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Background

Fluid Flows of Practical Interest

Responsible to most of transport and mixing phenomena

Interaction of objects with surrounding air or water

Meteorological phenomena such as wind, rain and hurricanes

Combustion in aircraft or automobile engines

Heating, ventilation and air conditioning

Pressure field for air flow over
a 3D analytical body

Hurricane Sandy simulated by a NASA com-
puter model

Fuel combustion of rocket engine
in action
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Background

Approaches to Fluid Dynamics Problems

Analytical methods through simplifications of the governing equations

Experimental methods on scaled models

Computational fluid dynamics (CFD) methods
I Predict fluid flows, heat and mass transfer, chemical reactions and etc.

Need for CFD

Most real world problems do not have analytical solution.

Reduction of the total effort and expenses required in experiments

Conceptual studies of new designs

Visualization of complex fluid-flow problems in both space and time

Require code validation and error quantification
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A Brief Overview

1 High-Order Discontinuous Galerkin Discretizations and Implicit Schemes

2 Multigrid Solution Acceleration Strategies

3 Adjoint-Based Mesh Adaptation and Shape Optimization

4 Simulation of Turbulence Using High-Order Discontinuous Galerkin Methods
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Outline (Lecture 1)

1 Motivation

2 DG Formulation for A Hyperbolic Equation

3 Interior Penalty Formulation for Elliptic Equations

4 Explicit and Implicit Time Integration

5 Numerical Examples

6 Conclusions
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Motivation

Popular CFD approaches

Finite Difference Methods

Field variables are stored at each node

Replace partial derivatives with FD approximations(
∂u
∂x

)
i,j
≈ ui+1,j−ui,j

∆x
and

(
∂u
∂y

)
i,j
≈ ui,j+1−ui,j

∆y

Limited to structured grids and good for simple
geometries

Require expanded stencil for higher-order accuracy

Finite Volume Methods

Applied to unstructured grids

Variables are stored at centroid of control volume

Take integral form of the governing equations

Difficulty on extending to higher-order accuracy
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Motivation

Popular CFD approaches (Cont’d)

Finite Element Methods

Easy handling of complicated geometries

Compact stencil independent of order of scheme

High order precision by increasing solution order

Reduce mesh density

Easy parallelization & h − p adaptivity
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DG Formulation for A Hyperbolic Equation

Consider a hyperbolic conservation law:

∂u

∂t
+
∂f (u)

∂x
= 0

I u: a scalar, which is the variable solved for

I x: spatial Cartesian coordinate (0 < x < 1)

I t: time (t > 0)

I Initial condition: u(x , 0) = u0

I Boundary condition: periodic b.c. at x = 0 and x = 1

Partition the domain into N intervals, Ik = (xk−1/2, xk+1/2) (k = 1, · · · ,N)

Ik−1 Ik Ik+1xk−1/2 xk+1/2 xk+3/2xk−3/2x=0 x=1

Find uh in space of piecewise polynomials of maximum degree p, Vp
h

Use a weak statement ∫ 1

0

φj
∂uh
∂t

dx +

∫ 1

0

φj
∂f (uh)

∂x
dx = 0
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DG Formulation for A Hyperbolic Equation

Expansion of the Galerkin approximation at element k, uhk

uhk(x) =
M∑
i=1

ũi kφi (x)

Example of piecewise linear functions (p = 1)

φ
2,kφ

1,k−2
φ

1,kφ
2,k−2

Ik−1 Ik Ik+1Ik−2 xk−1/2 xk+1/2 xk+3/2xx k−3/2k−5/2

u 
1,k

u 
2,k

u 
1,k+1

u 
2,k−1

u 
2,k+1

u 
1,k−2

u 
2,k−2

u 
1,k−1

Ik−2 Ik Ik+1Ik−1 xk−1/2 xk+1/2 xk+3/2xx k−3/2k−5/2

I φi (x) =

{
a0 + a1x x ∈ [xk−1/2, xk+1/2]

