Adaptive Differential Discontinuous High-Order Methods in CFD

Z.J. Wang (zjwang.com) Spahr Professor and Chair Department of Aerospace Engineering University of Kansas, Lawrence, U.S.A.

Outline

$>$ Lecture 1:

- Introduction and review
- Extending a $1^{\text {st }}$ order scheme to higher-order
- Discontinuous Galerkin
-Spectral volume
-Spectral difference
-Correction procedure via reconstruction or flux reconstruction >Lecture 2:
- Extension to multiple dimensions
- Extension to viscous problems

Outiline [cont.]

>Lecture 3:
-Boundary conditions

- Shock capturing
- Limiter
- Artificial viscosity
>Lecture 4:
- Solution based hp-adaptations
- Sample demonstration problems
- Remaining research issues

Outline

>Lecture 1:

- Introduction and review
- Extending a $1^{\text {st }}$ order scheme to higher-order
- Discontinuous Galerkin
-Spectral volume
-Spectral difference
-Correction procedure via reconstruction or flux reconstruction

My Philosophy

$>$ To present key ideas in 1D, not dwell on implementation details
>To show how these ideas were developed so you can develop new ones
-Highlight the similarities and differences, pros and cons wherever possible

Introduction

|

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0, c>0
$$

Introduction - Approximation

>How to approximate an unknown solution with possibly infinite number of degrees of freedom (nDOFs) with a limited nDOFs

- Piece-wise polynomials (FD, FV, FE, ...)
- A global expansion composed of discrete sine and cosine functions (spectral method)
- A global high-order polynomial?

Degrees of Freedom

$>$ Finite difference (FD)

- Nodal values on a set of discrete points
- Local polynomial approximation
- Discontinuous?
>Finite volume (FV)
- Control volume averages
- Local polynomial approximation
- Discontinuous
>Finite element (FE)
- Nodal or modal
- Local polynomial approximation
- Either continuous or discontinuous

Let's Start from the Very Beginning

$>1^{\text {st }}$ order FD upwind scheme

$$
\frac{\partial u_{i}}{\partial t}+c \frac{\left(u_{i}-u_{i-1}\right)}{\Delta x}=0
$$

$>1^{\text {st }}$ order FV upwind scheme

$$
\frac{\partial \bar{u}_{i}}{\partial t}+c \frac{\left(\bar{u}_{i}-\bar{u}_{i-1}\right)}{\Delta x}=0
$$

How to Extend to Higher Order

>Extend the stencil

$>$ Add more degrees of freedom in element

$$
u_{i}(x) \in P^{2}
$$

Extending Stencil vs. More Internal DOFS

>Simple formulation and easy to understand for structured mesh
>Complicated boundary conditions: high-order one-sided difference on uniform grids may be unstable
$>$ Not compact
>Boundary conditions trivial with uniform accuracy
>Non-uniform and unstructured grids

- Reconstruction universal
>Scalable
- Communication through immediate neighbor

Review of the Godunov FV Method

Consider

$$
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0
$$

Integrate in V_{i}

$$
\begin{aligned}
& \int_{V_{i}}\left(\frac{\partial u}{\partial t}+\frac{\partial f}{\partial x}\right) d x=\frac{\partial \bar{u}_{i}}{\partial t} \Delta x_{i}+\int_{i-1 / 2}^{i+1 / 2} \frac{\partial f}{\partial x} d x \\
& =\frac{\partial \bar{u}_{i}}{\partial t} \Delta x_{i}+\left(f_{i+1 / 2}-f_{i-1 / 2}\right)=0
\end{aligned}
$$

Godunov FV Method [cont.]

$>$ Assume the solution is piece-wise constant, or a degree 0 polynomial.
>However, a new problem is created. The solution is discontinuous at the interface
$>$ How to compute the flux?

$$
f_{i+1 / 2}=\left[f\left(\bar{u}_{i}\right)+f\left(\bar{u}_{i+1}\right)\right] / 2
$$

$>$ A "shock-tube" problem solved to obtain the flux by Godunov
>Other Riemann solvers developed for efficiency

Discontinuous Galerkin Method

$>$ Originally developed in 1970s and popular since 1990s (Cockburn \& Shu, Bassi \& Rebay, ...)
»Each cell has enough DOFs so that neighboring data are not used in reconstructing a higher-degree polynomial »Assume we choose a, b and c as the DOFs so that

$$
U_{i}(x)=a_{i}+b_{i} x+c_{i} x^{2}, \quad x \in V_{i}
$$

Discontinuous Galerkin Method [cont.]

 >However, at each cell we need to update 3 DOFs! How?$>$ Finite volume update

$$
\int_{V_{i}} 1 *\left(\frac{\partial U}{\partial t}+\frac{\partial f}{\partial x}\right) d x=0
$$

>Two more equations based on weighed residual

$$
\int_{V_{i}} x *\left(\frac{\partial U}{\partial t}+\frac{\partial f}{\partial x}\right) d x=0 \quad \int_{V_{i}} x^{2} *\left(\frac{\partial U}{\partial t}+\frac{\partial f}{\partial x}\right) d x=0
$$

>Then

$$
\int_{V_{i}} \varphi\left(\frac{\partial U}{\partial t}+\frac{\partial f}{\partial x}\right) d x=\int_{V_{i}} \varphi \frac{\partial U}{\partial t} d x+\left(\varphi \hat{f}_{\text {Riem }}\right)_{i-1 / 2}^{i+1 / 2}-\int_{V_{i}} f \frac{\partial \varphi}{\partial x} d x=0
$$

Spectral Volume Method

»Develop in early 2000s (Wang, Liu, ...)
»Each cell has again enough DOFs so that neighboring data are not used in reconstructing a higher-degree polynomial
>The DOFs are sub-cell averages. The number of sub-cells is $k+1$ in 1 D
>The polynomial at each cell is reconstructed from the subcell averages

Spectral Volume Method [cont.]

