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My Philosophy 

To present key ideas in 1D, not dwell on implementation 

details 

To show how these ideas were developed so you can 

develop new ones 

Highlight the similarities and differences, pros and cons 

wherever possible 
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Introduction – Approximation 

How to approximate an unknown solution with possibly 

infinite number of degrees of freedom (nDOFs) with a 

limited nDOFs 

 

 

 

 

Piece-wise polynomials (FD, FV, FE, …) 

A global expansion composed of discrete sine and cosine 

functions (spectral method) 

A global high-order polynomial? 

…   



Degrees of Freedom 

Finite difference (FD) 

Nodal values on a set of discrete points 

Local polynomial approximation 

Discontinuous? 

Finite volume (FV) 

Control volume averages 

Local polynomial approximation 

Discontinuous 

Finite element (FE) 

Nodal or modal 

Local polynomial approximation 

Either continuous or discontinuous 



Let’s Start from the Very Beginning 

1st order FD upwind scheme 

 

 

 

1st order FV upwind scheme 
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How to Extend to Higher Order 

Extend the stencil 

 

 

 

Add more degrees of freedom in element 
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Extending Stencil vs. More Internal DOFs 

Simple formulation and 

easy to understand for 

structured mesh 

Complicated boundary 

conditions: high-order 

one-sided difference on 

uniform grids may be 

unstable 

Not compact 

 

 

Boundary conditions 

trivial with uniform 

accuracy 

Non-uniform and 

unstructured grids 

Reconstruction universal 

Scalable 

Communication through 

immediate neighbor 

7/15/2014 

 



Review of the Godunov FV Method 

Consider 

 

 

 

Integrate in Vi  
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Godunov FV Method (cont.) 

Assume the solution is piece-wise constant, or a degree 0 

polynomial. 

However, a new problem is created. The solution is 

discontinuous at the interface 

How to compute the flux?  

 

A “shock-tube” problem solved 

 to obtain the flux by Godunov 

Other Riemann solvers  

 developed for efficiency 
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Discontinuous Galerkin Method  

Originally developed in 1970s and popular since 1990s 

(Cockburn & Shu, Bassi & Rebay, …) 

Each cell has enough DOFs so that neighboring data are 

not used in reconstructing a higher-degree polynomial 

Assume we choose a, b and c as the DOFs so that 

2( ) ,i i i i iU x a b x c x x V   
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Discontinuous Galerkin Method (cont.)  

However, at each cell we need to update 3 DOFs! How? 

Finite volume update 

 

 

Two more equations based on weighed residual 

 

 

Then 
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Spectral Volume Method  

Develop in early 2000s (Wang, Liu, …) 

Each cell has again enough DOFs so that neighboring data 

are not used in reconstructing a higher-degree polynomial 

The DOFs are sub-cell averages. The number of sub-cells 

is k+1 in 1D 

The polynomial at each cell is reconstructed from the sub-

cell averages  

 

 

Ci,j 

i,j+1/2 
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Spectral Volume Method (cont.)  

The sub-cell averages are updated using a FV method on 

the sub-cell 

 

 

Riemann fluxes are only used across the cell interfaces 

Reconstruction universal 
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SD/Correction Procedure via Reconstruction 

SD developed by Y. Liu et al in 2005 and CPR Developed 

by Huynh in 2007 and extended to simplex by Wang & Gao 

in 2009, … 

It is a differential formulation like “finite difference” 

 

 

The DOFs are solutions at a set of “solution points” 
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CPR (cont.) 

Find a flux polynomial         one degree higher than the 

solution, which minimizes 

 

 

The use the following to update the DOFs 
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CPR – SD/SV 

If the new flux polynomial goes through the flux values at 

the flux points, the resultant scheme is spectral 

difference/volume 

 

Riemann Flux 

Interior Flux 
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CPR – DG 

If the following equations are satisfied 

 

 

 

 

The scheme is DG! 
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1D – P1 SV/SD  and DG Schemes 
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Outline 

Lecture 2: 

Extension to multiple dimensions 

Extension to viscous problems 

 

 



CPR in 2D 

Consider 

 

 

The weighted residual form is 

 

 

Let     be the discontinuous approximate solution in Pk. 

