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Stabilized Finite Elements and 
Discontinuous Galerkin



Motivation

• Using Galerkin finite-element method for convection-
dominated flows is equivalent to a central-difference method

• Requires dissipation to prevent odd-even decoupling
– Can be added through “physics” (upwind differencing)
– Same effect can be achieved through explicit addition

Zero residual using 
central differencing



Motivation

• Dissipation through improved physics

• Dissipation through explicit addition

• Same result obtained using both approaches
• Discontinuous Galerkin follows first approach
• Stabilized finite elements follows second approach



Outline

• Stabilized finite elements (Petrov-Galerkin (PG))
– Streamline Upwind Petrov Galerkin (SUPG)
– Surface integral for continuous finite elements
– Stabilization matrix and viscous scaling
– Accuracy/Method of Manufactured Solutions (MMS)

• Discontinuous Galerkin (DG)
• Accurate surface representation 

– Effect on accuracy
– Treatment

• Example results
• Comparison of accuracy and efficiency between PG and DG



Petrov-Galerkin

• Not widely used for compressible flow: Approximately ten 
times fewer papers in AIAA conferences compared with 
discontinuous Galerkin

• Surface integral typically not evaluated because of continuity 
assumptions between elements. However, assumption not 
required (e.g. multiple materials in electromagnetics)



Evaluation of Surface Integral

• Typically ignored due to assumed continuity across elements
• Not a required assumption, such as multiple materials or port 

boundary conditions in electromagnetic applications
– Create duplicate mesh points along interface
– Resolve jumps in field parameters using Riemann solver 
– May also be used to easily create discontinuous-Galerkin



Stabilization Matrix

• Weighted residual form for 1D steady advection with modified 
weighting term

• First term in weight function results in Galerkin method
• Consider stabilization term with                   (           )

• Note that     scales in proportion to the mesh size  



Stabilization Matrix

• Integrate last term by parts

• Stabilization term is dissipative with a coefficient of
• Similar to form given above for model problem that yielded 

first-order upwind scheme



Stabilization Matrix

• Scaling  of stabilization different for inviscid and viscous limit

• Galerkin contribution is integrated by parts thereby lowering 
the order of the derivatives

• Stabilization term is not integrated by parts
• If solution converges as            then derivatives converge with 

order          and second derivatives as 
– For inviscid flows    scales by   
– for viscous flow     needs to scale as            

Weighted 
residual



Stabilization Matrix

• For scalar advection-diffusion the stabilization matrix can be 
scaled according to the Peclet number so that in the viscous 
limit     behaves as          instead of 

• Equation above determined to obtain exact solution in 1D
• Cotangent scaling based on Peclet number for systems in 

multiple dimensions found to be unreliable
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Stabilization Matrix

• Technique due to Shakib automatically scales stabilization
• Varies as         for inviscid flows,          for viscous flow

• Above heuristics suggest generalization to multiple 
dimensions



Stabilization Matrix

• Eigenvalue-based stabilization is “baseline”

• Inviscid contribution may be defined using concepts from flux-
vector splitting

• positive eigenvalues:           negative eigenvalues 



Stabilization Matrix Based on FVS

• Any flux-vector splitting formulation can be used
• Using van Leer FVS with Hanal modifications can maintain 

constant total enthalpy 



Stabilization Matrix Based on FVS

FVS-based stabilization not inferior to eigenvalue-based 
stabilization for viscous flows

Petrov Galerkin Finite Volume



Manufactured Solutions

• Verification is the process of determining if the code 
implementation is correct

• Validation is determining whether physical model is correct
• Would like to verify implementation using nontrivial solutions
• Few solutions exists especially for turbulent flows
• Method of Manufactured Solutions (MMS) is a means to 

generate exact solutions



Verification of Order using MMS

• Used to generate nontrivial exact solutions to PDEs
• Substitution of specified solution into PDE results source term
• Example