$>$ The sub-cell averages are updated using a FV method on the sub-cell

$$
\frac{d \bar{u}_{i, j}}{d t} \Delta x_{i, j}+\left(f_{i, j+1 / 2}-f_{i, j-1 / 2}\right)=0
$$

$>$ Riemann fluxes are only used across the cell interfaces
>Reconstruction universal

$i, j-1 / 2 \quad i, j+1 / 2$

SD/Correction Procedure via Reconstruction

>SD developed by Y. Liu et al in 2005 and CPR Developed by Huynh in 2007 and extended to simplex by Wang \& Gao in 2009, ...
>lt is a differential formulation like "finite difference"

$$
\frac{\partial U_{i}(x)}{\partial t}+\frac{\partial F_{i}(x)}{\partial x}=0, \quad U_{i}(x) \in P^{k}, \quad F_{i}(x) \in P^{k+1}
$$

>The DOFs are solutions at a set of "solution points"

CPR [cont.]

$>$ Find a flux polynomial $F_{i}(x)$ one degree higher than the solution, which minimizes

$$
\left\|\tilde{F}_{i}(x)-F_{i}(x)\right\|
$$

$>$ The use the following to update the DOFs

$$
\frac{d u_{i, j}}{d t}+\frac{d F_{i}\left(x_{i, j}\right)}{d x}=0
$$

CPR-SD/SU

>If the new flux polynomial goes through the flux values at the flux points, the resultant scheme is spectral difference/volume

CPR-DG

>lf the following equations are satisfied

$$
\begin{aligned}
& \int_{V_{i}}\left[\tilde{F}_{i}(x)-F_{i}(x)\right] d x=0 \\
& \int_{V_{i}}\left[\tilde{F}_{i}(x)-F_{i}(x)\right] x d x=0
\end{aligned}
$$

>The scheme is DG!

1D - P1 SV/SD and DG Schemes

$$
\begin{aligned}
& \frac{d u_{i, 2}}{d t}+\frac{c}{\Delta x / 2}\left(u_{i, 2}-u_{i, 1}\right)=0 \\
& \frac{d u_{i, 1}}{d t}+\frac{c}{\Delta x}\left(u_{i, 2}+u_{i, 1}-3 u_{i-1,2}+u_{i-1,1}\right)=0
\end{aligned}
$$

$\frac{d u_{i, 1}}{d t}+\frac{c}{4 \Delta x}\left(3 u_{i, 2}+7 u_{i, 1}-15 u_{i-1,2}+5 u_{i-1,1}\right)=0$

$$
\frac{d u_{i, 2}}{d t}+\frac{c}{4 \Delta x}\left(9 u_{i, 2}-11 u_{i, 1}+3 u_{i-1,2}-5 u_{i-1,1}\right)=0
$$

Outline

>Lecture 2:

- Extension to multiple dimensions
- Extension to viscous problems

CPR in 2D

Consider

$$
\frac{\partial Q}{\partial t}+\nabla \bullet \vec{F}(Q)=0
$$

The weighted residual form is
$\int_{V_{i}}\left(\frac{\partial Q}{\partial t}+\nabla \bullet \vec{F}(Q)\right) W d V=\int_{V_{i}} \frac{\partial Q}{\partial t} W d V+\int_{\partial V_{1}} W \vec{F}(Q) \bullet \vec{n} d S-\int_{V_{i}} \nabla W \bullet \vec{F}(Q) d V=0$.
Let Q^{h} be the discontinuous approximate solution in Pk^{k}.
The face flux integral replaced by a Riemann flux

$$
\int_{V_{i}} \frac{\partial Q_{i}^{h}}{\partial t} W d V+\int_{\partial V_{i}} W \tilde{F}^{n}\left(Q_{i}^{h}, Q_{i+}^{h}, \vec{n}\right) d S-\int_{V_{i}} \nabla W \bullet \vec{F}\left(Q_{i}^{h}\right) d V=0 .
$$

CPR in 2 D [cont.]

Performing integration by parts to the last term

$$
\int_{V_{i}} \frac{\partial Q_{i}^{h}}{\partial t} W d V+\int_{V_{i}} W \nabla \bullet \vec{F}\left(Q_{i}^{h}\right) d V+\int_{\partial V_{i}} W\left[\tilde{F}^{n}\left(Q_{i}^{h}, Q_{i+}^{h}, \vec{n}\right)-F^{n}\left(Q_{i}^{h}\right)\right] d S=0 .
$$

Introduce the lifting operator

$$
\int_{V_{i}} W \delta_{i} d V=\int_{\partial V_{i}} W[\tilde{F}] d S
$$

where $\delta_{i} \in P^{k},[\tilde{F}]=\left[\tilde{F}^{n}\left(Q_{i}^{h}, Q_{i+}^{h}, \tilde{n}\right)-F_{\cdot}^{n}\left(Q_{i}^{h}\right)\right]$ Then we have

$$
\int_{V_{i}} \frac{\partial Q_{i}^{h}}{\partial t} W d V+\int_{V_{i}} W \nabla \cdot \vec{F}\left(Q_{i}^{h}\right) d V+\int_{V_{i}} W \delta_{i} d V=0,
$$

CPR in 2 D [cont.]

Or

$$
\int_{V_{i}}\left(\frac{\partial Q_{i}^{h}}{\partial t}+\nabla \bullet \vec{F}\left(Q_{i}^{h}\right)+\delta_{i}\right) W d V=0
$$

which is equivalent to

$$
\frac{\partial Q_{i}^{h}}{\partial t}+\nabla \bullet \vec{F}\left(Q_{i}^{h}\right)+\delta_{i}=0 .
$$

In the new formulation, the weighting function completely disappears! Note that δ_{i} depends on W.

