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Complex systems-its characterization

Hierarchical Structure
Many agents interconnected in a complex manner, resulting
in a multi-scale, highly heterogeneous system.

Self-organized dynamics
Nonlinear, non-equilibrium dynamics leads to the emergent
behavior, which is non-reducible and unpredictable from
single agent behavior.

Adaptability
Robust while flexible, evolvable.

Uncertainties
The determination of parameters and relations are hard.
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Nonlinear dynamics: triumph and challenge

Triumph of theory of nonlinear dynamical systems
Local: linear stability analysis, bifurcation theory, normal
form theory, ...
Global: Asymptotic analysis, topological methods, symbolic
dynamics,...

Troubles when treating complex systems
(1) Huge number of interacting agents (high-dimensional)
(2) Heterogeneity in spatiotemporal scales (numerical
challenge)
(3) Hierarchical structure and great many dynamic modes
(4) Lack of exact mathematical description
(5) Uncertainty in data or parameters (noise or ignorance)
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Linear systems and their solution

General form: ẋ = Ax with

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · · · ·
· · · · · · · · · · · ·
an,1 an,2 · · · an,n

 and x =


x1

x2

·
xn

 .

Idea: separate solutions into independent modes by
assuming x(t) = eλtv.

We then obtain an eigenvalue equation

Av = λv .
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Linearization of nonlinear systems

Hartman’s theorem and Poincaré-Siegel theorem.

Global linearization: weak nonlinearity or symmetry by lie
group theory.
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Linearization in large

Extension of Hartman’s theorem for differential flows.

The theorem can be extended to diffeomorphic mappings or
flows with periodic driving.

Linearization around an attractive or repulsive periodic
orbit.

How to treat saddles?
The above theorems are applicable to flows on stable or
unstable manifolds.
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Two examples

Consider the 1-d equation ẋ = x− x3. The transformation

x = b(y) =
y√

1 + y2

results in ẏ = y, valid for x ∈ [−1, 1].

Consider the 2-d system ż1 = 2z1 , ż2 = 4z2 + z2
1 . The

transformation

z1 = y1 , z2 = y2 + t(y1, y2)y2
1

where t(y1, y2) = 1
4 ln y2

1 results in

ẏ1 = 2y1 , ẏ2 = 4y2 .

[Y. Lan and I. Mezic, Physica D. 242, 42(2013)]
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Its introduction
Koopman operator and partition of the phase space

Remarks on the linearization theorem

According to Morse theory, the whole phase space of a
hyperbolic system can be viewed as a gradient(-like) system
modulo the minimal invariant sets. The phase space is a
juxtaposition of linearizable patches.

Problems:

(1) Hard to identify the linearization transformation.

(2) Works only for equilibria and periodic orbits.

(3) Hard to treat systems with conservation laws,e.g.
Hamiltonian systems.
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Koopman operator, a way out?

Statistical treatment of dynamical systems:
Evolution of densities: the Perron-Frobenius Operator in
analogy with the Schrödinger picture;

Evolution of observables: the Koopman operator in analogy
with the Heisenberg picture.

For a map xn+1 = f(xn) and a function g(x), the Koopman
operator U ◦ g(x) = g(f(x))

For a flow φ(x, t) and a function g(x), a semigroup of
Koopman operators could be defined as
Ut ◦ g(x) = g(φ(x, t)).
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Eigenvalues and eigenmodes

It is linear so its eigenvalues and eigenmodes are interesting
objects.

Examples:
(1) For a 1-d linear map xn+1 = λxn and the observable
g(x) = xm,

U ◦ g(x) = (λx)m = λmxm = λmg(x) .

In fact, for C1 observables, the most general form of the
eigenfunction with eigenvalue λa is

g(x) = xaĝ(lnx) ,

where ĝ(·) is periodic with period lnλ.
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Eigenvalues and Eigenmodes (continued)

Examples:

(2) For a 1-d equation ẋ = λx and observable g(x) = xn

Ut ◦ g(x) = (xeλt)n = enλtxn = enλtg(x) .

In fact, for C1 observables, it can be proven that the general
form of the eigenfunction is just as above.

Extension to multi-dimensional linear systems and time
periodic linear systems with a hyperbolic fixed point.