• Can generate nontrivial exact solutions to Euler and Navier-
Stokes equations that can be used to verify accuracy

• Interior scheme verified with Dirchlet boundary conditions
• Boundary conditions can also be verified if MMS satisfies BC 



Guidelines for Manufactured Solutions

• Composed of smooth functions such as polynomials, 
trigonometric and exponentials

• Should be general enough to exercise all terms in governing 
equations

• Sufficient number of nontrivial derivatives (e.g. linear 
polynomials insufficient for verifying second-order accuracy)

• Solution should not contain singularities, discontinuities, or 
steep gradients

• Experience also shows that while steep gradients may be 
theoretically acceptable, resolution requires finer grids for 
solution to be in linear range

• Manufactured solutions not necessarily physically meaningful



Manufactured Solutions



Manufactured Solutions

Density

u-velocity v-velocity

Temperature



Order of Accuracy using
Manufactured Solutions

Nodes in 
mesh

P1 Elements P2 Elements P3 Elements

L1 L2 L1 L2 L1 L2

2,193/8,481 2.0437 2.0839 2.8186 2.7675 4.2141 4.1781
2,193/8,481 2.0433 2.0634 2.6693 2.6928 4.1830 4.1818
2,193/8,481 2.0018 2.0148 2.4867 2.4096 4.1942 4.1866
2,193/8,481 2.1693 2.1739 3.0159 2.9528 4.2189 4.2144



Order of Accuracy using
Manufactured Solutions

Reynolds Number

Effect of Viscous Scaling of Stabilization Matrix (P1)



Order of Accuracy using
Manufactured Solutions

Effect of Viscous Scaling of Stabilization Matrix (P2)



Order of Accuracy using
Manufactured Solutions

Effect of Viscous Scaling of Stabilization Matrix (P3)



Manufactured Solutions for 3D

Density Temperature

u-velocity v-velocity w-velocity



Order of Accuracy using
Manufactured Solutions for 3D

Effect of Viscous Scaling of Stabilization Matrix

Linear elements Quadratic elements



Conservation

• Conservation proven by Venkatakrishnan et al.
• At convergence global conservation can be checked by 

summing columns of linearization matrix
• Demonstration using third-order solution for turbulent flow



Discontinuous Galerkin

• Solution assumed discontinuous across element interfaces
• Surface integral evaluation using Riemann solver
• Viscous terms handled using symmetric interior penalty method



Accuracy Effects Caused by 
Inaccurate Geometry

• Second-order schemes model surface using linear segments
• Linear surface reduces order property for high-order elements

Linear Quadratic 
(linear geometry)

Quadratic
(quadratic geometry)

Bx 2.2181 2.0675 2.9667
By 2.3263 2.0546 3.0138
Dz 2.4441 2.0697 3.0666

Exact Solution Solution from 
quadratic elements



CAPRI Interface for CAD Geometry

• CAD – Watertight geometry definition is required
• Linear mesh – Initial mesh generated using CAD definition
• CAPRI – Higher-order points inserted into linear mesh and 

projected onto CAD definition via CAPRI interface
• Linear Elasticity – Surface displacements provided by CAPRI 

are propagated into interior



igh-Order Finite Element Framework
Most computational simulation programs have similar structure and 
common components can be isolated into a single framework (code reuse)
Discipline-specific applications (e.g. E&M + fluids) require new code in the 
form of residual routine and linearization (often just residual)
Existing programs refactored to provide workable framework

Geometry Linear Algebra Parallel

Discipline Specific
Residual

Linearization
Post Processing
Input Parameters

Collaborative Development (PG)
•CVS Version control
•CVSTrac bug tracking
•Continuous testing (future)
•Common practices 

( AIAA 2003 3978)



Engineering Disciplines

Fluid dynamics
Electromagnetics
Structural Analysis
Lithium-Ion Batteries
Hydrogen Reforming (under development)