Lifting Operator - Correction Field

Obviously, the computation of δ_{i} is the key. From

$$
\int_{V_{i}} W \delta_{i} d V=\int_{\partial V_{i}} W[\tilde{F}] d S
$$

If $[\tilde{F}], \delta_{i} \in P_{,}^{k} \quad \delta_{i}$ can be computed explicitly given W. Define a set of "flux points" along the faces, and set of solution points, where the "correction field" is computed as shown.
Then

$$
\delta_{i, j}=\frac{1}{\left|V_{i}\right|} \sum_{f \in \mathcal{V}} \sum_{l} \alpha_{j, f, l}[\tilde{F}]_{f, l} S_{f},
$$

$\alpha_{j, f, t}:$ lifting coefficients independent of Q

CPR in 2 D [cont.]

Finally the following equation is solved at the solution point j (collocation points)

$$
\frac{\partial Q_{i, j}^{h}}{\partial t}+\nabla \bullet \vec{F}\left(Q_{i, j}^{h}\right)+\frac{1}{\left|V_{i}\right|} \sum_{f \in V_{i}} \sum_{l} \alpha_{j, f, l}[\tilde{F}]_{f, l} S_{f}=0 .
$$

The first two terms correspond to the differential equation, and the 3rd term is the correction term.

Arrangement of SPs and FPs

Extension to High-Order Elements

Transform an iso-parametric element to the standard element

$$
\mathbf{r}=\sum_{j=1}^{N} M_{j}(\xi, \eta) \mathbf{r}_{j}
$$

Then

$$
\frac{\partial Q}{\partial t}+\frac{\partial E}{\partial x}+\frac{\partial F}{\partial y}=0
$$

becomes

$$
\frac{\partial \tilde{Q}}{\partial t}+\frac{\partial \tilde{E}}{\partial \xi}+\frac{\partial \tilde{F}}{\partial \eta}=0
$$

Extension to High-Order Elements [cont.]

 where$$
\begin{aligned}
& \tilde{Q}=|J| Q \\
& \tilde{E}=|J|\left(E \xi_{x}+F \xi_{y}\right) \\
& \tilde{F}=|J|\left(E \eta_{x}+F \eta_{y}\right)
\end{aligned}
$$

and

$$
J=\frac{\partial(x, y)}{\partial(\xi, \eta)}=\left[\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right]=\left[\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right]^{-1}
$$

Extension to High-Order Elements [cont.]

Apply CPR to the transformed equation on the standard element
$\frac{\partial Q_{i, j}^{h}}{\partial t}+\nabla \bullet \vec{F}\left(Q_{i, j}^{h}\right)+\frac{2}{\left|J_{i, j}\right|} \sum_{f \in \partial V_{i}} \sum_{l} \alpha_{j, f, l}[\tilde{F}]_{f, l} S_{f, l}=0$.
For quadrilateral element, the CPR scheme is 1 D in each coordinate direction!

Mixed Grids

$>$ In order to minimize data reconstruction and communication, solution points coincide with flux points
>For quadrilateral elements, the corrections are onedimensional!
$>$ Mass matrix is I for all cell-types

Extension to Viscous Flows

>How to deal with the second order derivative ?
>Second Order FV Method:

- The solution gradients at an interface are sometimes computed by averaging the gradients of the neighboring cells sharing the face.
>High Order Method:
- Local Discontinuous Galerkin (Cockburn and Shu), motivated by the numerical results of Bassi and Rebay
- Internal Penalty

Simplest Case First - SU

Consider the 1D heat equation
$u_{t}-u_{x x}=0, \quad x \in[0,2 \pi] \quad$ periodic boundary condition $u(x, 0)=\sin (x)$

Integrating in a CV to obtain
$\frac{d \bar{u}_{i, j}(t)}{d t} h_{i, j}-\left(\left.u_{x}\right|_{i, j+1 / 2}-\left.u_{x}\right|_{i, j-1 / 2}\right)=0$
with $\quad \bar{u}_{i, j}(t)=\frac{\int_{x_{i, j+1 / 2}}^{x_{i, j-1 / 2}} u(x, t) d x}{h_{i, j}}$

Formulation for 1D Heat Equation

Because the solution is SV-wise continuous, u_{x} not well defined at SV boundaries. Therefore it is replaced by a "numerical flux" \hat{u}_{x}

$$
\frac{d \bar{u}_{i, j}(t)}{d t}-\frac{1}{h_{i, j}}\left(\left.\hat{u}_{x}\right|_{i, j+1 / 2}-\left.\hat{u}_{x}\right|_{i, j-1 / 2}\right) \approx 0
$$

Formulation 1-Naïve SV Formulation

$$
\left.\hat{u}_{x}\right|_{i, j+1 / 2}=\frac{1}{2}\left[\left(u_{x}\right)_{i, j+1 / 2}^{+}+\left(u_{x}\right)_{i, j+1 / 2}^{-}\right]
$$

Behaviors of the Naïve SV Formulation

$$
t=0.7
$$

This formulation converges to the wrong solution! Similarresult by-Cockburo-and_Shu_ ${ }_{40} \mathrm{KU}_{\text {KANSAS }}^{\text {Wiwnans }}$

Formulation 1-Local DG Formulation

Introducing an auxiliary unknown $q=u_{x}$

$$
\left\{\begin{array}{c}
u_{t}-q_{x}=0 \\
q-u_{x}=0
\end{array}\right.
$$

Integrating in a CV

$$
\left\{\begin{array}{l}
\frac{d \bar{u}_{i, j}}{d t}-\frac{1}{h_{i, j}}\left(\hat{q_{i, j+1 / 2}}-\hat{q}_{i, j-1 / 2}\right)=0 \\
\bar{q}_{i, j}-\frac{1}{h_{i, j}}\left(\left.\hat{u}\right|_{i, j+1 / 2}-\left.\hat{u}\right|_{i, j-1 / 2}\right)=0 .
\end{array}\right.
$$

Selecting "numerical flux" following LDG

$$
\left.\hat{u}\right|_{i, j+1 / 2}=\left.\left.u\right|_{i, j+1 / 2} ^{+} \quad \hat{q}\right|_{i, j+1 / 2}=\left.q\right|_{i, j+1 / 2} ^{-}
$$

Computational Results of LDG

($k+1$)-th order achieved for a degree k polynomial reconstruction

Formulation 2 - Penalty Formulation

Numerical flux given by

$$
\left.\hat{u}_{x}\right|_{i, j+1 / 2}=\frac{1}{2}\left[\left(u_{x}\right)_{i, j+1 / 2}^{+}+\left(u_{x}\right)_{i, j+1 / 2}^{-}\right]+\frac{\varepsilon}{h_{i, j}}\left(\left.u\right|_{i, j+1 / 2} ^{+}-\left.u\right|_{i, j+1 / 2} ^{-}\right)
$$

where ε is a constant. A Fourier analysis performed to choose the value ε. It was found $\varepsilon=1$ gives the highest order of accuracy for linear reconstruction.

