
W. Kyle Anderson, Li Wang, and James Newman 
2014 CFD Summer School 

Modern Techniques for Aerodynamic Analysis and Design 
Beijing Computational Sciences Research Center  

July 7-11, 2014 

Implicit Solution Algorithms 



Motivation 

• Implicit time stepping is required for turbulent flows because 

of very tight spacing near wall 

 

 

 

 

 

 

• Effective schemes often based on Newton’s method 

– Offers fast convergence near root (but not always) 

– Not globally convergent 



Newton’s Method 

• Generic method for solving nonlinear systems of equations 

 

 

• Using Taylor series expansion 

 

 

 

 

 

• For Euler/Navier-Stokes matrix size is determined by the 

number of degrees of freedom (depends on mesh and order) 

 

 

 

 

 

 

 



Newton’s Method 

• Often quadratic convergence near root 

 

 

 

 

 

• Unpredictable how many iterations required to get near root 

• May not converge rapidly (e.g. roots of multiplicity    ) 

 

 

• Not globally convergent 

 

 

 

 

 

 

 

 

• For Euler/Navier-Stokes matrix size is determined by the 

number of degrees of freedom (depends on mesh and order) 

 

 

 

 

 

 

 



Newton’s Method 

• Fast convergence requires precise linearization of residual 

• To improve global convergence adopt methods from 

optimization 

– Add diagonal term that is large initially but increases as 

convergence is approached (Levenberg-Marquardt ) 

– Line searches 

– Reject non-physical steps 

 

 

 

 

 

 

 

 

 

• For Euler/Navier-Stokes matrix size is determined by the 

number of degrees of freedom (depends on mesh and order) 

 

 

 

 

 

 

 



Newton’s Method 

• Diagonal term added to left-hand side based on time step 

 

 

 

 

• Essentially “explicit” method with small time step 

• Newton’s method obtained as time step increases to infinity 

• Old technique but regaining popularity 

– Switched Evolution Relaxation (SER) time step begins low 

and increases strictly based on residual reduction  

– Recently approaches from optimization have been 

adopted 

 

 

 

 

 

 

 



Newton’s Method 

• Many variants on global methods based on optimization  

• All have similar essential features 

1. Begin with small time step and solve for initial value of 

2. Determine relaxation factor     to limit changes in physical 

variables and to ensure for viability (positive pressure) 

3. Without exceeding     determine     to reduce residual 

4. If relaxation too small reject step, lower CFL return to 1 

 

 

5. If relaxation factor is acceptable increase the time step 

and return to step 1 

 

 

  

 

 

 

 

 

 



Newton’s Method 

• As mentioned previously this technique can often provide very 

fast convergence 

 

 

 

 

 

• May not converge rapidly at all (e.g. roots of multiplicity    ) 

• Number of iterations required to get near root unpredictable 

so combinations with other algorithms such as multigrid are 

ongoing subjects of research 

• Examples shown later 

 

 

 

 

 

 

 

 

 

• For Euler/Navier-Stokes matrix size is determined by the 

number of degrees of freedom (depends on mesh and order) 

 

 

 

 

 

 

 



Linearizing the Residual 

• Straight-forward application of Newton’s method requires 

precise linearization of residual  

– Hand differentiation 

– Finite-difference method 

– Complex-variable method 

– Operator overloading 

• Matrix-free GMRES only requires the effects of multiplying the 

linearization matrix with the vector of unknowns but still 

requires a “preconditioner” 

• Matrix-free techniques not helpful if matrix is needed such as 

adjoint methods for design 

• Linearization and matrix-free GMRES presented in detail 

 

 

  

 

 

 

 

 

 



Hand Differentiation 

• Hand differentiation can be accomplished two ways 

• Method 1: 

–  Write expressions in terms of dependent variables 

–  Linearize by hand 

– Simplify 

 

 

 

• Typically applied for fluxes 

• Executes fast but is tedious, error prone, and difficult to 

maintain 

 

 

  

 

 

 

 

 

 



Hand Differentiation 

• Hand differentiation can be accomplished two ways 

• Method 2: Differentiate the code directly 

 

 

 

 

 

 

 

