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Purpose 

• Motivation for exploring finite-element technology 

• Provide detailed introduction to finite-element methods 

• Thorough description of stabilized finite elements and 

discontinuous-Galerkin methods for fluid dynamics 

• Implicit time-advancement for steady and unsteady flows 

• Enabling technologies: mesh adaptation, overset meshes 



Outline 

• Preliminaries:  

– Assumptions on audience 

– Governing equations 

– Why finite elements 

• Lecture 1: Introduction to finite elements 

• Lecture 2: Stabilized finite elements / discontinuous Galerkin 

• Lecture 3: Implicit schemes for turbulent flows 

• Lecture 4: Adaptive, overset meshes 

 

 



Outline 

Lecture 1: Introduction to finite elements 

– Weighted residual and weak statement 

– Global basis functions 

– Discretization for three-element example 

– Element basis functions 

– Element mapping 

– Quadrature 

– High-order basis functions 

– Extension to multidimensions 

– Example of equivalence between FE and FV 

– Curved elements 



Outline 

Lecture 2: Stabilized finite elements / discontinuous Galerkin 

– Stabilized finite elements 

• Inviscid flows 

• SUPG 

• Viscous flows and scaling of stabilization matrix 

– Discontinuous-Galerkin 

– Conservation 

– Boundary conditions 

– Method of manufactured solutions 

– Accuracy and effort comparisons 



Outline 

Lecture 3: Implicit schemes, linearizations, and linear systems 

– Implicit time stepping for steady flows 

• Newton’s method 

• Residual linearization 

• GMRES 

– Example calculations 



Outline 

Lecture 4: Adaptive, overset meshes for Petrov-Galerkin 

– Overset meshes 

– Adaptive meshing 



Assumptions on Audience 

• It is assumed that the audience has familiarity with finite-

volume methods for solving compressible Navier-Stokes 

equations on unstructured meshes 

• Minimal experience with stabilized finite elements or 

discontinuous Galerkin 

• My own background includes extensive code development for 

finite-volume methods on structured and unstructured meshes 

– CFL3D – structured 

– FUN3D – unstructured (fun3d.larc.nasa.gov) 

• Over the last five years developed high-order finite-element 

methods and believe they offer significant advantages over 

finite-volume method 

 



Governing Equations 

• Compressible Navier-Stokes with Spalart-Allmaras 

Turbulence Model 
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Governing Equations 

• Occasionally beneficial to examine performance of schemes 

using Maxwell’s equations for electromagnetics 

• Provides clean test without ambiguity from nonlinear variable 

choices 

 



Why Finite Elements 

• Unstructured meshes have become very popular because of 

their ability to handle complex geometries and flow fields 

 

 

 

 

 

 

 

• Finite-volume methods dominate modern CFD but have 

inherent limitations moving forward 

• Review of finite-volume methodology to understand limitations 



Finite-Volume Unstructured Grids 

• Integrate equations over control volume, converting flux 

integrals into surface integrals using divergence theorem 

 

 

 

 

 

 

 

 

• Can be cell-centered or node-centered implementation 

 

 

  

 

 

 

 

 

 

 



• In cell-centered scheme, control volume in 2D is defined by 

triangles and/or quadrilaterals 

• Second-order scheme obtained by extrapolating variables 

from center of cell to the “left” and “right” sides of the interface 

 

• Flux on cell boundary determined using Riemann solver 

 

 

 

  

 

 

 

 

 

 

 

Finite-Volume Unstructured Grids 



• Computing gradients in cell centers can be accomplished in 

many ways but usually involves averaging from cells 

• A particularly bad example is when nodal quantities are 

obtained and then used to compute gradients 

• Stencil is very large and data not easily accessed with typical 

data structures 

 

 

 

  

 

 

 

 

 

 

 

Finite-Volume Unstructured Grids 

• On highly stretched 

meshes, interpolation 

may also degrade to 

extrapolation 



• First-order accuracy for node-centered scheme can be 

obtained using only nearest neighbors 

• Second-order accuracy requires gradients at surrounding 

nodes, which significantly increases the stencil 

• As with cell centered finite-volume scheme, stencil is very 

large and data not easily accessed with typical data 

structures 

 

 

 

  

 

 

 

 

 

 

 

Finite-Volume Unstructured Grids 



Finite-Volume Unstructured Grids 

• Whether cell-centered or node-centered scheme, differencing 

stencil is large and not easily accessible with common data 

structures. This significantly impacts the ability to obtain an 

accurate linearization of the residual 

– Newton-type schemes 

– Sensitivity analysis 

• Robust interpolation for overset meshes 

• Extension to higher-order accuracy can be extremely tedious 

and error prone 

– Accurately reproducing higher-order polynomials requires 

even larger stencil  

– Recovering pointwise data from control volume averages 

 



Why Finite Elements? 