Fluid Dynamics

mplicit time stepping
Full Navier Stokes with Spalart-Allmaras turbulence model
Petrov-Galerkin and discontinuous-Galerkin discretization



Electromagnetics

Frequency domain and time-domain (implicit time stepping)
Petrov-Galerkin and discontinuous-Galerkin discretization
Frequency-dependent material properties



Displacement-based structural dynamics
Galerkin finite element
Geometric and/or material nonlinearity
Mechanical and thermal stresses

Structural Analysis



Lithium-Ion Batteries

High-order Galerkin discretization
Current collectors, electrodes, and separator all modeled



Example Fluid Dynamic Applications

Three-dimensional cylinder
Multielement airfoil
Onera M6
Trap wing
Transonic airfoil



Three-Dimensional Cylinder

68,629 Elements



Three-Dimensional Cylinder

Discontinuous Galerkin P3 Petrov Galerkin P2



Three-Dimensional Cylinder
ime-Averaged U-Velocity Component

Discontinuous Galerkin Petrov Galerkin



Multielement Airfoil

Mach Number Contours Streamlines

Douglas 30P-30N 



Multielement Airfoil

Discontinuous Galerkin Petrov Galerkin

Pressure Distribution 



Multielement Airfoil

x/c=0.45 (Main)

Velocity Profiles Linear Elements 

x/c=0.8982 (Flap) x/c=1.1125 (Flap)



Multielement Airfoil

x/c=0.45 (Main)

Velocity Profiles Quadratic and Cubic Elements 

x/c=0.8982 (Flap) x/c=1.1125 (Flap)



Multielement Airfoil

Discontinuous Galerkin

Turbulence Working Variable Fourth Order DG and PG

Petrov Galerkin



ONERA M6 Comparisons with CFL3D

Discontinuous Galerkin P2 Petrov Galerkin P2



Trap Wing (Petrov-Galerkin Scheme)

1,126,835 Elements
194,370 DOF P1

1,126,835 DOF P2

Turbulence Working 
Variable



Trap Wing (Petrov Galerkin)

Slat
Main Element Flap

x/c=17%



Trap Wing (Petrov Galerkin)

Slat
Main Element Flap

x/c=50%



Trap Wing (Petrov Galerkin)

Slat
Main Element Flap

x/c=85%



Transonic NACA 0012

Finite Volume Petrov Galerkin P1 Petrov Galerkin P2



Transonic NACA 0012

Linear Elements Cubic Elements

• Preliminary results adding switched viscous-like term
• Discontinuous Galerkin and Petrov-Galerkin terms not the same



Which Scheme to Use?

ntuition would indicate that there is an accuracy advantage 
on a given mesh for discontinuous Galerkin

However, new degrees of freedom are created with 
discontinuities between elements
Do the benefits outweigh the cost?

Petrov Galerkin Discontinuous 
Galerkin



2D Time-Domain Scattering from 
Dielectric Cylinder

• For fluid dynamics PG and DG codes solve different variables
• This causes confusing comparisons using MMS
• Electromagnetic application eliminates these effects



2D Time-Domain Scattering from 
Dielectric Cylinder (P1 Elements)

DOF L1 Error L1 Slope L2 Error L2 Slope
369 2.52E-01 2.37E-01
1348 6.00E-02 2.22 5.60E-02 2.23
5153 1.49E-2 2.08 1.39E-02 2.07

DOF L1 Error L1 Slope L2 Error L2 Slope
1824 2.52E-01 1.42E-01
7314 6.00E-02 2.22 3.35E-02 2.08

29,376 1.49E-2 2.08 8.30E-03 2.01

Petrov Galerkin

Discontinuous Galerkin



2D Time-Domain Scattering from 
Dielectric Cylinder (P2 Elements)

DOF L1 Error L1 Slope L2 Error L2 Slope
1345 1.03E-02 1.05E-02
5133 1.23E-03 3.28 1.21E-03 3.34