The face flux integral replaced by a Riemann flux 
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CPR in 2D (cont.) 

Performing integration by parts to the last term 

 

 

Introduce the lifting operator 

 

 

where                                         .          Then we have 
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CPR in 2D (cont.) 

Or 

 

 

 

which is equivalent to 

 

 

In the new formulation, the weighting function completely  

disappears! Note that     depends on W.  
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Lifting Operator – Correction Field 

Obviously, the computation of    is the key. From 

 

 

If               ,       can be computed explicitly given W. Define  

a set of “flux points” along the faces, and set of solution  

points, where the “correction field” is computed as shown.  

Then 
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CPR in 2D (cont.) 

Finally the following equation is solved at the solution  

point j (collocation points) 

 

 

 

The first two terms correspond to the differential equation,  

and the 3rd term is the correction term.  
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Arrangement of SPs and FPs 

  

P = 2  
P = 3  

 

P = 2  



Extension to High-Order Elements 

Transform an iso-parametric element to the  

standard element 

 

 

Then 

 

 

becomes 
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Extension to High-Order Elements (cont.) 

where  

 

 

 

 

and 
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Extension to High-Order Elements (cont.) 

Apply CPR to the transformed equation on the  

standard element  

 

 

 

For quadrilateral element, the CPR scheme is 1D in  

each coordinate direction! 
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Mixed Grids 

In order to minimize data reconstruction and 

communication, solution points coincide with flux points 

For quadrilateral elements, 

 the corrections are one- 

 dimensional!  

Mass matrix is I for all  

 cell-types 
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Extension to Viscous Flows 

How to deal with the second order derivative ? 

Second Order FV Method: 

The solution gradients at an interface are sometimes computed by 

averaging the gradients of the neighboring cells sharing the face. 

High Order Method: 

Local Discontinuous Galerkin (Cockburn and Shu), motivated by 

the numerical results of Bassi and Rebay 

 Internal Penalty  
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Simplest Case First - SV 

Consider the 1D heat equation 

 

 

 

Integrating in a CV to obtain  
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Formulation for 1D Heat Equation 

Because the solution is SV-wise continuous,    not well 

defined at SV boundaries. Therefore it is replaced by a 

“numerical flux”   

 

 

 

Formulation 1-Naïve SV Formulation 
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Behaviors of the Naïve SV Formulation 
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t = 0.7 

This formulation converges to the wrong solution ! 
Similar result by Cockburn and Shu            



Formulation 1 - Local DG Formulation  

Introducing an auxiliary unknown 

 

 

    Integrating in a CV  

 

 

 

     

Selecting “numerical flux” following LDG 
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Computational Results of LDG 
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(k+1)-th order achieved for a degree k 
polynomial reconstruction 



Formulation 2 – Penalty Formulation 

Numerical flux given by 

 

 

where e is a constant. A Fourier analysis performed to 

choose the value e . It was found e =1 gives the highest 

order of accuracy for linear reconstruction. 
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Results of the Penalty Formulation 
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(k+1)-th order achieved for a degree k   

polynomial if k odd, otherwise k-th order. 