0 otherwise

I uh can be discontinuous at elemental interfaces.
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DG Formulation for A Hyperbolic Equation

Rewrite the weak statement for an interval k∫ xk+1/2

xk−1/2

φj
∂uh
∂t

dx +

∫ xk+1/2

xk−1/2

φj
∂f (uh)

∂x
dx = 0

Integrate by parts∫ xk+1/2

xk−1/2

φj
∂uh
∂t
− dφj

dx
f (uh)dx + f (uh)xk+1/2

φj(xk+1/2)− f (uh)xk−1/2
φj(xk−1/2) = 0

Note that uh at elemental boundaries, xk+1/2 and xk−1/2, are not well defined due to
the discontinuities.

Use a numerical flux function F (uL, uR) to resolve the discontinuities∫ xk+1/2

xk−1/2

φj
∂uh
∂t
− dφj

dx
f (uh)dx+F (uhk , uhk+1)φj(xk+1/2)−F (uhk−1, uhk)φj(xk−1/2) = 0

Boundary conditions are enforced weakly through F (uL, ub) and ub is determined by
desired boundary conditions (e.g. inflow/outflow, wall).
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DG Formulation for A Hyperbolic Equation

Choose an upwinding scheme due to stability, for example f (u) = au

F (uL, uR) =
1

2
(f (uL) + f (uR) + |a|(uL − uR))

Replace the Galerkin approximation with the solution expansion (assuming a > 0)∫ xk+1/2

xk−1/2

∂

∂t

(
M∑
i=1

ũi kφi (x)

)
φj − a

(
M∑
i=1

ũi kφi (x)

)
dφj

dx
dx

+ auhkφj(xk+1/2)− auhk−1φj(xk−1/2) = 0

The discretized equation can thus be expressed as

Mk
∂ũk
∂t
− Sk ũk + a


−uhk−1

uhk
0
...
0

 = 0
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DG Formulation for A Hyperbolic Equation

The element matrices are given by

Mij k =

∫ xk+1/2

xk−1/2

φiφjdx Sij k =

∫ xk+1/2

xk−1/2

a
dφj

dx
φidx

Compute the elementary matrices by Gaussian quadrature rule.

The DG scheme of p = 0 is equivalent to a first-order cell-centered finite volume
scheme. ∫ xk+1/2

xk−1/2

∂

∂t

(
M∑
i=1

ũi kφi (x)

)
φj − a

(
M∑
i=1

ũi kφi (x)

)
dφj

dx
dx

+ auhkφj(xk+1/2)− auhk−1φj(xk−1/2) = 0

Rewrite the system of equations as

M
dũ

dt
+ R(ũ) = 0

Solve this semi-discrete system with explicit or implicit temporal schemes
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Interior Penalty Formulation for Elliptic Equations

Consider a classic linear elliptic problem governed by a Poisson equation

−∆u = g in Ω

u = 0 on ∂Ω

I ∆ is the second-order Laplace operator, ∆u = ∇2u = ∇ · ∇u
I Ω denotes an open bounded polygonal domain.

I Homogeneous Dirichlet boundary conditions

DG weak form for the Poisson problem through multiplying the equation with a test
function φ and integrating over Ω

−
∫

Ω

φ∇ · ∇udΩ =

∫
Ω

gφdΩ

Split the integration into a set of non-overlapping elements T p
h

−
∑
k∈Tp

h

∫
Ωk

φ∇ · ∇uhdx =
∑
k∈Tp

h

∫
Ωk

gφdx
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Interior Penalty Formulation for Elliptic Equations

To approximate the diffusion operation ∇2uh, we define an auxiliary variable ~qh

~qh = ∇uh

The elliptic equation can then be written into two advection equations.

