracket

Lo f(z) = —ilf, H).
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Connection with Liouville operator

o In a Hamiltonian system with H(p,¢), the Liouville
operator L may be defined as

Lot Z—ZZ [BH af OH of

Op; 0q;  Oq; Opj
which could be written Wlth the Poisson bracket
Lo f(z) = —ilf . H].
o It is related to Koopman operator by the exponentiation
Uy = exp(itL) .

e On a transitive invariant set, Koopman operator is unitary,
i.e.
Urg(w) = e g(x) = e/t g(z)|
|g(x)| is invariant and the phase increases linearly. Hence,
they constitute the action-angle variable.
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The Koopman operator : .
T T Koopman operator and partition of the phas

Spectral decomposition of evolution equations

e For an evolution equation in an infinite-dimensional Hilbert
space v(z)"T! = N(v(x)", p) and if the attractor M is of
finite dimension with the evolution m"*! = T'(m™).

For an observable g(x, m), we have

Ug(a:,m) = Usg(x,m)—i—Urg(x,m)

k 1
= g*(z)+ Z Ajfi(m)g;(x) + / 2™ dE(a)g(x,m).
i=1 0

[I. Mezic, Nonlinear Dynamics 41, 309(2005)]
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Spectral decomposition of evolution equations

e For an evolution equation in an infinite-dimensional Hilbert
space v(z)"T! = N(v(x)", p) and if the attractor M is of
finite dimension with the evolution m"*! = T'(m™).

For an observable g(x, m), we have

Ug(a:,m) - Usg(x,m)—i—Urg(x,m)
k 1
= g*(z)+ Z Ajfi(m)g;(x) + / 2™ dE(a)g(x,m).
j=1 0

o Us: the singular part of the operator corresponding to the
discrete part of the spectrum, viewed as a deterministic
part.

U,: the regular part of the operator corresponding to the
continuous part of the spectrum, modeled as a stochastic
process.

[I. Mezic, Nonlinear Dynamics 41, 309(2005)]

Yueheng Lan Linearization theorems, Koopman operator and its applic



andard map

Applioations Application to fluid dynamics

Main contents

@ Applications
e The standard map




ndard map
tion to fluid dynamics

Applice

The standard map

e The Chirikov standard
map is

x] = x1+2mesin(xy) (mod2m) '

x5 = x] + x2(mod2m)

Mixing
Zone

e The embedding of Hesanaat
dynamics into space of
three observables.

[M. Budisic and I. Mezic,
48th IEEE Conference

on Decision and Control]
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The standard map
Application to fluid dynamics

Fluid dynamics

o The Navier-Stokes equation

\Y%
vt—i-v-Vv:——p—H/VQv
p

with V - v = 0 describes incompressible Newtonian fluids.
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Fluid dynamics

o The Navier-Stokes equation
\Y%
vi+v-Vv= ——p—H/VQV
p
with V - v = 0 describes incompressible Newtonian fluids.

o With different Reynold’s number Re = Lv/v, the system
experience a series of bifurcation:
laminar — periodic — turbulent
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The standard map
Application to fluid dynamics

Fluid dynamics

The Navier-Stokes equation
\Y%
vi+v-Vv= ——p—H/VQV
p
with V - v = 0 describes incompressible Newtonian fluids.

o With different Reynold’s number Re = Lv/v, the system
experience a series of bifurcation:
laminar — periodic — turbulent

o Turbulence is a spatiotemporal chaos with enormous
space-time structures and scales.

Jet in cross flow: turbulent but with large eddies. Could we
describe it with the Koopman operator approach?
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Application to fluid dynamics

The Arnoldi algorithm

o Consider a linear dynamical system z;1 = Az and
construct the matrix

K = [1'0,.%'1,"' ,xm_l]:[.’EO,AII)O,"' 7Am_1$0]'

If the mth iterate z,, = AZym_1 = ZZ:Ol cpxy + 7, the we
can write AK ~ KC, where

0 0 0 co
1 0 0 C1
cC=]10 1 0 co

0 -+ 0 1 e
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The standard map
Applications Application to fluid dynamics

The Arnoldi algorithm

o Consider a linear dynamical system z;1 = Az and
construct the matrix

K = [1'0,.%'1,"' ,xm_l]:[.’EO,AII)O,"' 7Am_1$0]'

If the mth iterate z,, = AZym_1 = ZZ:Ol cpxy + 7, the we
can write AK ~ KC, where

0 0 0 -+ ¢
1 0 o --- C1
cC=]10 1 0 -+ ¢
0O -+ 0 1 ¢

o If Ca = Aa, then the value A and the vector v = Ka are

approximate eigenvalue and eigenvector of the original
matrix A.
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The two eigenmodes
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o Linearization is possible in the basin of attraction of a
hyperbolic set.

Koopman operator provides a way to identify the
linearization transformation.

On the minimal invariant set, the spectrum of the Koopman
operator is on the unit circle.

The eigenmodes could be constructed through numerical
computation, revealing the most important dynamics.
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Summary

Summary

o Linearization is possible in the basin of attraction of a
hyperbolic set.

o Koopman operator provides a way to identify the
linearization transformation.

o On the minimal invariant set, the spectrum of the Koopman
operator is on the unit circle.

o The eigenmodes could be constructed through numerical
computation, revealing the most important dynamics.

o Generalizations and challenges:
(1) Can deal with stochastic systems.
(2) How to deal with uncertainty in complex systems.
(3) How to construct eigenmodes from pieces of information 4%
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