Results of the Penalty Formulation

$(k+1)$-th order achieved for a degree k polynomial if k odd, otherwise k-th order.

CPR Formulation for Computing Gradients

Introduce another variable

$$
R=Q_{x}
$$

Apply weighted residual to the above equation

$$
\begin{aligned}
& \int_{V_{i}} R W d x=\int_{V_{i}} W Q_{x} d x=\int_{V_{i}}\left[(W Q)_{x}-Q W_{x}\right] d x \\
& =\left.\left(W Q_{c o m}\right)\right|_{L} ^{R}-\int_{V_{i}} Q W_{x} d x=\left[W\left(Q_{c o m}-Q\right)\right]_{L}^{R}+\int_{V_{i}} W Q_{x} d x \\
& \text { Let } \quad \int_{V_{i}} \delta W d x=\left[W\left(Q_{c o m}-Q\right)\right]_{L}^{R}
\end{aligned}
$$

Then

$$
R_{i, j}=\left(Q_{i}\right)_{x, j}+\alpha_{L, j}\left(Q_{c o m, L}-Q_{L}\right)+\alpha_{R, j}\left(Q_{c o m, R}-Q_{R}\right)
$$

CPR Formulation for Computing Gradients

Need to compute gradient
$\vec{R}=\nabla Q$
Applying CPR to the above equation, we obtain

$$
R_{i, j}=\left(\nabla Q_{i}^{h}\right)_{j}+\frac{1}{\left|V_{i}\right|} \sum_{f \in V_{i}} \sum_{l} \alpha_{j, f, l}\left[Q_{f, l}^{c o m}-Q_{i, f, l}\right]_{f, l} \vec{n}_{f} S_{f}
$$

LDG on 2D Convection-Diffusion Equations

Consider

$$
u_{t}+\nabla \bullet(\boldsymbol{\beta} u)-\nabla \bullet(\mu \nabla u)=0
$$

Introducing auxiliary variables

$$
\mathbf{q}=\nabla u
$$

Integrating in a CV to obtain

$$
\begin{aligned}
& \overline{\mathbf{q}}_{i, j}-\frac{1}{V_{i, j}} \sum_{r=1}^{K} \int_{A_{r}} \hat{u} \cdot \mathbf{n} d A=0 \\
& \frac{d \bar{u}_{i, j}}{d t}+\frac{1}{V_{i, j}}\left\{\sum_{r=1}^{K} \int_{A,}(\boldsymbol{\beta} \tilde{u} \bullet \mathbf{n}) d A-\sum_{r=1}^{K} \int_{A_{i}} \mu \hat{\mathbf{q}} \bullet \mathbf{n} d A\right\}=0
\end{aligned}
$$

Numerical Flux Computation

Upwind for inviscid flux

$$
\tilde{u}= \begin{cases}u_{L} & \boldsymbol{\beta} \bullet \mathbf{n}>0 \\ u_{R} & \boldsymbol{\beta} \bullet \mathbf{n}<0\end{cases}
$$

Alternate directions for viscous and auxiliary "numerical fluxes"
or

$$
\begin{array}{ll}
\hat{u} \approx u_{R} & \hat{\mathbf{q}} \approx \mathbf{q}_{L} \\
\hat{u} \approx u_{L} & \hat{\mathbf{q}} \approx \mathbf{q}_{R}
\end{array}
$$

Results for 20 Convection-Dififision Equations

$$
\begin{aligned}
& u_{t}+\left(u_{x}+u_{y}\right)-0.01\left(u_{x x}+u_{y y}\right)=0, \quad(x, y) \in[-1,1] \times[-1,1] \\
& u(x, y, 0)=\sin (\pi(x+y))
\end{aligned}
$$

Numerical Experiments on NS Equations

>Couette Flow
>Laminar Flow along a Flat Plate
>Subsonic Flow over a Circular Cylinder
>Laminar Subsonic Flow around NACA0012 Airfoil

Couette Flow - Convergence

Couette Flow - Numerical Accuracy Order

Accuracy Study on Density for Couette Flow

Accuracy Study on Temperature for Couette Flow
(Estimation 2)

Laminar Flow along a Flat Plate

Flow Conditions:

- Free stream $\mathrm{Ma}=0.3, \mathrm{Re}=10000$
- Adiabatic plate, length $=1.0$

The Thickness of Boundary Layer (at $x=1.0$):

$$
\left.\delta\right|_{x=1.0}=\left.5 \cdot \sqrt{\frac{\mu \cdot x}{\rho_{\infty} \cdot u_{\infty}}}\right|_{x=1.0}=5 \cdot \frac{x}{\sqrt{\left.\operatorname{Re}\right|_{x=1.0}}}=0.05
$$

Schematic Structure

fix pressure

Mesh

Coarse mesh -208 cells (8 cells along the plate) Medium mesh -832 cells (16 cells along the plate) Fine mesh -3328 cells (32 cells along the plate)

u-velocity Profiles with Different Svs

Linear SV

Cubic SV

Skin Fraction Coefficient along the plate

Skin Fraction Coefficient [con'd]

Skin Fraction Coefficient [con'd]