−
∑
k∈Tp

h

∫
Ωk

φ∇ · ~qhdx =
∑
k∈Tp

h

∫
Ωk

gφdx (1)

∑
k∈Tp

h

∫
Ωk

~τh · ~qhdx =
∑
k∈Tp

h

∫
Ωk

~τh · ∇uhdx (2)

Note that the right hand side of (2) can be written as∑
k∈Tp

h

∫
Ωk

~τh · ∇uhdx =
∑
k∈Tp

h

∫
Ωk

(∇ · (~τhuh)− uh∇ · ~τh) dx (3)

The weak form of the auxiliary equation becomes∑
k∈Tp

h

∫
Ωk

~τh · ~qhdx =
∑
k∈Tp

h

∫
Ωk

(∇ · (~τhuh)− uh∇ · ~τh) dx (4)
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Interior Penalty Formulation for Elliptic Equations

Integrate by parts and take the divergence theorem∑
k∈Tp

h

(∫
Ωk

∇φ · ~qhdx −
∫
∂Ωk

φ~̂qh · ~nds
)

=
∑
k∈Tp

h

∫
Ωk

gφdx (5)

∑
k∈Tp

h

∫
Ωk

~τh · ~qhdx =
∑
k∈Tp

h

(
−
∫

Ωk

∇ · ~τhuhdx +

∫
∂Ωk

ûh~τh · ~nds
)

(6)

I ~n denotes the unit normal vector pointing outward the elemental interface.

I ûh and ~̂qh denote numerical flux for solution and solution gradients, respectively.

Introduce notations for average and jump operators

T± : {ϕ} = ϕ++ϕ−

2
[[ϕ]] = ϕ+~n+ − ϕ−~n+

{~β} =
~β++~β−

2
[[~β]] = ~β+~n+ − ~β−~n+

T b : {ϕ} = ϕb [[ϕ]] = ϕb~n
+

{~β} = ~βb [[~β]] = ~βb~n
+

n−

n+

T
+

e

−
T

n+

T
+

eb
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Interior Penalty Formulation for Elliptic Equations

Define the numerical flux ûh = {uh} and use the average and jump operators∑
k∈Tp

h

∫
Ωk

∇φ · ~qhdx −
∫

ΓI

[[φ]] · ~̂qhds −
∫

Γb

φ+~qb · nds =
∑
k∈Tp

h

∫
Ωk

gφdx (7)

∑
k∈Tp

h

∫
Ωk

~τh · ~qhdx = −
∑
k∈Tp

h

∫
Ωk

∇ · ~τhuhdx +

∫
ΓI

{uh}[[~τh]]ds +

∫
Γb

ub~τh · ~nds (8)

Similarly, we rewrite

−
∑
k∈Tp

h

∫
Ωk

∇ · ~τhuhdx = −
∑
k∈Tp

h

∫
Ωk

(∇ · (~τhuh)− ~τh · ∇uh) dx

= −
∑
k∈Tp

h

∫
∂Ωk

~τhuh · ~nds +
∑
k∈Tp

h

∫
Ωk

~τh · ∇uhdx

= −
∫

ΓI

(~τhuh · ~n)+ + (~τhuh · ~n)−ds −
∫

Γb

~τhuh · ~nds

+
∑
k∈Tp

h

∫
Ωk

~τh · ∇uhdx (9)
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Interior Penalty Formulation for Elliptic Equations

Inspired by the following relation

a+b+ + a−b− =
1

2
(a+ + a−)(b+ − b−) +

1

2
(b+ + b−)(a+ − a−)

We express the formulation as∫
ΓI

(~τhuh · ~n)+ + (~τhuh · ~n)−ds =

∫
ΓI

{uh}[[~τh]] + {~τh}[[uh]]ds

Recall the previous derivation

−
∑
k∈Tp

h

∫
Ωk

∇·~τhuhdx = −
∫

ΓI

(~τuh · ~n)+ + (~τuh · ~n)−ds−
∫

Γb

~τhuh·~nds+
∑
k∈Tp

h

∫
Ωk

~τh·∇uhdx

Use this desired relation and then we have

−
∑
k∈Tp

h

∫
Ωk

∇·~τhuhdx = −
∫

ΓI

{uh}[[~τh]]+{~τh}[[uh]]ds−
∫

Γb

~τhuh·~nds+
∑
k∈Tp

h

∫
Ωk

~τh·∇uhdx

Substitute the above expression into the weak form of the auxiliary equation (8) and
rearrange · · ·
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Interior Penalty Formulation for Elliptic Equations