• Less tedious/error prone than first method but still takes time 

• Not as fast to execute but easy to do while watching TV 

 

 

  

 

 

 

 

 

 

handDiff2.txt Sat Jun 28 12:28:46 2014 1

rho = Q1

  rho_Q1 = 1.0

  rho_Q2 = 0.0

  rho_Q3 = 0.0

rhou = Q2

  rhou_Q1 = 0.0

  rhou_Q2 = 1.0

  rhou_Q3 = 0.0

u = rhou/rho

  u_Q1 = (rho*rhou_Q1 - rhou*rho_Q1)/(rho*rho)

  u_Q2 = (rho*rhou_Q2 - rhou*rho_Q2)/(rho*rho)

  u_Q3 = (rho*rhou_Q3 - rhou*rho_Q3)/(rho*rho)



Finite Differences 

• Finite differences are straight forward to implement  

• Can be difficult to find step size to give accurate results 

– Small is better for truncation error 

– Too small and computer cannot distinguish numbers 

 

 

  

 

 

 

 

 

 

First order 

Second order 



Finite Differences 

 

 

 

 

 

 

 

 

• Forward difference executes about as fast as second method 

of hand differentiation 

• Central difference is twice as slow 

 

 

  

 

 

 

 

 

 



Complex Variable Approach 

• Complex variables eliminates subtractive cancelation errors 

• Extend Taylor series for complex perturbations 

 

 

• Examine imaginary part 

 

• Solve for derivative 

 

 

• Truncation error is second order but does not suffer from 

subtractive cancelation errors 

  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

•With complex step size accuracy can be achieved without 

subtractive cancelation error 

•Execution time similar to central finite-difference scheme 

Complex Variable Approach 



 

•Modern computer languages (C++, Fortran 95) allow the user to 

define data types and to “overload” operators 

•Data type can be defined to hold the value as well as an array 

that represents derivatives with respect to variables of interest 

•Operations (addition, subtract, multiplication, division, etc.) are 

all overloaded so that when the residual routine is executed the 

derivatives are automatically accumulated 

•In principle, this is very similar to the second method of hand 

differentiation but care must be taken to avoid poor performance 

 

 

 

 

 

Operator Overloading 



 

•Consider the following triangle 

 

 

•At each grid point 4 variables are stored                      so that 

derivatives of the residuals at nodes 1-3 will be taken with 

respect to a total of 12 variables 

•The residual is typically accumulated by performing operations 

within the triangle and distributing results so all variables need to 

be declared as derived data type and all operations in residual 

routine need to be overloaded  

 

 

 

 

 

 

 

 

 

 

 

Operator Overloading 



• Consider the following derived data type in Fortran95 

 

 

 

 

• The values of the derivatives are stored as follows 

 

 

 

 

 

Operator Overloading 

overload1.txt Sat Jun 28 14:21:31 2014 1

      integer, parameter :: maxOverloadLength = 12

      integer :: overloadLength = -66

      type :: dType

        real(dp) :: value

        real(dp), dimension(maxOverloadLength) :: deriv

      end type dType

1 2 3 4 5 6 7 8 9 10 11 12 

Node 1 Node 2 Node 3 



• Generic interfaces need to be declared for all operations and 

for a data types used in the operation 

• The overloaded functions must be defined for all types 

 

 

 

 

 

 

 

 

 

Operator Overloading 

overload6.txt Sat Jun 28 15:36:52 2014 1

      interface operator(*)

        module procedure real_real_multiply

        module procedure integer_real_multiply

        module procedure real_integer_multiply

        module procedure const_real_multiply

        module procedure real_const_multiply

      end interface

      elemental function real_real_multiply(v1,v2)

        type (dtype) :: real_real_multiply

        type (dType), intent(in) :: v1,v2

        real_real_multiply%value = v1%value * v2%value

        real_real_multiply%deriv(1:overloadLength) = &

          (v1%value * v2%deriv(1:overloadLength)) &

        + (v2%value * v1%deriv(1:overloadLength))

      end function real_real_multiply



• Local residual values will need to be initialized to zero 

• Local independent variables need to be defined so that their 

value and derivatives are set properly 

 

 

 

 

 

 

 

 

Operator Overloading 

overload4.txt Sun Jun 29 10:31:56 2014 1

         overloadLength = 12

         do j = 1,npe

          call initialize(rhs(1,j),0,0.)

          call initialize(rhs(2,j),0,0.)

          call initialize(rhs(3,j),0,0.)

          call initialize(rhs(4,j),0,0.)

        end do

!