Sulbsonic Flow over a Circular Cylinder

Flow Conditions: $\mathrm{Ma}=0.2, \operatorname{Re}=75$
Mesh Near the Cylinder

Schematic Structure and Mesh

_ Adiabatic wall
__ Fix every thing
__ Fix pressure

Interested Phenomena

>The Von Karmen Vortex Street (generated by the cylinder)

- Mach contours
- Entropy contours
- Vorticity contours
>The Periodic Nature of the Flow
- Pressure histories at different locations
- The period of oscillations corresponds to a Stroual number of 0.151

Instantaneous Mach Contours

$M=0.2$ flow over a circular cylinder at $R e=75$

Instantaneous Entropy Contours

$M=0.2$ flow over a circular cylinder at $R e=75$

Instantaneous Vorticity Contours

$M=0.2$ flow over a circular cylinder at $R e=75$

Pressure History at Point [1,1]

Pressure History at Point [5,1]

Pressure History at point [10,1]

Outline

>Lecture 3:

- Boundary conditions
- Discontinuity capturing
- Limiter
- Artificial viscosity

Sulsonic Inlet BC

The 1D characteristic theory is applied in the normal direction (approximately)
Since $v_{n}=\vec{v}_{\infty}[\vec{n}<0$, there are two incoming and one outgoing characteristics

The three incoming Riemann invariants are:

$$
p / \rho^{\gamma}, v_{t}, v_{n}-2 c /(\gamma-1)
$$

which can be fixed at the free stream value. The outgoing invariant $v_{n}+2 c /(\gamma-1)$ is computed at the interior point 1.

Sulisonic Inlet BC [cont.]

Since the tangential velocity does not affect the normal flux, the following equations are sufficient to determine the flux

$$
\begin{aligned}
& p / \rho^{\gamma}=p_{\infty} / \rho_{\infty}^{\gamma}, \\
& v_{n}-2 c /(\gamma-1)=v_{\infty, n}-2 c_{\infty} /(\gamma-1) \\
& v_{n}+2 c /(\gamma-1)=v_{1, n}+2 c_{1} /(\gamma-1)
\end{aligned}
$$

Alternatively, the incoming acoustic invariant can be replaced by the total enthalpy

$$
(E+p) / \rho=\left(E_{\infty}+p_{\infty}\right) / \rho_{\infty}
$$

Finally the flux is computed using full flux $F^{n}\left(U_{b}\right)$

Suhsonic Outlet BC

There are 3 outgoing and 1 incoming characteristics since $v_{n}=\vec{v} \vec{n}>0$, only one physical condition can be fixed. One can either fix the incoming acoustic invariant or the exit pressure

$$
\begin{aligned}
& p / \rho^{\gamma}=p_{1} / \rho_{1}^{\gamma} \\
& v_{n}+2 c /(\gamma-1)=v_{2, n}+2 c_{2} /(\gamma-1) \\
& v_{n}-2 c /(\gamma-1)=v_{\text {exit,n}}-2 c_{\text {exit }} /(\gamma-1) \text { or } p=p_{\text {exit }}
\end{aligned}
$$

Then the full flux is computed using the computed solution

$$
F^{n}\left(U_{b}\right)
$$

Symmetry BC

For a symmetry BC , in order to achieve full compatibility with interior cells, split flux is used, i.e., $\quad \tilde{F}\left(U_{i n}, U_{b}, \vec{n}\right)$
where $U_{\text {in }}$ is the reconstructed solution at the boundary face from the interior cell, and U_{b} is computed based on the symmetry condition, i.e.,

$$
\begin{aligned}
& p_{b}=p_{i n} \\
& \rho_{b}=\rho_{i n} \\
& \vec{v}_{b}=\vec{v}_{i n}-2\left(\vec{v}_{i n}[\vec{n}) \vec{n}\right.
\end{aligned}
$$

Wall BC

>Either full or split flux can be used for a wall BC.

- At a wall, since the normal velocity vanishes, only a pressure term remains in the momentum flux. We could set the wall pressure to $p_{b}=p_{\text {in }}$
- An inviscid wall is identical to the symmetry boundary condition using a split flux.
- For a viscous wall assuming no-slip BC, the velocity is set at

$$
\vec{v}_{b}=-\vec{v}_{i n}
$$

Shock Capturing

$>$ Solution truly discontinuous
>Smooth features look like discontinuities due to a lack of resolution
>There are two approaches

- Limiter - reconstruct the troubled cells to remove oscillations
- Artificial viscosity - by adding a dissipation term near the shock wave

Problem:

>How to capture discontinuity sharply while preserving accuracy at local extrema?

$$
p=1(2 \text { nd order scheme })
$$

$$
S_{i}=\frac{1}{\Delta x} \min \bmod \left(\bar{u}_{i+1}-\bar{u}_{i}, \bar{u}_{i}-\bar{u}_{i-1}\right)
$$

Gilbibs Phenomenon

$P=2$

Gilhbs Phenomenon [cont.]

$P=5$

Parameter-Free AP-TVD Marker

>Troubled cell method: Marker + Limiter

Parameter-Free Accuracy-Preserving TVD Marker

1) $\bar{u}_{\text {max }, i}=\max \left(\bar{u}_{i-1}, \bar{u}_{i}, \bar{u}_{i+1}\right)$ and $\bar{u}_{\text {min }, i}=\min \left(\bar{u}_{i-1}, \bar{u}_{i}, \bar{u}_{i+1}\right)$

If $u_{j, i}>1.001 \cdot \bar{u}_{\max , i}$ or $u_{j, i}<0.999 \cdot \bar{u}_{\min , i}, \quad(j=1, p+2)$
then cell i is considered as a possible troubled cell.
2) $\tilde{u}_{i}^{(2)}=\min \bmod \left(\bar{u}_{i}^{(2)}, \beta \frac{\bar{u}_{i+1}^{(1)}-\bar{u}_{i}^{(1)}}{x_{i+1}-x_{i}}, \beta \frac{\bar{u}_{i}^{(1)}-\bar{u}_{i-1}^{(1)}}{x_{i}-x_{i-1}}\right) . \quad($ for $p>1)$