CPR Formulation for Computing Gradients 

Introduce another variable 

 

Apply weighted residual to the above equation 
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CPR Formulation for Computing Gradients 

Need to compute gradient 

 

 

Applying CPR to the above equation, we obtain 
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LDG on 2D Convection-Diffusion Equations 

Consider 

 

Introducing auxiliary variables 

 

Integrating in a CV to obtain 
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Numerical Flux Computation 

Upwind for inviscid flux 

 

 

Alternate directions for viscous and auxiliary “numerical 

fluxes” 

 

or 
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Results for 2D Convection-Diffusion Equations 
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Numerical Experiments on NS Equations 

Couette Flow 

Laminar Flow along a Flat Plate 

Subsonic Flow over a Circular Cylinder 

Laminar Subsonic Flow around NACA0012 Airfoil 
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Couette Flow - Convergence 
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Convergence History 



Couette Flow – Numerical Accuracy Order 
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Laminar Flow along a Flat Plate  

Flow Conditions:  

Free stream  Ma = 0.3, Re = 10000 

Adiabatic plate, length = 1.0 

The Thickness of  Boundary Layer (at x=1.0): 
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Schematic Structure  

   

fix pressure 

fix p
re

s
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u
re

 

symmetry adiabatic wall 
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m
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Mesh 

Coarse mesh -208 cells (8 cells along the plate) 
Medium mesh - 832 cells (16 cells along the plate) 
Fine mesh -3328 cells (32 cells along the plate) 
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u-velocity Profiles with Different SVs 

Linear SV Cubic SV 



Skin Fraction Coefficient along the plate 
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Linear SV 
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Skin Fraction Coefficient (con’d) 

Quadratic SV 



59 

Skin Fraction Coefficient (con’d) 

Cubic SV 



Subsonic Flow over a Circular Cylinder 

Flow Conditions: Ma = 0.2, Re = 75  

Mesh Near the Cylinder 
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Schematic Structure and Mesh 
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Interested Phenomena 

The Von Karmen Vortex Street (generated by the cylinder) 

Mach contours 

Entropy contours 

Vorticity contours 

The Periodic Nature of the Flow 

Pressure histories at different locations 

The period of oscillations corresponds to a Stroual number of 

0.151 
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Instantaneous Mach Contours  

M = 0.2 flow over a circular cylinder at Re = 75 
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Instantaneous Entropy Contours 

M = 0.2 flow over a circular cylinder at Re = 75  
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Instantaneous Vorticity Contours 

M = 0.2 flow over a circular cylinder at Re = 75  



Pressure History at Point (1,1) 
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Pressure History at Point (5,1) 
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Pressure History at point (10,1) 
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Lecture 3: 

Boundary conditions 

Discontinuity capturing 

oLimiter 

oArtificial viscosity  

 



Subsonic Inlet BC 

The 1D characteristic theory is applied in the normal 

direction (approximately) 

Since                    , there are two incoming and one outgoing 

characteristics 

The three incoming Riemann invariants are:  

 

which can be fixed at the free stream value. The outgoing 

invariant                          is computed at the interior point 1.   
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Subsonic Inlet BC (cont.) 

Since the tangential velocity does not affect the normal flux, 

the following equations are sufficient to determine the flux 

 

 

 

Alternatively, the incoming acoustic invariant can be replaced 

by the total enthalpy 

 

Finally the flux is computed  

using full flux 
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Subsonic Outlet BC 

There are 3 outgoing and 1 incoming characteristics since                                                                

        , only one physical condition can be fixed. One 

can either fix the incoming acoustic invariant or the exit 

pressure 

 

 

 

 

Then the full flux is computed using the computed solution 
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Symmetry BC 

For a symmetry BC, in order to achieve full compatibility with 

interior cells, split flux is used, i.e., 

 

where      is the reconstructed solution at the boundary face 

from the interior cell, and      is computed based on the 

symmetry condition, i.e., 

 

n

bU

2( )

b in

b in

b in in

p p

v v v n n

 





 

inU

( , , )in bF U U n

inU

bU



Wall BC 

Either full or split flux can be used for a wall BC. 

At a wall, since the normal velocity vanishes, only a pressure term 

remains in the momentum flux. We could set the wall pressure to  

 

An inviscid wall is identical to the symmetry boundary condition 

using a split flux. 