! Initialize independent variables

!

        index = 0

        do j = 1,npe

          index = index + 1

          call initialize(local_rho(j), index, node(local_node(j))%q(1))

          index = index + 1

          call initialize(local_u(j), index, node(local_node(j))%q(2))

          index = index + 1

          call initialize(local_v(j), index, node(local_node(j))%q(3))

          index = index + 1

          call initialize(local_T(j),  index, node(local_node(j))%q(4)) 

        end do



• Initialization routine sets residual value and derivatives to zero 

• Set values for independent variables and initialize derivative 

with respect to self to unity while others are set to zero 

 

 

 

 

 

 

 

Operator Overloading 

overload5.txt Sun Jun 29 15:33:32 2014 1

      subroutine initialize(v,index,value)

        type (dType) :: v

        integer :: index

        real(dp) :: value

!

! Set the value and the derivatives

!

        v%value = value

        v%deriv = 0.

        if(index.ne.0)then

          v%deriv(index) = 1.0

        end if

      end subroutine initialize



• After initialization the derivative array for the density at node 2 

is seeded as follows 

 

 

 

 

 

 

• At this point computation of residual continues as normal 

 

 

 

 

 

Operator Overloading 

1 2 3 4 5 6 7 8 9 10 11 12 

Node 1 Node 2 Node 3 

0 0 0 0 1 0 0 0 0 0 0 0 



• At this point computation of residual continues as normal 

 

 

 

 

 

 

 

 

 

• Local residual array will be filled with derivatives that can then 

be distributed into appropriate entries in the matrix 

 

Operator Overloading 

overload3.txt Sat Jun 28 16:01:09 2014 1

! Accumulate values at Gauss points

        rho = 0., u = 0., v = 0., T = 0.

        do k = 1,npe

          rho = rho + local_rho(k)*N(k)

          u   = u   + local_u(k)*N(k)

          v   = v   + local_v(k)*N(k)

          T   = T   + local_T(k)*N(k)

        end do

! Get pressure and energy using function

! that accepts and returns dType data

        therm = linearize_therm(rho,u,v,T) 

                                          

        p    = therm(1)

        etot = therm(2)

! Continuity

        f = rho*u

        g = rho*v

        do k = 1,npe

          rhs(1,(k)) = rhs(1,(k)) 

          - weight*area*jacobian*(Nx(k)*f + Ny(k)*g)

        end do

! 

! x-momentum similar

! y-momentum similar

! Energy similar

!



• A naive implementation is quite simple once a module is 

developed that has all the operators defined for all the 

argument types 

• Execution speed can be very poor if not careful 

– Loops may get created for every operation 

– Results of loops may be stored in temporary variables 

 

 

 

 

 

 

 

Operator Overloading 



• Optimization report from Intel compiler indicates 17 loops (8 

multiplies 9 additions) vectorized for the following line of code 

 

 

 

• Note that compiler creates loops and temporary variables in 

overloaded functions  

 

 

 

 

 

 

 

Operator Overloading 

optReport.txt Sat Jun 28 16:12:50 2014 1

 delF4 = u*tauxx_x + tauxx*ux &

       + v*tauxy_x + tauxy*vx - qx_x &

       + u*tauxy_y + tauxy*uy &

       + v*tauyy_y + tauyy*vy - qy_y

overload7.txt Sat Jun 28 16:17:09 2014 1

      elemental function real_real_add(v1,v2)

        type (dtype) :: real_real_add

        type (dType), intent(in) :: v1,v2

        real_real_add%value = v1%value + v2%value

        real_real_add%deriv(1:overloadLength) = 

          v1%deriv(1:overloadLength) + v2%deriv(1:overloadLength)

      end function real_real_add

Loop 



• To increase performance consider the following code 

 

 

• Assuming functions are inlined expect one loop for 

multiplication and one for addition  

 