If $\tilde{u}_{i}^{(2)}=\bar{u}_{i}^{(2)}$ then cell i is unmarked as a troubled cell;
Otherwise cell i is confirmed as a troubled cell.
($\beta=1.5$)

Parameter-Free AP TVI Marker

Parameter-Free AP TVI Marker

Parameter-Free AP TVD Marker

Generalized Moment Limiter: 10

ff cell i has been marked as a troubled cell, then 1) Reconstruction

$$
\begin{aligned}
u_{i}(x)=\bar{u}_{i} & +\bar{u}_{i}^{\prime}\left(x-x_{i}\right) \\
& +\frac{1}{2} \bar{u}_{i}^{(2)}\left[\left(x-x_{i}\right)^{2}-\frac{1}{12} h_{i}^{2}\right] \\
& +\frac{1}{6} \bar{u}_{i}^{(3)}\left[\left(x-x_{i}\right)^{3}-\frac{1}{4} h_{i}^{2}\left(x-x_{i}\right)\right] \\
& +\frac{1}{24} \bar{u}_{i}^{(4)}\left[\left(x-x_{i}\right)^{4}-\frac{1}{2} h_{i}^{2}\left(x-x_{i}\right)^{2}+\frac{7}{240} h_{i}^{4}\right] \\
& +\ldots
\end{aligned}
$$

Functional Equivalent to the original solution polynomial

Generalized Moment Limiter: 1D

(2) Hierachically Limiting

$$
\bar{Y}_{i}^{(p)}=\min \bmod \left(\bar{u}_{i}^{(p)}, \beta \frac{\bar{u}_{i+1}^{(p-1)}-\bar{u}_{i}^{(p-1)}}{x_{i+1}-x_{i}}, \beta \frac{\bar{u}_{i}^{(p-1)}-\bar{u}_{i-1}^{(p-1)}}{x_{i}-x_{i-1}}\right) .
$$

If $\bar{Y}_{i}^{(p)}=\bar{u}_{i}^{(p)}$, then NO limiting for (1).
Otherwise,

$$
\begin{aligned}
& \bar{Y}_{i}^{(k)}=\min m o d\left(\bar{u}_{i}^{(k)}, \beta \frac{\bar{u}_{i+1}^{(k-1)}-\bar{u}_{i}^{(k-1)}}{x_{i+1}-x_{i}}, \beta \frac{\bar{u}_{i}^{(k-1)}-\bar{u}_{i-1}^{(k-1)}}{x_{i}-x_{i-1}}\right), \quad(k=p-1) \\
& \bar{Y}_{i}^{(k)} \stackrel{\boldsymbol{?}}{\bar{u}} \bar{u}_{i}^{(k)} \text { (k=p-1). } \\
& \text { YeS. } \Rightarrow \text { NO further limiting } \\
& \text { NO. } \Rightarrow \text { Do limiting and check for } k=p-2
\end{aligned}
$$

Generalized Moment Limiter

$$
\Rightarrow P=2
$$

- Mark
- Solution points
_ Original construction
- - Reconstruction (1) on all cells
__ Limited all cells (2) on all cells

Generalized Moment Limiter

Example:
 $$
p=5
$$

- Mark
- Solution points
_ Original construction
- - Reconstruction (1) on all cells
- Limiting (2) on all cells

Numerical Tests

1. Accuracy study

Linear Advection Equation

$$
u_{t}+u_{x}=0
$$

Non-Linear Burgers Equation

$$
u_{t}+\left(u^{2} / 2\right)_{x}=0
$$

Numerical Tests

2. 1D Discontinuity with $u_{t}+u_{x}=0$

Numerical Tests

3. 1D Burgers Equation $u_{t}+\left(u^{2} / 2\right)_{x}=0$

Sod Shock Tube Problem

Shock Acoustic-Wave Interaction

$\mathrm{p}=1$

$p=3$

Numerical Tests

6. 2D shock vortex interaction

$3^{\text {rd }}$-order PFGM Limiter

Linear Limiter

$\mathrm{t}=\mathbf{0 . 0 5}$

$\mathrm{t}=0.2$

$\mathrm{t}=\mathbf{0 . 3 5}$

Localized Laplacian Artificial Viscosity

$$
\frac{\partial Q}{\partial t}+\nabla \cdot \boldsymbol{F}^{i n v}(Q)=\nabla \cdot F^{a v}(Q, \nabla Q)
$$

Laplacian: $\quad \boldsymbol{F}^{a v}(Q, \nabla Q)=\varepsilon \nabla Q$
For each element e :

$$
\varepsilon_{e}=\left\{\begin{array}{cl}
0 & \left.\begin{array}{cl}
\frac{\varepsilon_{0}}{2}\left(1+\sin \frac{\pi\left(S_{e}-S_{0}\right)}{2 \kappa}\right) & \text { if } S_{e}<S_{0}-\kappa \\
\varepsilon_{0} & \text { if } S_{0}-\kappa \leq S_{e} \leq S_{0}+\kappa \\
&
\end{array}\right\} . S_{0}+\kappa .
\end{array}\right.
$$

Parameters in ε_{e} :

$$
\begin{aligned}
\varepsilon_{0} & =f\left(\Delta \xi_{\text {max }}\right) \cdot h \cdot|\lambda|_{\max } \\
S_{e} & =\log _{10} \frac{\left\langle U-U^{p}, U-U^{p}\right\rangle_{e}}{\langle U, U\rangle_{e}}
\end{aligned}
$$

20 Explosion

Density at $\mathrm{t}=0.25 \mathrm{~s}$
Comparison of density distribution
P^{3} reconstruction (4 $4^{\text {th }}$ order), $t \in[0,0.25 s]$
Computational domain $[-1,1] \times[-1,1], 100 \times 100$ elements

Double Mach Reflection

$\mathrm{Ma}=10, P^{3}$ reconstruction (4 ${ }^{\text {th }}$ order), $t \in[0,0.2 s]$
Computational domain $[0,4] \times[0,1], 816 \times 204$ elements

Ma 3 Wind Tunnel with a Foreword Step

Free stream $\mathrm{Ma}=3$, P^{2} reconstruction ($3^{\text {rd }}$ order),
Grid size: $1 / 80$, with clustered elements of size $1 / 320$ near the sharp corner.