The system of equations (primary and auxiliary) is expressed as∑
k∈Tp

h

∫
Ωk

∇φ · ~qhdx −
∫

ΓI

[[φ]] · ~̂qhds −
∫

Γb

φ+~qb · nds =
∑
k∈Tp

h

∫
Ωk

gφdx (10)

∑
k∈Tp

h

∫
Ωk

~τh ·~qhdx =
∑
k∈Tp

h

∫
Ωk

~τh ·∇uhdx−
∫

ΓI

{~τh}[[uh]]ds−
∫

Γb

(uh−ub)~τh ·~nds (11)

In symmetric interior penalty method, ~̂qh, ~qb and ~τh are defined to ideally eliminate
the auxiliary equation

~̂qh = {∇uh} − η[[uh]]

~qb = ∇u+
h − η(uh − ub) · ~n

~τh = ∇φ

Using the above definitions yields the following formulation for the auxiliary equation
(11)∑

k∈Tp
h

∫
Ωk

∇φ · ~qhdx =
∑
k∈Tp

h

∫
Ωk

∇φ·∇uhdx−
∫

ΓI

{∇φ}[[uh]]ds−
∫

Γb

(uh−ub)∇φ·~nds (12)

Now we can combine the weak forms of the primary and auxiliary equations into 1!
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Interior Penalty Formulation for Elliptic Equations

The final discretized system of the elliptic equation for the symmetric interior
penalty method is written as∑

k∈Tp
h

∫
Ωk

∇φ · ∇uhdx −
∫

ΓI

{∇uh}[[φ]] + {∇φ}[[uh]]− η[[φ]] · [[uh]] ds

−
∫

Γb

φ+∇u+
h · ~n +∇φ+ · (uh − ub) · ~n − ηφ+(uh − ub)~n · ~n ds

=
∑
k∈Tp

h

∫
Ωk

gφdx

I The symmetry term ensures the system be positive definite.

I Addition of the penalty term is for stability.

I Penalty parameter: η = (p+1)(p+D)
(2D)

max(
S+
k

V+
k

,
S−
k

V−
k

)

I Obtain ∇φ analytically and ∇uh =
∑M

i=1 ũi∇φi
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i=1 ũi∇φi

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 22 / 43



Outline (Lecture 1)

1 Motivation

2 DG Formulation for A Hyperbolic Equation

3 Interior Penalty Formulation for Elliptic Equations

4 Explicit and Implicit Time Integration

5 Numerical Examples

6 Conclusions

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 23 / 43



Explicit and Implicit Time Integration

Model problem: governed by the Euler or Navier-Stokes equations

I Conservation of mass (continuity):

∂ρ
∂t

+ ∂ρu
∂x

+ ∂ρv
∂y

+ ∂ρw
∂z

= 0

I Conservation of momentum:

∂ρu
∂t

+ ∂(ρu2+p)
∂x

+ ∂ρuv
∂y

+ ∂ρuw
∂z
− ∂τxx

∂x
− ∂τxy

∂y
− ∂τxz

∂z
= 0

∂ρv
∂t

+ ∂ρuv
∂x

+ ∂(ρv2+p)
∂y

+ ∂ρvw
∂z
− ∂τxy

∂x
− ∂τyy

∂y
− ∂τyz

∂z
= 0

∂ρw
∂t

+ ∂ρuw
∂x

+ ∂ρvw
∂y

+ ∂(ρw2+p)
∂z

− ∂τxz
∂x
− ∂τyz

∂y
− ∂τzz

∂z
= 0

I Conservation of energy:

∂ρE
∂t

+ ∂(ρE+p)u
∂x

+ ∂(ρE+p)v
∂y

+ ∂(ρE+p)w
∂z

− ∂(uτxx+vτxy +wτxz+κ ∂T
∂x

)

∂x

−
∂(uτxy +vτyy +wτyz+κ ∂T

∂y
)

∂y
− ∂(uτxz+vτyz+wτzz+κ ∂T

∂z
)

∂z
= 0

I Additional transport equation may be added depending on complexity of the problem.
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High-Order Discontinuous Galerkin Discretizations

Write the governing equations in the conservative form:

∂U(x,t)
∂t

+∇ · (Fe(U)− Fv (U,∇U)) = 0 in Ω

I U = {ρ, ρu, ρE}T : Conservative variables of density, momentum and total energy
I Fe , Fv : Cartesian inviscid and viscous flux vectors

Divide the domain into non-overlapping elements

Represent the solution using piecewise polynomial functions, Uh =
∑M

i=1 Ũhi φi (x)

Mesh Points Control Volume

Approximation

Exact

Take the integral form and multiply by test functions, {φj}

∑
k

∫
Ωk
φj

[
∂Uh(x,t)
∂t

+∇ · (Fe(Uh)− Fv (Uh,∇Uh))
]
dΩk = 0
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High-Order Discontinuous Galerkin Discretizations

Weak statement∑
k

∫
Ωk

φj

[
∂Uh(x, t)

∂t
+∇ · (Fe(Uh)− Fv (Uh,∇Uh))

]
dΩk = 0

Integrate by parts and Implement an explicit symmetric interior penalty method

∫
Ωk

φj
∂Uh

∂t
dΩk −

∫
Ωk

∇φj · (Fe (Uh)− Fv (Uh,∇hUh)) dΩk +

∫
∂Ωk\∂Ω

[[φj ]]Hc (U+
h ,U
−
h , n)dS

−
∫
∂Ωk\∂Ω

{Fv (Uh,∇hUh)} · [[φj ]]dS −
∫
∂Ωk\∂Ω

{(Gi1
∂φj

∂xi
,Gi2

∂φj

∂xi
,Gi3

∂φj

∂xi
)} · [[Uh ]]dS +

∫
∂Ωk\∂Ω

η{G}[[Uh ]] · [[φj ]]dS

−
∫
∂Ωk∩∂Ω

φ
+
j Fbv (Ub,∇hU

+
h ) · ndS −

∫
∂Ωk∩∂Ω

(Gi1(Ub)
∂φ+

j

∂xi
,Gi2(Ub)

∂φ+
j

∂xi
,Gi3(Ub)

∂φ+
j

∂xi
) · (U+

h − Ub)ndS

+

∫
∂Ωk∩∂Ω

ηG(Ub)(U+
h − Ub)n · φ+

j ndS +

∫
∂Ωk∩∂Ω

φjFe (Ub) · ndS = 0

where G1j = ∂Fxv/∂(∂U/∂xj ), G2j = ∂Fyv/∂(∂U/∂xj ) and G3j = ∂Fzv/∂(∂U/∂xj )

Solution expansion and geometric mapping

Uh =
M∑
i=1

Ũhi
φi (ξ, η, ζ) xk =

M∑
i=1

x̃ki φi (ξ, η, ζ)
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Explicit Time Integration

Rewrite the weak statement as an ordinary differential equation (ODE):

M
dŨh

dt
+ R(Ũh) = 0

First-order forward Euler method

M
Ũn+1

h − Ũn
h

∆t
+ R(Ũn

h) = 0

Ũn+1
h = Ũn

h −∆tM−1R(Ũn
h)

Second-order TVD Runge-Kutta method [Shu and Osher 1988]

Ũ(1)
h = Ũ(n)

h −∆tM−1R(Ũn
h)

Ũn+1
h =

1

2
Ũ(n)

h +
1

2

(
Ũ(1)

h −∆tM−1R(Ũ(1)
h )
)

Pros/Cons of explicit time integration

I + Simple implementation and no linearization (to obtain Jacobian matrix) is required.