For a viscous wall assuming no-slip BC, the velocity is set at 
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Shock Capturing 

Solution truly discontinuous 

Smooth features look like discontinuities due to a lack of 

resolution 

There are two approaches 

Limiter – reconstruct the troubled cells to remove oscillations 

Artificial viscosity – by adding a dissipation term near the shock 

wave  



Problem: 

How to capture discontinuity sharply while preserving 

accuracy at local extrema? 
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Gibbs Phenomenon 

P = 2 
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Gibbs Phenomenon (cont.) 

P = 5 
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Parameter-Free AP-TVD Marker 

Troubled cell method: Marker + Limiter 
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Parameter-Free Accuracy-Preserving TVD Marker 

1) 

  If 

  then cell i is considered as a possible troubled cell. 

 
 

2)  
 

  If               ,  then cell i is unmarked as a troubled cell; 

  Otherwise cell i is confirmed as a troubled cell. 

max, 1 1 min, 1 1max( , , ) and min( , , )i i i i i i i iu u u u u u u u    

, max, , min,1.001 or 0.999 , ( 1, 2)j i i j i iu u u u j p     

(1) (1) (1) (1)
(2) (2) 1 1

1 1

min mod( , , ). (for 1)i i i i
i i

i i i i

u u u u
u u p

x x x x
  

 

 
 

 

(2) (2)

i iu u

( 1.5) 



Parameter-Free AP TVD Marker 
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Parameter-Free AP TVD Marker 
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Parameter-Free AP TVD Marker 
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Generalized Moment Limiter: 1D 
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If cell i has been marked as a troubled cell, then  

(1) Reconstruction 

Functional Equivalent to the original solution polynomial 



Generalized Moment Limiter: 1D 

(2) Hierachically Limiting 

 

   If                     then NO limiting for (1). 

   Otherwise,  
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Generalized Moment Limiter 

P = 2 

Example:  Mark 

Solution points 

Original construction 
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Generalized Moment Limiter 

 Example:  5p 

Mark 

Solution points 

Original construction 

Reconstruction (1) 

on all cells 
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Numerical Tests 

 1. Accuracy study 
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Numerical Tests 

 2. 1D Discontinuity with  
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Numerical Tests 

 3. 1D Burgers Equation 
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Sod Shock Tube Problem 
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Shock Acoustic-Wave Interaction 
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Numerical Tests 

 6. 2D shock vortex interaction 

3rd-order PFGM Limiter 

Linear Limiter 

t=0.05 t=0.2 t=0.35 



Localized Laplacian Artificial Viscosity 

𝜕𝑄

𝜕𝑡
+ 𝛻 ∙ 𝑭𝑖𝑛𝑣 𝑄 = 𝛻 ∙ 𝑭𝑎𝑣 𝑄, 𝛻𝑄  

Laplacian: 𝑭𝑎𝑣 𝑄, 𝛻𝑄 = 𝜀𝛻𝑄 

𝜀𝑒 =  

0 
𝜀0
2

1 + 𝑠𝑖𝑛
𝜋 𝑆𝑒 − 𝑆0

2𝜅
 

𝜀0

  

𝑖𝑓 𝑆𝑒 < 𝑆0 − 𝜅                  
𝑖𝑓 𝑆0 − 𝜅 ≤ 𝑆𝑒 ≤ 𝑆0 + 𝜅
𝑖𝑓 𝑆𝑒 > 𝑆0 + 𝜅.                 