 

 

 

 

 

 

Operator Overloading 

overload8.txt Sun Jun 29 10:07:53 2014 1

      type (dType) :: result,a,b,c

      do i = 1,n

        result = a + b*c

      end do

overload9.txt Sun Jun 29 15:44:01 2014 1

      type (dType) :: result,a,b,c

      do i = 1,n

        temp%value = b%value * c%value

        do j = 1,overloadLength

          temp%deriv(j) = b%value * c%deriv(j) &

                        + c%value * b%deriv(j)

        end do

        result%value = a%value + temp%value

        do j = 1,overloadLength

          result%deriv(j) = a%deriv(j) + temp%deriv(j)

        end do

      end do



• Desire is to have one loop and no temporary variables 

 

 

 

 

 

• To achieve this objective 

– Make sure functions are inlined (compiler directives) 

– “Hardwire” length so loops are unrolled 

– May require more than single pass through outer loop and 

more complicated to distribute entries into matrix 

– Execution similar to method 2 of hand differentiation 

 

 

 

 

 

 

 

 

 

 

 

Operator Overloading 

overload10.txt Sun Jun 29 10:14:03 2014 1

      type (dType) :: result,a,b,c

      do i = 1,n

        result%value = a%value + b%value * c%value

        do j = 1,overloadLength

          result%deriv(j) = a%deriv(j)      &

                     + b%value * c%deriv(j) &

                     + c%value * b%deriv(j)

        end do

      end do



• Baseline residual calculation 

 

 

 

 

 

 

• Residual computed inside outer loop over elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operator Overloading 

overload12.txt Sun Jun 29 10:58:33 2014 1

      do i = 1,nElements

!

! Compute residual using existing code

!

      end do



• Linearized residual routine 

 

 

 

 

 

 

 

• Majority of routine remains the same 

• Example Fortran95 but obviously can be implemented in C++ 

• Efficient implementation in C++ using expression templates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operator Overloading 

New 

overload13.txt Sun Jun 29 11:43:00 2014 1

      do i = 1,nElements

!

! Initialize rhs(:,:) array of local residuals

!

! Initialize independent variables

!

! Compute residual using existing code

!

! Distribute components of rhs(:,:) into matrix

!

      end do



• At each iteration of the solver must obtain a solution to the 

matrix problem 

 

 

 

• Usually solve with iterative method as direct inversion is too 

expensive for large problems 

– Point iterative methods 

– Generalized Minimal Residual (GMRES) 

• Not necessary to fully converge solution at each step 

 

 

 

 

 

 

 

 

 

Matrix Solution 



• Consider solution of general matrix problem  

 

 

• For point iterative method decompose matrix into diagonal 

and off-diagonal contributions and solve for new values 

 

 

 

• The solution values used on right-hand side may be old or 

previously updated (Gauss Seidel)  

 

 

 

 

 

 

 

 

Point Iterative Method 



• Easy to implement 

• Works well in finite-volume schemes 

– Typically use linearization of first-order accurate residual 

– Relatively low CFL number so diagonally dominant 

• Does not work well for non-diagonally dominant systems 

– Full linearization of residual even for second-order finite-

volume schemes 

– Large time steps 

• Common solution is to use a Krylov-Subspace method 

 

 

 

 

 

 

 

 

Point Iterative Method 



• Generalized Minimal Residual Method (GMRES) is very 

common Krylov-subspace method to solve linear systems 

•   

• Krylov subspace of dimension     defined as  

 

 

• Heuristic motivation for Krylov subspace 

– Cayley-Hamilton theorem (every matrix satisfies 

characteristic polynomial) 

– Multiply characteristic polynomial by         and simplify 

– Solution to linear system is linear combination of vectors in 

Krylov subspace 

 

 

 

 

 

 

GMRES 



• Cayley-Hamilton for 4x4 matrix 

 

 

• Multiplication by          and solving for 

 

 

• Therefore solution is linear combination of vectors in KS 

 

 

• General procedure is to generate vectors in Krylov subspace 

and find best solution possible (least squares problem) 

 

 

 

 

 

 

 

 

 

 

 