I + Mass matrix M is block diagonal, which allows for fast local inversion.

I − Selection of ∆t is restricted by stability limit but not the temporal accuracy.

I − Stability issue becomes more severe as the spatial order p is increased (CFL ∼ 1/p2).

I − Not desired for problems with diverse length and time scales.
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Ũn+1
h = Ũn
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Implicit Time Discretization

Return to the semi-discrete form

M
dŨh

dt
+ R(Ũh) = 0

Advance in time using an implicit temporal scheme

First-order Backward Difference Formula (BDF1)

Rn+1
e (Ũ

n+1
h ) = M

∆t
(Ũ

n+1
h ) + R(Ũ

n+1
h )− M

∆t
Ũ

n
h = 0

Second-order Backward Difference Formula (BDF2)

Rn+1
e (Ũ

n+1
h ) = M

∆t
( 3

2
Ũ

n+1
h ) + R(Ũ

n+1
h )− M

∆t
(2Ũ

n
h − 1

2
Ũ

n−1
h ) = 0

Second-order Crank-Nicolson (CN2) Scheme

Rn+1
e (Ũ

n+1
h ) = M

∆t
Ũ

n+1
h + 1

2
R(Ũ

n+1
h )− M

∆t
(Ũ

n
h − 1

2
R(Ũ

n
h)) = 0
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Implicit Time Discretization

Fourth-order Six-stage Implicit Runge-Kutta (IRK4) Scheme

(i) Ũ
(0)h = Ũ

n
h

(ii) For s = 1, · · · ,S
Ũ

(s)h = Ũ
n
h −∆t

∑s
j=1 asjM

−1R(Ũ
(j)
h )

(iii) Ũ
n+1
h = Ũ

n
h −∆t

∑S
j=1 bjM

−1R(Ũ
(j)
h )

Butcher table for the ESDIRK scheme

c1 = 0 0 0 0 0 0 0
c2 a21 a22 = a66 0 0 0 0
c3 a31 a32 a33 = a66 0 0 0
c4 a41 a42 a43 a44 = a66 0 0
c5 a51 a52 a53 a54 a55 = a66 0

c6 = 1 a61 = b1 a62 = b2 a63 = b3 a64 = b4 a65 = b5 a66

ũn+1 b1 b2 b3 b4 b5 b6

Fourth-order Six-stage Implicit Runge-Kutta (IRK4) Scheme

Rn+1
e (Ũ

(s),n+1
h ) = M

∆t Ũ
(s),n+1
h + assR(Ũ

(s),n+1
h ) −

[
M
∆t Ũ

n
h −

∑s−1
j=1 asjR(Ũ

(j),n+1
h )

]
= 0
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Solution Methods for Implicit Schemes

Require extra computation to solve the matrix
problem

Use an approximate Newton method

Find Ũ such that Re(Ũ) = 0:

Ũj+1 = Ũj − α
[
∂Re

∂Ũ

]−1

j

Re(Ũj )

I α is an under-relaxation parameter (0 < α < 1)

Structure of the Jacobian matrix (block sparsity)

p = 1 p = 2 p = 3
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Outline (Lecture 1)

1 Motivation

2 DG Formulation for A Hyperbolic Equation

3 Interior Penalty Formulation for Elliptic Equations

4 Explicit and Implicit Time Integration

5 Numerical Examples

6 Conclusions
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Numerical Examples

Convection of an isentropic vortex

Shedding flow over a triangular wedge

Laminar flow over a circular cylinder
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Convection of an Isentropic Vortex

Examine the accuracy of various implicit time-integration schemes

Initial condition: uniform flow (ρ∞, u∞, v∞, p∞,T∞) = (1, 0.5, 0, 1, 1) perturbed by
an isentropic vortex