• Finite-element schemes allow for accurate discretization using 

a compact stencil that provides easy access to data with 

common data structures. This has several advantages 

– Newton-type schemes 

– Sensitivity analysis 

– Overset meshes 

• Well-established methodologies exist for extending the order 

of accuracy beyond second-order 

 

There are potentially very big advantages for developing 

high-order schemes 



Why Higher Order (P > 1)? 

• Assuming cubic domain with equal mesh spacing 

• 3D Mesh spacing                     where     is the number of nodes 

– Equal truncation error =>  

– Example: One billion nodes for linear elements requires only one 

million nodes for equivalent accuracy with quadratic elements 

• Very enabling for large-scale science and engineering applications 

– Current problems on smaller mesh 

– Larger problems 

 



Why Higher Order (P > 1)? 

 

 

 

 

 

P2 with 3,965 nodes 

more accurate than P1 

with 158,409 nodes 

• Despite generous assumptions, estimates are somewhat reasonable 

• Very significant enabling technology for large-scale simulations ! 



Outline 

Lecture 1: Introduction to finite elements 

– Weighted residual and weak statement 

– Global basis functions 

– Discretization for three-element example 

– Element basis functions 

– Element mapping 

– Quadrature 

– High-order basis functions 

– Extension to multidimensions 

– Example of equivalence between FE and FV 

– Curved elements 



Introduction to Finite Elements 

• There are many excellent references for finite elements 

• References below extensively used in development of notes 

 

 

 

 



Introduction to Finite Elements 

• Galerkin finite-element method for model problem 

 

 

 

 

 

 

 

• Will first consider one spatial dimension 

 

 

 

 

 

Specified on  

left end 

Specified on  

right end 



Introduction to Finite Elements 

 

 

•Weak statement obtained through integration by parts 

 

 

 

•Weak statement indicates admissible set of basis functions 

– Differentiable on element  

– To be convergent they must be complete 

 

Weighted residual 

Partial differential 

equation 



Basis Functions 

• Weak statement after specialization to one spatial dimension 

 

 

 

• Consider example with only four nodes in grid with     

specified on right end, derivatives of     specified on left 

•     Weighting functions 

– Arbitrary constants 

– Globally defined basis functions  

•  is expanded in terms of basis functions plus additional basis 

function at right end for enforcing boundary condition 



Linear Basis Functions  

Three-Element Example 

 

 

 

 



Equations for Three-Element Example  

• Substitution of discretized functions into weak statement 

 

 

 

 

• With c’s arbitrary there are 3 equations and 3 unknowns 

 

 

 



Matrix Equations for Three Elements 

• Equations arranged in matrix form 

 

 

 

 

 

 

 

• Solve for   

 

 

 



Matrix Equations for  

Three Element Example 

• Equations arranged in matrix form 

 

 

 

 

 

 

 

• Solve for   

 

 

 



Results for Linear Basis Functions 

 

 

 



Results for Linear Basis Functions 

 

 

 

For linear equations solution is exact at 

nodes if order of source term is less than or 

equal to order of polynomial used in element 



Element Basis Functions 

• Note that in the example there are 3 “residual” equations 

 

 

 

 

 

 

• Each residual equation has similar terms and only differs by 

the multiplication factor from weighting function or by 

presence of boundary term 

• Also note that each integral is non-zero only when both 

multiplied terms from the basis functions are non-zero 

 

 



Element Basis Functions 

• Residual associated with node 1 

 

 

 

• Residual associated with node 2 

 

 

 

• Residual associated with node 3 

 

 

 

 

 

 

 

 



Linear Basis Functions  

Three Element Example 

 

 

 

 



Element Basis Functions 

• Each global basis function is nonzero only on elements 

associated with node 

• The non-zero global basis functions within each element can 

be used to define local basis functions 

 

 

 

 

 

 

 

Element 1 Element 2 Element 3 



Element Basis Functions 

• Within each element, local basis functions can be defined that 

have identical form for all elements 



Element Basis Functions 

• Residual at node   can be computed by considering one 

element at a time 

 

 

 

 

• After interior elements are accounted for an additional loop is 

required to include contributions from boundary conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 



Element Basis Functions 

• For example, updating global node 2 from within element 2 

 

 

 

 

 