Krylov Subspace 



• Generate    vectors in Krylov subspace 

• Assume solution is linear combination of vectors in KS and 

solve least squares problem 

 

 

• For example if matrix is 100x100 with 3 vectors in KS 

 

 

 

• Classic least squares problem to find best solution with more 

equations (100) than unknowns (3). GMRES implementation 

very clever and numerically robust 

 

 

 

 

 

 

GMRES 



• Straightforward generation of Krylov subspace is not stable 

• Solution: generate orthonormal basis using Arnoldi’s method   

 

 

 

 

 

 

GMRES 

Iterate: for   

Inner product 

Gram Schmidt 

Normalize 



• After k steps of the Arnoldi process there are            vectors 

generated that satisfy the following relation 

 

 

• Here       is                   upper Hessenberg matrix generate by 

Arnoldi’s method  

 

 

 

 

 

 

GMRES 



• Consider solution to                with initial guess  

 

 

• If       is in Krylov subspace then  

 

 

 

• Least squares problem as discussed previously 

 

 

 

 

 

 

GMRES 



• Consider this as minimizing a function of 

 

 

 

 

• Recalling that  

 

 

• So now least squares problem is simply  

 

 

 

 

 

GMRES 



• The implementation in GMRES is done so that the least 

squares problem is solved every time a vector is added to the 

Krylov subspace.  

• At each step the least squares solution is a                  matrix 

that is solved using Given’s rotations so the error in the linear 

system is easily determined 

 

 

 

• The trick in the implementation is that each time a new vector 

is added to the Krylov subspace, all previous Given’s rotations 

need to be applied as if new vector were always present 

 

 

 

 

 

• Recalling that  

 

 

• So now least squares problem is simply  

 

 

 

 

 

GMRES 



• Note that during the Arnoldi process the algorithm breaks 

down if                . This occurs when              which implies 

that there are no more independent vectors. In this case          

spans the space and the exact solution is obtained. This is 

referred to as “lucky breakdown” 

• If initial guess is an eigenvector answer obtained in one step 

• For              matrix GMRES terminates in at most      steps 

• Algorithm converges much faster with a preconditioner 

 

 

 

 

 

 

 

GMRES 



• For larger matrices algorithm may take significant number of 

search directions to converge 

• Algorithm accelerated by preconditioner 

 

 

 

 

 

 

•  Preconditioner should approximate the inverse of      and 

should be inexpensive to apply 

 

 

 

 

 

 

GMRES 

Left preconditioning 

Right preconditioning 

Solve for    then 



• Note that in using preconditioner          is rarely formed 

 

 

 

• Examples of preconditioners 

– Diagonal 

– Point iterative scheme (if it will converge) 

– Matrix factorization 

– Incomplete LU decomposition 

 

 

 

 

 

GMRES 



• Note that GMRES does NOT require that the matrix actually 

be formed 

• Only matrix-vector products are required, which can be 

approximated using finite-difference type formulas and only 

require evaluation of the residual 

 

 

 

• Can also be implemented using complex-variable approach 

• Matrix-free GMRES still requires a preconditioner and can not 

be used in adjoint methods for design  

 

 

 

 

 

 

GMRES 



Grid for turbulent flow over NACA 0012 Airfoil (15,576 DOF) 

 

 

 

 

 

 

Results 



Grid for turbulent flow over NACA 0012 Airfoil (15,576 DOF) 

 

 

 

 

 

 

Results 



Third-order turbulent flow over NACA 0012 Airfoil  

 

 

 

 

 

 

Results 

Mach Contours 



Third-order turbulent flow over NACA 0012 Airfoil  

 

 

 

 

 

 

Results 



Third-order turbulent flow over NACA 0012 Airfoil  

 

 

 

 

 

 

Results 



Third-order turbulent flow over NACA 0012 Airfoil  

 

 

 

 

 

 

Results 

Mach Number Turbulence Working Variable 



Third-order turbulent flow over NACA 0012 Airfoil  

 

 

 

 

 

 

Results 



Third-order turbulent flow over NACA 0012 Airfoil  

 

 

 

 

 

 

Results 



Third-order turbulent flow over ONERA M6 Wing 

FUNSAFE compared with CFL3D  

 

 