[Y. Lan and I. Meziź, Spectrum of the Koopman operator
based on linearization, in preparation]
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Nontrivial examples

Note that a(x) in the Hartman-Grobman’s theorem satisfies

Uta(x) = a ◦ φ(x, t) = eAta(x)

Suppose
V −1AV = Λ ,

then we get

V −1a ◦ φ(x, t) = V −1eAta(x),

and so k = V −1a satisfies

k ◦ φ(x0, t) = eΛtk(x0)

i.e. each component function of k is an eigenfunction of Ut.
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Construction of eigenmodes along trajectories

For the map xn+1 = T (xn) and function g(x), consider

g∗(x) = lim
n→∞

1

n

n−1∑
j=0

g(T jx) ,

which is an eigenfunction of the Koopman operator with
eigenvalue 1.

Furthermore, the construction

gω(x) = lim
n→∞

1

n

n−1∑
j=0

ei2πjωg(T jx)

defines an eigenfunction of the Koopman operator with
eigenvalue e−i2πω.
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Connection with Liouville operator

In a Hamiltonian system with H(p , q), the Liouville
operator L may be defined as

L ◦ f(x) = −i
∑
j

[
∂H

∂pj

∂f

∂qj
− ∂H

∂qj

∂f

∂pj

]
,

which could be written with the Poisson bracket
L ◦ f(x) = −i[f ,H].

It is related to Koopman operator by the exponentiation

Ut = exp(itL) .

On a transitive invariant set, Koopman operator is unitary,
i.e.

Utg(x) = eitαg(x) = ei(tα+arg(g))|g(x)| .
|g(x)| is invariant and the phase increases linearly. Hence,
they constitute the action-angle variable.
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Spectral decomposition of evolution equations

For an evolution equation in an infinite-dimensional Hilbert
space v(x)n+1 = N(v(x)n, p) and if the attractor M is of
finite dimension with the evolution mn+1 = T (mn).
For an observable g(x,m), we have

Ug(x,m) = Usg(x,m) + Urg(x,m)

= g∗(x) +

k∑
j=1

λjfj(m)gj(x) +

∫ 1

0
ei2παdE(α)g(x,m) .

Us: the singular part of the operator corresponding to the
discrete part of the spectrum, viewed as a deterministic
part.
Ur: the regular part of the operator corresponding to the
continuous part of the spectrum, modeled as a stochastic
process.

[I. Mezic, Nonlinear Dynamics 41, 309(2005)]
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The standard map

The Chirikov standard
map is

x∗1 = x1+2πε sin(x2)(mod2π)

x∗2 = x∗1 + x2(mod2π)

The embedding of
dynamics into space of
three observables.

[M. Budisic and I. Mezic,
48th IEEE Conference
on Decision and Control]
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The standard map
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Organizing invariant set by diffusion map

Eigenvectors for λ1 , λ2 , λ7 , λ17 at ε = 0.133.
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Fluid dynamics

The Navier-Stokes equation

vt + v · ∇v = −∇p
ρ

+ ν∇2v

with ∇ · v = 0 describes incompressible Newtonian fluids.

With different Reynold’s number Re = Lv/ν, the system
experience a series of bifurcation:
laminar → periodic → turbulent

Turbulence is a spatiotemporal chaos with enormous
space-time structures and scales.

Jet in cross flow: turbulent but with large eddies. Could we
describe it with the Koopman operator approach?
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Jet in cross flow

[C. W. Rowley et al, J. Fluid Mech. 641, 115(2009)]
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The Arnoldi algorithm

Consider a linear dynamical system xk+1 = Axk and
construct the matrix

K = [x0 , x1 , · · · , xm−1] = [x0 , Ax0 , · · · , Am−1x0] .

If the mth iterate xm = Axm−1 =
∑m−1

k=0 ckxk + r, the we
can write AK ≈ KC, where

C =


0 0 0 · · · c0

1 0 0 · · · c1

0 1 0 · · · c2

· · · · · ·
0 · · · 0 1 c0

 .

If Ca = λa, then the value λ and the vector v = Ka are
approximate eigenvalue and eigenvector of the original
matrix A.
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Two structure functions

The two eigenmodes
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Summary

Linearization is possible in the basin of attraction of a
hyperbolic set.

Koopman operator provides a way to identify the
linearization transformation.

On the minimal invariant set, the spectrum of the Koopman
operator is on the unit circle.

The eigenmodes could be constructed through numerical
computation, revealing the most important dynamics.

Generalizations and challenges:
(1) Can deal with stochastic systems.
(2) How to deal with uncertainty in complex systems.
(3) How to construct eigenmodes from pieces of information.
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