 

 

 Global node 2 



Element Mapping 

• Motivation 

– In general, PDE may preclude exact integration 

– Without mapping, basis functions need to be defined 

element-by-element 

– When extending to multidimensions, closed form 

integration over element topology does not exist except in 

special cases  

– A unified formulation for defining basis function and 

performing integration is desirable (automation) 

• Mapping from physical element to a “parent” element 

mitigates many of these problems 

 

 

 

 

 

 

 

 

 

 



Element Mapping 

• Define “parent” element that all elements get mapped to 

 

 

 

 

 

• Functions, derivatives, and integrals must be transformed 

 

 

 

 

 

 

 

 

 

 

 



Quadrature 

• General numerical formulas for integrating over common 

element types 

 

 

where NQ is the number of quadrature points, each located    

within the element at location     and      is an associated 

weight  

• Familiar quadrature rule in one dimension is Simpson’s rules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



High-Order Basis Functions 

• High-order solutions obtained by increasing polynomial order 

of the basis functions 

 

 

 

 

 

 

 

 

• Requires higher-order quadrature as well 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element e 



Extension to Multidimensions 

• General procedure identical to one-dimension 

• Basis functions and quadrature rules defined on parent 

element 

• Elements can be different sizes and shapes but may also be 

curved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Basis Functions 

• Usually defined in mapped space over parent element 

• Polynomial orders may be different for geometry and 

variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Types of Basis Functions 

• Lagrangian – unknowns within element represent actual data 

and shape functions are high-order polynomials 

 

 

 

 

• Hierarchical – unknowns represented as linear contribution 

with additional modes that represent perturbations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



• Can be determined algebraically 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lagrangian Basis Functions 



Lagrangian Basis Functions 

• For triangles and tetrahedrons, number of nodes in element 

matches number of unknown coefficients in polynomial 

• For other elements this may not be the case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• 4 Nodes in Element but 6 unknown coefficients 

required for complete quadratic polynomial 

• 4 nodes gives complete linear polynomial but 

incomplete quadratic polynomial 

• Pascal’s triangle to determine terms to keep 



Pascal’s Triangle 

• Higher-order quadrilateral, hexahedral, pyramidal, and 

pentahedral elements have more degrees of freedom than 

required for complete polynomial 

 

 

 

 

• Usually choose terms to maintain symmetry of element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hierarchical Basis Functions 

• Basis functions are combination of linear basis functions plus 

basis functions that represent perturbations 

• Consider cubic basis functions 

 

 

 

 

– Linear basis functions correspond to nodal basis functions 

– Edge functions are zero on two edges, Lobatto polynomial 

on third edge 

– Hierarchical basis functions better conditioned 

– Solution variables represent modal coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hierarchical Basis Functions 

Linear Contributions 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hierarchical Basis Functions 

Quadratic Edge Functions 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hierarchical Basis Functions 

Cubic Edge Functions 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hierarchical Basis Functions 

Bubble Function for Cubic Element 



FE / FV Equivalence 

• Examine special case where finite-element and finite-volume 

schemes are identical 

• Consider Laplace’s equation as model problem 

 

 

 

• For finite-volume scheme weighting function is simply unity so 

integration by parts yields the following 

 

 

• To compute residual at a node the surface integral for the 

control volume surrounding the node needs to be evaluated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weighted residual Partial differential equation 



FE / FV Equivalence 

• For finite-volume scheme with linear elements use “median 

dual” formed by connecting centroid of the triangle with the 

midpoints of the edges 

 

 

 

 

• Integral is approximated by summing over all segments that 

comprise the boundaries of the median dual 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FE / FV Equivalence 

• Consider the geometry of a single triangle 

 

 

 

 

 

 

 

• Sum of normal components from median dual is half the 

normal of the opposite edge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FE / FV Equivalence 

• With linear elements the gradients within the cell are constant 

over the entire cell 

• Contribution to integral from single element is given by 

summing over dual edges and relating the normal 

components in the dual edge to that of the triangle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finite-volume 



FE / FV Equivalence 

• Consider Laplace’s equation as model problem 

 

 

 

 

• The weak statement is given as 

 

 

 

• Consider only volume integral (surface integral is over 

boundaries of domain) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weighted residual 

Partial differential  

equation 



FEM / FV Equivalence 

• Weighting function is zero except at node under consideration 

 

 

 

 

 

 

• Therefore 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FE / FV Equivalence 

• Because gradient of basis function and weighting function are 

both constant over the element the volume integral can be 

approximated as 

 

 

• Recall result from finite-volume 

 