20,097 1.50E-4 3.13 1.51E-04 3.10

DOF L1 Error L1 Slope L2 Error L2 Slope
3648 1.00E-02 5.83E-03

14,628 1.20E-03 3.06 6.69E-04 3.12
58,752 1.48E-4 3.01 8.42E-05 2.98

Petrov Galerkin

Discontinuous Galerkin



Which Scheme to Use?
Error in Manufactured Solution Per DOF

Petrov Galerkin exhibits lower error per degree of freedom

(Glasby et al. AIAA 2013-0692)



Which Scheme to Use?
Error in Manufactured Solution Per Element

• Discontinuous Galerkin exhibits lower error per element
• Results are for low Reynolds number MMS but typical for 

Euler, Navier Stokes, and Electromagnetic application

(Glasby et al. AIAA 2013-0692)



Which Scheme to Use?

Petrov Galerkin Discontinuous Galerkin

Estimating DOF and Number of Non Zero Entries in Matrix



Which Scheme to Use?

Two Dimensions 
(Triangles)

Three Dimensions 
(Tetrahedrons)

Estimating Ratio of DOF and Number of Non Zero Entries in 
Matrix Between PG and DG



Which Scheme to Use?

Discontinuous Galerkin compares more favorably for hexahedrons, worst 
case is for tetrahedrons
Higher DOF and NNZ translates into more memory, more work per iteration, 
and generally more iterations (search directions for GMRES)
At low-to-moderate orders, Petrov Galerkin appears to have advantages over 
discontinuous Galerkin
Higher orders may favor discontinuous Galerkin

DOF and Number of Non Zero Entries in Matrix
Cubic Volume Subdivided into Elements

Tetrahedron Hexahedron Prismatic
DOF NNZ DOF NNZ DOF NNZ

P1 22.16 19.8 7.53 5.74 11.35 9.42
P2 7.19 6.20 2.92 2.14 4.02 3.15



Which Scheme to Use?
Resonant Cavity: 1.85 GHz

Magnetic Field Intensity

Ratio of time for fixed number of time steps
DOF Ratio Actual Time Ratio

Linear 22.16 27
Quadratic 7.19 12

• Advancing fixed number of time 
steps to compare efficiencies

• Independent of equation set

(DG required more search directions)



Which Scheme to Use?

Many factors effect the accuracy of a given scheme so it is 
difficult, if not impossible, to make a broad conclusion
– Boundary condition type / order / weak v. strong
– Basis functions and quadrature rules
– Solution and comparison variables 
– Flux function / stabilization matrix

While number of stabilization matrices for PG is approximately 
the same as the number of flux evaluations for DG, 
stabilization matrix more expensive for Euler
Higher DOF translates to more search directions
Very high order is unclear but work advantages for PG at 
low-to-moderate orders are difficult for DG to overcome 



Which Scheme to Use for Explicit 
Schemes?

Previous discussion is for implicit schemes typically used for 
turbulent flows
For inviscid flows with explicit time advancement, DG should 
be less expensive because residual is computed on an 
element-by-element basis and it is less expensive than PG
For viscous flows this conclusion is unclear because 
symmetric interior penalty method adds a significant number 
of terms



Described Petrov-Galerkin scheme in moderate detail
– Stabilization matrix for inviscid and viscous flows
– Confirmed accuracy
– Conservation

Discontinuous-Galerkin and Petrov-Galerkin methods work 
well for inviscid, laminar, and turbulent flows
Petrov-Galerkin method appears overlooked method for 
mplicit schemes with low-to-moderate orders of accuracy
Efficiency comparisons for explicit schemes ongoing
Developing framework for high-order finite element solutions 
to multidisciplinary problems

Summary
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Stabilization Matrix

Scaling  of stabilization necessary to maintain order property 
between inviscid and viscous limit

First bracketed term indicates that    must be at least 
f solution converges as            then derivatives converge with 
order          and second derivatives as 
For viscous flow needs to scale as instead of

Weighted 
residual