 

For each element 𝑒: 

P.-O. Persson  

& J. Peraire 

Adopted in  

current study 
𝑆𝑒 = 𝑙𝑜𝑔10

𝑈 − 𝑈𝑝, 𝑈 − 𝑈𝑝 𝑒

𝑈,𝑈 𝑒
 

𝜀0 = 𝑓(∆𝜉𝑚𝑎𝑥) ∙ ℎ ∙ 𝜆 𝑚𝑎𝑥 

Parameters in 𝜀𝑒: 



2D Explosion 

 

𝑃3 reconstruction (4th order), 𝑡 ∈ [0, 0.25𝑠] 

Computational domain −1,1 × [−1,1], 100 × 100 elements 

Density at t=0.25s Comparison of density distribution 



Double Mach Reflection 

 

Density 

Ma =10, 𝑃3 reconstruction (4th order), 𝑡 ∈ [0, 0.2𝑠] 

Computational domain 0,4 × [0,1], 816 × 204 elements 

Artificial 

viscosity 

at t=0.2s 

Density 

at t=0.2s 



Ma 3 Wind Tunnel with a Foreword Step 

 

Free stream Ma =3,  

𝑃2 reconstruction (3rd 

order), 

Grid  size:  1/80, with 

clustered elements of 

size 1/320 near the 

sharp corner. 

Artificial viscosity at t=4s 

Density at t=4s 



Shock-Vortex Interaction 

 

Pressure 

Artificial viscosity 

Free stream Ma =1.1,  

𝑃3 reconstruction (4th order), 

Computational domain:  

0,2 × [0,1],  
100 × 50 elements. 

Small isentropic vortex is 

superposed  to the supersonic 

flow. 



Ma 3 Oblique Shock 

 

Ma =3, 𝑃2 reconstruction 

(3rd order), Grid size 1/20 

Ma =3, 𝑃4 reconstruction 

(5th order), Grid size 1/40 

Pressure 

Artificial viscosity 



Outline 

Lecture 4: 

Verification and Validation 

Solution based hp-adaptations 

Sample demonstration problems 

Summary 

 



Introduction 

 Verification: The process of determining that a model 

implementation accurately represents the developer's 

conceptual description of the model and the solution to the 

model 

 Validation: The process of determining the degree to 

which a model is an accurate representation of the real 

world from the perspective of the intended uses of the 

model. (AIAA G-077-1998) – comparison with 

experimental data 

 



How to Verify Your Code 

 Closure condition of your control volume 

 

 

 Free-stream preservation (extrapolation 

boundary condition everywhere) 

 

 Exactly preserve a polynomial of a certain 

degree 

 Accuracy study with grid refinement 
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Problems with Analytical Solutions 

Many cases are included in the 1st International Workshop 

on High-Order CFD Methods 

(http://zjwang.com/hiocfd.html) 

Vortex propagation 

Ringleb flow 

Subsonic inviscid flow: entropy is constant 

Manufactured solutions 

http://zjwang.com/hiocfd.html


Selected Results – hp-Adaptations 

Discretization error reduction 

P-enrichment: smooth flow regions (Weierstrass theorem) 

H-refinement: geometry or flow singularities 

Anisotropic adaptation: shear layers, shocks,… 

Adaptation criteria/error indicators 

Feature-based: simple, ad hoc, less rigorous 

Residual-based: may lead to false refinements 

Adjoint-based: adapt the mesh in regions affecting the output, and 

estimate the error in the output 

July 15, 2014 104 



Review of Adjoint-Based Adaptive Methods 

July 15, 2014 105 

Adjoint-based adaptive methods 

Dynamically distribute computer resources to regions 

which are important for predicting engineering outputs 

Current status of the output-based adaptation methods 

• 2D/3D complex geometry 

• Steady/unsteady 

• Euler/NS/RANS 

• Anisotropic hp-adaptations 

[Giles and Pierce,1997; Becker and Rannacher,2001; Venditti and Darmofal, 2002; 

Hartmann and ouston,2002; Nielsen et al, 2004; Fidkowski and Darmofal,2007; 

Hartmann,2007; Mani and Mavriplis, 2007; Nemec et al, 2008; Park, 2008; Wang and 

Mavriplis,2009; Oliver and Darmofal, 2008; Fdikoswski and Roe, 2009; Ceze and 

Fdikoswski,2012;...]  