 

 

• The contribution to the residual is equivalent between linear 

finite element and linear finite volume for this problem 

• Higher-order scheme favors finite-element method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curved Elements 

• Solution of turbulent Navier-Stokes equations requires highly-

stretched elements near surface to resolve boundary layer 

• Recall that to retain high-order accuracy surfaces must be 

faithfully reproduced 

• Surface curvature propagates into interior elements  

• Effects of curved elements on accuracy need to be examined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curved Elements 

• Desired accuracy for quadratic triangle in physical space 

 

 

• When element is curved, substitute               into above  

– If linear 

 

– If quadratic  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curved Elements 

• Nonlinear transformation requires more terms in mapped 

space to include all quadratic terms in physical space and be 

conforming between elements 

• Mapping provides conformity but accuracy can be degraded if 

neglected terms are not below truncation error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element-by-element 



Curved Elements 

• Ciarlet derived conditions for accuracy to be maintained 

• For quadratic elements, distance between straight-line 

segment and location of node must be reduced as h**2 

• Cubic elements requires distances to reduce as h**3 

 

 

 

 

 

 

 

• Can verify using “downscaling”  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curved Elements 

• Downscaling for curved elements verifies Ciarlet’s theorem 

 

 

 

 

 

 

 

• Ciarlet also points out that on boundaries (e.g. cylinder), 

distances are reduced quadratically implying loss of accuracy  

• Results improve as edges become less curved. Fortunately, 

this behavior corresponds to what happens in practice 
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Curved Elements 

• Ciarlet’s theorems assume element shape remains the same 

as the mesh is refined 

• Uniform refinement changes shapes of elements 

 

 

 

 

• Experiments indicate uniform refinement usually gives correct 

order property but mesh movement can cause problem 

• For manufactured solution on parabolic domain, algebraic 

mesh movement failed to recover proper order of accuracy 

while linear elastic approach was successful 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary of Lecture 1 

• Motivated reason for considering  high-order finite elements 

• Weighted residual and weak statement 

• Global basis functions 

• Discretization for three-element example 

• Element basis functions 

• Element mapping 

• Quadrature 

• High-order basis functions 

• Extension to multidimensions 

• Curved elements 



Suggested Reading 

• Zienkiewicz, O.C., and Morgan, K., Finite Elements & 

Approximation, Dover Publications, 2006. 

• Hughes, T.J.R., The Finite Element Method, Dover 

Publications, 2000. 

• Solin, P., Segeth, K., and Dolezel, I., Higher-Order Finite 

Element Methods, Chapman & Hall/CRC, 2004. 

• Ciarlet, P.G., The Finite Element Method for Elliptic Problems, 

SIAM, 2002. 

• McLeod, R., “Node Requirements for High-Order 

Approximation over Curved Finite Elements,” J. Inst. Maths 

Applics, Vol. 17, No. 2, 1976, pp. 249-254. 

 



Suggested Reading 

• Spalart, P. R., and Allmaras, S. R., “A One-Equation 

Turbulence Model for Aerodynamic Flows,” AIAA Paper 

No.92-0439, 1991.  

• Moro, D., Nguyen, N.C., and Peraire, J., “Navier-Stokes 

Solution Using Hybridizable Discontinuous Galerkin Methods,” 

AIAA Paper 2011-3407. 

 



Time-Dependent Problems 

 

 

 

 

 

 

 

 

•Semi-discrete       is spatial volume; time discretized 

independent  

•Space-time      includes both space and time  



Spalart-Allmaras Turbulence Model 



Curved Elements 

• On boundaries (e.g. cylinder), distances are reduced 

quadratically implying loss of accuracy  

• Can verify using discontinuous Galerkin or Petrov Galerkin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cubic “H-Bend” Cubic “S-Bend” 

Quadratic 



Curved Elements 

 

 

 

 

 

 

 

 

 

 

 

•Also verified using  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nodes in 

Mesh 

Variation with 

 order h 

Variation with 

 order h**2 

P2 P3 P2 P3 

322/1,239 1.96 2.54 2.99 4.35 

1,239/4,837 1.91 2.18 2.94 4.16 

4,837/19,139 2.01 2.16 2.96 4.13 

Nodes in 

Mesh 

Variation with 

 order h 

Variation with 

 order h**2 

S-Bend H-Bend S-Bend H-Bend 

322/1,239 3.28 3.37 4.25 4.30 

1,239/4,837 3.18 3.21 4.20 4.27 

4,837/19,139 3.13 3.14 4.14 4.19 