Density at $\mathrm{t}=4 \mathrm{~s}$
11

Artificial viseosity at t=4s

Shock-Vortex Interaction

```
1.30 1.27 1.24 1.22 1.19 1.16 1.13 1.11 1.08 1.05
```


Free stream $\mathrm{Ma}=1.1$, P^{3} reconstruction (4 $4^{\text {th }}$ order), Computational domain: $[0,2] \times[0,1]$, 100×50 elements.
Small isentropic vortex is superposed to the supersonic flow.

Artificial viscosity

Ma 3 Oblique Shock

Artificial viscosity

$\mathrm{Ma}=3, P^{2}$ reconstruction
$\mathrm{Ma}=3, P^{4}$ reconstruction
(3 ${ }^{\text {rd }}$ order), Grid size $1 / 20$

Outline

>Lecture 4:

- Verification and Validation
- Solution based hp-adaptations
- Sample demonstration problems
- Summary

Introduction

* Verification: The process of determining that a model implementation accurately represents the developer's conceptual description of the model and the solution to the model
* Validation: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. (AIAA G-077-1998) - comparison with experimental data

How to Verify Your Code

* Closure condition of your control volume

$$
\oint_{\partial V_{i}} \vec{n} d S=0
$$

* Free-stream preservation (extrapolation boundary condition everywhere)

$$
\mathrm{R}(Q)=0
$$

* Exactly preserve a polynomial of a certain degree
* Accuracy study with grid refinement

$$
p=\frac{\ln \left(\text { Error }_{\Delta x} / \text { Error }_{\Delta x / 2}\right)}{\ln (2)}
$$

Problems with Analytical Solutions

>Many cases are included in the $1^{\text {st }}$ International Workshop on High-Order CFD Methods
(http://zjwang.com/hiocfd.html)

- Vortex propagation
- Ringleb flow
- Subsonic inviscid flow: entropy is constant
>Manufactured solutions

Selected Results - hp-Adaptations

>Discretization error reduction

- P-enrichment: smooth flow regions (Weierstrass theorem)
- H-refinement: geometry or flow singularities
- Anisotropic adaptation: shear layers, shocks,...
$>$ Adaptation criteria/error indicators
- Feature-based: simple, ad hoc, less rigorous
- Residual-based: may lead to false refinements
- Adjoint-based: adapt the mesh in regions affecting the output, and estimate the error in the output

Review of Adjoint-Based Adaptive Methods

Adjoint-based adaptive methods

Dynamically distribute computer resources to regions which are important for predicting engineering outputs

Current status of the output-based adaptation methods

- 2D/3D complex geometry
- Steady/unsteady
- Euler/NS/RANS
- Anisotropic hp-adaptations
[Giles and Pierce,1997; Becker and Rannacher,2001; Venditti and Darmofal, 2002; Hartmann and ouston,2002; Nielsen et al, 2004; Fidkowski and Darmofal,2007; Hartmann,2007; Mani and Mavriplis, 2007; Nemec et al, 2008; Park, 2008; Wang and Mavriplis,2009; Oliver and Darmofal, 2008; Fdikoswski and Roe, 2009; Ceze and Fdikoswski,2012;...]

Fully Discrete Adjoint

Let $R_{h}\left(\mathrm{Q}_{h}\right)$ be the residual, $J_{h}\left(\mathrm{Q}_{h}\right)$ be the output. Let Q be the exact solution. The solution error is $\delta Q=Q-Q_{n}$. Since $R(\mathrm{Q})=R\left(\mathrm{Q}_{n}+\delta Q\right)=0$,
We have

$$
R\left(\mathrm{Q}_{h}\right)+\frac{\partial R_{h}}{\partial Q_{h}} \delta Q \approx 0 . \quad \delta Q \approx-\left(\frac{\partial R_{h}}{\partial Q_{h}}\right)^{-1} R\left(\mathrm{Q}_{h}\right)
$$

The output error is

$$
\delta J_{h}=J_{h}(Q)-J_{h}\left(Q_{h}\right)=\frac{\partial J_{h}}{\partial Q_{h}} \delta Q=-\frac{\partial J_{h}}{\partial Q_{h}}\left(\frac{\partial R_{h}}{\partial Q_{h}}\right)^{-1} R\left(Q_{h}\right)
$$

Denote the adjoint $\tilde{\psi}_{h}^{T}=-\frac{\partial J_{h}}{\partial Q_{h}}\left(\frac{\partial R_{h}}{\partial Q_{h}}\right)^{-1}$. Then $\delta J_{h}=\tilde{\psi}_{h}^{T} R\left(Q_{h}\right)$

$$
-\frac{\partial J_{h}}{\partial Q_{h}}=\tilde{\psi}_{h}^{T} \frac{\partial R_{h}}{\partial Q_{h}} \quad-\frac{\partial R_{h}{ }^{T}}{\partial Q_{h}} \tilde{\psi}_{h}=\frac{\partial J_{h}{ }^{T}}{\partial Q_{h}}
$$

The Fully Discrete Adjoint for the CPR Method

NACA 0012 at $M_{\infty}=0.4, \alpha=5^{\circ}$

- The x-mom of the lift adjoint
- Fully discrete adjoint
- Highly-oscillating adjoint solution

$$
-\frac{\partial R_{h}{ }^{T}}{\partial Q_{h}} \tilde{\psi}_{h}=\frac{\partial J_{h}{ }^{T}}{\partial Q_{h}}
$$

Dual Consistency

A residual from a differential schemes at SP j of cell i

$$
\mathrm{R}(Q)_{i, j}=\nabla \cdot \bar{f}\left(Q_{i}\right)_{\mathrm{j}}+\frac{1}{\left|V_{i}\right|} \sum_{f \in V_{i}} \sum_{l} \alpha_{j, f, l}\left[\mathrm{~F}^{\mathrm{n}}\right]_{\mathrm{f}, \mathrm{~L}} S_{f}
$$