Fully Discrete Adjoint 

Let             be the residual,            be the output. Let Q be the exact 

solution. The solution error is                   . Since 

We have 

 

The output error is                                               

 

 

 

Denote the adjoint                               .  Then    
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The Fully Discrete Adjoint for the CPR Method 

July 15, 2014 108 

NACA 0012 at 𝑀∞ = 0.4, 𝛼 = 5° 

• The x-mom of the lift adjoint 

• Fully discrete adjoint 

• Highly-oscillating adjoint solution 

T T

h h
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h h

R J

Q Q


 
 

 



Dual Consistency 

A residual from a differential schemes at SP j of cell i 

 

 

With fully discrete approach 

 

 

To be dual consistent,  
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Discrete Adjoint for the CPR in the Integral Form 

 

 

Approximate      using the basis     from the primal solution 

space 
 

Directly discretizing the continuous adjoint eqn 

 
 

The difference between      and   
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Comparison of the Adjoints with the CPR Method 

July 15, 2014 111 

NACA 0012 at 𝑀∞ = 0.4, 𝛼 = 5° 

• The x-mom of the lift adjoint 

• Fully discrete adjoint 

• Discrete adjoint in the integral form 

The inconsistent adjoint Dual consistent adjoint 



The Adjoint-based Error Estimation 

Output error est.: adjoint solution weighted primal residual 

 

Adjoint-based local error indicator 

 

Multi-p residual-based error indicator 

July 15, 2014 112 

Local residual distribution Adjoint-based error indicator 

h
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Accuracy Test of the Adjoint-based Error Est. 

July 15, 2014 113 

P1 P2 

NACA 0012 at 𝑀∞ = 0.5, 𝛼 = 2° 

• The lift as the output J 

• The effectivity of the error est.  

( ) ( )

(Q ) (Q )

T H
e h h h
H

H H h h

R Q

J J











Subsonic Flow Over a NACA 0012 Airfoil 

Iso/aniso H-adaptation 

Fixed fraction f = 0.1 

Inviscid, 𝑀∞ = 0.5, 𝛼 = 2° 

3rd order scheme 

July 15, 2014 114 

Adaptation strategies 

• Hanging nodes 

• No-hanging nodes 

• Error indicators 

• lift adjoint 

• drag adjoint 

Initial mesh  Initial solution 



Subsonic Flow Over a NACA 0012 Airfoil 

July 15, 2014 115 

Adaptation strategies 

• Hanging nodes 

• No-hanging nodes 

• Error indicators 

• lift adjoint 

• drag adjoint 

Initial mesh  The adapted solution 

Iso/aniso H-adaptation 

Fixed fraction f = 0.1 

Inviscid, 𝑀∞ = 0.5, 𝛼 = 2° 

3rd order scheme 



Subsonic Flow Over a NACA 0012 Airfoil 
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Subsonic Flow Over a NACA 0012 Airfoil 
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Aniso lift adjoint Aniso drag adjoint 

Iso lift adjoint Iso drag adjoint 



The Supersonic Vortex Transportation Problem 

  

July 15, 2014 119 

Mesh                           Density 

Dual-consistent adjoint        Dual-inconsistent adjoint 



Primal sol error                     Output error 

   P1 error estimate                  P2 error estimate 

The Supersonic Vortex Transportation Problem 

 



Initial mesh                      Adapted solution 

CL-adjoint                              CD-adjoint 

Inviscid Flow over the NACA-0012 Airfoil 

 



CL error                                         CD error 

CL                                                      CD 



Initial solution                          Adapted solution 

Laminar Flow over NACA-0012 ( =1º, Re=5000) 

 

CL-adjoint                                         CD-adjoint 



CL error                                         CD error 

CL                                                      CD 



Remaining Challenges in High-Order Methods 

High-order grid generation, highly clustered curved meshes 

near wall 

Error estimates and solution-based hp-adaptations 

Low memory efficient solver 

Shock capturing – to preserve accuracy in smooth regions, 

convergent and parameter-free 
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