 

 

 

 

Results 



Third-order turbulent flow over ONERA M6 Wing 

 

 

 

 

 

 

Results 



Third-order turbulent flow over ONERA M6 Wing 

Effect of curving surface 

 

 

 

 

 

 

Results 

Before curving surface After curving surface 



Third-order turbulent flow over ONERA M6 Wing 

Effect of curving surface 

 

 

 

 

 

 

Results 

Before curving surface After curving surface 



• Implicit algorithm described based on Newton’s method  

• Various methodologies for obtaining exact linearizations 

– Hand differentiation 

– Finite differences 

– Complex variables 

– Operator overloading 

• GMRES algorithm described including matrix-free variants 

• Demonstrated results for airfoil and wing 

• Future work 

– Further variations on global convergence techniques 

– Acceleration out of “flat” convergence region 

 

 

 

 

 

 

Summary 



• Nocedal, J., and Wright, S.J., Numerical Optimization, 

Springer, 1999. 

• Burgess, N.K., and Glasby, R.S., “Advances in Numerical 

Methods for CREATE-AV Analysis Tools,” AIAA 2014-0417. 

• Ceze, M., “A Robust hp- Adaptation Method for Discontinuous 

Galerkin Discretization Applied to Aerodynamic Flows,” Ph.D. 

Thesis, University of Michigan, 2013. 

• Anderson, W.K., Rausch, R.D., and Bonhaus, D.L., 

“Implicit/Multigrid Algorithms for Incompressible Turbulent 

Flows on Unstructured Grids,” J. Comp. Phys., Vol. 128, No. 2 

1996. 

 

 

 

 

 

Suggested Reading 



• Mulder, W. A., “Multigrid Relaxation for the Euler Equations,” 

J. Comp. Phys., Vol. 60, No. 2, 1985. 

• Aubert, P., Di Cesare, N., and Pironneau, O., “Automatic 

Differentiation in C++ using Expression Templates and 

Application to a Flow Control Problem,” Computing and 

Visualization in Science, Vol. 3, No. 4, Jan. 2001, pp. 197-208 

• Squire, W., and Trapp, G., “Using Complex Variables to 

Estimate Derivatives of Real Functions,” SIAM Review, Vol. 

10, No. 1, March 1998, pp. 110-112 

• Lyness, J.N., and Moler, C.B., “Numerical Differentiation of 

Analytic Functions,” SIAM J. Numer. Anal., Vol. 4, 1967, pp. 

202-210. 

 

 

 

 

 

Suggested Reading 



• Newman, J.C., Anderson, W.K., and Whitfield, D.L., 

“Multidisciplinary Sensitivity Derivatives Using Complex 

Variables,” MSSU-COE-ERC-98-08, June, 1998. 

• Anderson, W.K., Newman, J.C., and Whitfield, D.L., 

“Sensitivity Analysis for the Navier-Stokes Equations on 

Unstructured Meshes using Complex Variables,” AIAA 

Journal, Vol. 39, No. 1, 2001, pp. 56-63 (also AIAA 99-3294) 

• Newman, J.C., Whitfield, D.L., and Anderson, W.K., “A Step-

Size Independent Approach for Multidisciplinary Sensitivity 

Analysis,” J. of Aircraft, Vol. 40, No. 3, 2003, pp. 566-573. 

(also see AIAA 99-3101) 

 

 

 

 

 

Suggested Reading 



• Anderson, W.K., and Bonhaus, D.L., “Airfoil Design on 

Unstructured Grids for Turbulent Flows,” AIAA Journal, Vol. 

37, No. 2, 1999, pp. 185-191. 

• Nielsen, E.J., and Anderson, W.K., “Aerodynamic Design 

Optimization on Unstructured Meshes using the Navier-

Stokes Equations,” AIAA Journal, Vol. 37, No. 11, 1999, pp. 

1411-1419. 

• Saad, Y., and Schultz, M., “GMRES: A Generalized Minimal 

Residual Algorithm for Solving Nonsymmetric Linear 

Systemsm” SIAM J. Sci. Stat. Comp., Vol. 7, 1986, pp. 856-

869. 

 

 

 

 

 

Suggested Reading 