With fully discrete approach

$$
-\sum_{i} \sum_{j} \frac{\partial R_{i, j}}{\partial Q_{k}} \tilde{\Psi}_{i, j}=\frac{\partial J}{\partial Q_{k}}, \quad k=1, \ldots, N_{\text {DoF }}
$$

To be dual consistent,

$$
-\int_{\Omega} \frac{\partial N(Q)^{T}}{\partial Q} \psi d V=\frac{\partial J^{T}}{\partial Q}
$$

Discrete Adjoint for the CPR in the Integral Forimi

$$
-\int_{\Omega} \frac{\partial N(Q)^{T}}{\partial Q} \psi d V=\frac{\partial J^{T}}{\partial Q}
$$

$>$ Approximate ψ_{i} using the basis L_{j} from the primal solution space

$$
\psi_{i}=\sum_{j} L_{j} \hat{\psi}_{i j}
$$

Directly discretizing the continuous adjoint eqn

$$
-\sum_{i} \sum_{j} \frac{\partial R_{i, j}}{\partial Q_{k}} \omega_{j}\left|J_{i, j}\right| \hat{\psi}_{i, j}=\frac{\partial J}{\partial Q_{k}}
$$

>The difference between $\hat{\psi}_{i, j}$ and $\tilde{\psi}_{i, j}$

$$
\tilde{\psi}_{i, j}=\omega_{j}\left|J_{i, j}\right| \hat{\psi}_{i, j}
$$

Comparison of the Adjoints with the CPR Methofi

NACA 0012 at $M_{\infty}=0.4, \alpha=5^{\circ}$

- The x-mom of the lift adjoint
- Fully discrete adjoint
- Discrete adjoint in the integral form

The inconsistent adjoint

Dual consistent adjoint

The Adjoint-hased Error Estimation

$>$ Output error est.: adjoint solution weighted primal residual

$$
\delta J_{h}\left(\mathrm{Q}_{\mathrm{h}}\right)=J_{h}\left(\mathrm{Q}_{h}\right)-J_{h}\left(\mathrm{Q}_{H}\right) \approx\left(\hat{\psi}_{h}\right)^{T} R_{h}\left(Q_{h}^{H}\right)
$$

$>$ Adjoint-based local error indicator

$$
\eta=\left|\left(\hat{\psi}_{h}\right)^{T} R_{h}\left(Q_{h}^{H}\right)\right|
$$

$>$ Multi-p residual-based error indicator

$$
\eta=\left|R_{h}\left(Q_{h}^{H}\right)\right|
$$

Local residual distribution

Adjoint-based error indicator

Accuracy Test of the Adjoint-based Error Est.

NACA 0012 at $M_{\infty}=0.5, \alpha=2^{\circ}$

- The lift as the output J
- The effectivity of the error est.

$$
\eta_{H}^{e}=\frac{-\left(\psi_{h}\right)^{T} R_{h}\left(Q_{h}^{H}\right)}{J_{H}\left(\mathrm{Q}_{H}\right)-J_{h}\left(\mathrm{Q}_{h}\right)}
$$

Cells	$\mathcal{J}_{H}\left(Q_{H}\right)-\mathcal{J}_{h}\left(Q_{h}\right)$	$-\left(\psi_{h}\right)^{T} \mathcal{R}_{h}\left(Q_{h}^{H}\right)$	η_{H}^{e}
280	$-5.859 \mathrm{e}-3$	$-1.103 \mathrm{e}-3$	1.88
1120	$-2.638 \mathrm{e}-3$	$-4.002 \mathrm{e}-3$	1.52
4480	$-8.736 \mathrm{e}-4$	$-9.995 \mathrm{e}-4$	1.14
17920	$-1.933 \mathrm{e}-4$	$-1.988 \mathrm{e}-4$	1.03

Subsonic Flow Over a NACA 0012 Airfoil

>Iso/aniso H-adaptation
>Fixed fraction $f=0.1$
\Rightarrow Inviscid, $M_{\infty}=0.5, \alpha=2^{\circ}$
>3rd order scheme

Adaptation strategies

- Hanging nodes
- No-hanging nodes
- Error indicators
- lift adjoint
- drag adjoint

Initial mesh

Initial solution

Subsonic Flow Over a NACA 0012 Airfoil

>Iso/aniso H-adaptation
>Fixed fraction $f=0.1$
\Rightarrow Inviscid, $M_{\infty}=0.5, \alpha=2^{\circ}$
>3rd order scheme

Adaptation strategies

- Hanging nodes
- No-hanging nodes
- Error indicators
- lift adjoint
- drag adjoint

Initial mesh

The adapted solution

Subsonic Flow Over a NACA 0012 Airfoil

-	Uniform refinement
\triangle	
	iso-no-hanging
\bigcirc	aniso-nohanging
- 4 -	iso-hanging-corr
V	iso-nohanging-corr
$-\rightarrow-$	aniso-nohanging-err

Subsonic Flow Over a NACA 0012 Airfoil

Aniso lift adjoint

Iso lift adjoint

Aniso drag adjoint

Iso drag adjoint

The Supersonic Vortex Transportation Problemí

Dualrconsistent adjoint
Dual-inconsistent adjoint NSAS

The Supersonic Vortex Transportation Problenin

P1 error estimate

Inviscid Flow over the NACA-0012 Airfoil

Adapted solution

CD

Laminar Flow over NACA-0012 $[\alpha=1 \div \text {, } \mathrm{Re}=5000]^{50}$

Initial solution

Adapted solution

$C D$

Remaining Challenges in High-Order Methods

>High-order grid generation, highly clustered curved meshes near wall
>Error estimates and solution-based hp-adaptations
>Low memory efficient solver
>Shock capturing - to preserve accuracy in smooth regions, convergent and parameter-free