δu = − σ

2π
(y − y0)eϑ(1−r2)

δv =
σ

2π
(x − x0)eϑ(1−r2)

δT = −σ
2(γ − 1)

16ϑγπ2
e2ϑ(1−r2)

Determine conservative variables through the assumption of isentropic flow and a
perfect gas (i.e. γp/ργ = 1 and T = γp/ρ)

ρ = T 1/(γ−1) = (T∞ + δT )1/(γ−1) =

[
1− σ2(γ − 1)

16ϑγπ2
e2ϑ(1−r2)

]1/(γ−1)

A rectangular domain of [−7, 7]× [−3.5, 3.5] partitioned with 10,000 triangular
elements

Periodic boundary condition in the horizontal direction
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Convection of an Isentropic Vortex
Simulations from the BDF1 and IRK4 schemes (fixed ∆t = 0.2 and DG p = 3)

BDF1

IRK4

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 34 / 43

BDF1

IRK4


pero_bdf1.mp4
Media File (video/mp4)
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Convection of an Isentropic Vortex

Comparison of various temporal schemes (∆t = 0.2) with the exact solution

Density profiles

t = 4 t = 10

t = 20 t = 50
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Convection of an Isentropic Vortex

Examination of temporal accuracy and efficiency

Temporal accuracy Temporal efficiency

I Desired order of temporal accuracy is achieved.
I Higher-order temporal scheme performs more efficiently than a lower-order counterpart.
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Shedding Flow over a Triangular Wedge

Free-stream Mach number = 0.2

Unstructured mesh with 10,836 elements

Various spatial discretizations and implicit time-integration schemes (∆t = 0.05,
CFLmax = 85)

DG p = 1 and BDF2 schemes
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Shedding Flow over a Triangular Wedge

Implicit versus explicit schemes
I Ratio of the smallest to largest cell area is 1:1425 (current mesh)

I Local CFL number is defined as

CFLk =
∆t

volk

faces∑
j=1

(|u · n|+ c)j

I Correspond to an explicit CFL ratio of 38:1

I Comparison between second-order BDF2 scheme and second-order explicit forward
Euler (FD2) scheme (fixed spatial scheme of p = 3)

Ũ
n+1
h =

4

3
Ũ

n
h −

1

3
Ũ

n−1
h −

2

3
M−1∆tR(Ũ

n
h)

t = 2.5 Time-step size Time steps Convergence limit CPU time (s)

Implicit (BDF2) ∆t = 0.05 50 7 orders 5160

Explicit (FD2) ∆t = 5 × 10−5 50000 − 22920

I A speedup of 4.5 is obtained through the use of the implicit time-integration scheme
(significant improvement for long-term integration problems).
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Unsteady Viscous Flow Over a Circular Cylinder

ReD = 40, M∞ = 0.2 and AOA = 0◦

I Adiabatic and no-slip wall boundary
condition

I Various orders of DG discretizations
I BDF2 scheme with ∆t = 0.05

X

Y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Computational mesh (N =1622)

Mach number contours (p = 4) at t = 3.7

Mach number contours (p = 4) at t = 10.5
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Unsteady Viscous Flow Over a Circular Cylinder

Comparison of streamwise velocity evolution at the flow axis with experimental data
[Coutanceau 1977]

X/D

u
/V

0

1 2 3 4 5
-0.2

0
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t*=2.7, Experiment
p=2
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p=4
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t*=5.3, Experiment
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p=3
p=4
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p=2
p=3
p=4
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Conclusions

High-order methods have earned increasing popularity for solving convection,
diffusion and convection-diffusion equations, which have wide applications in fluid
dynamics.

Discontinuous Galerkin methods can be viewed as an intermediate approach between
finite element and finite volume methods.

Higher-order temporal schemes are capable of achieving higher accuracy solution
over the lower-order counterparts with a fixed time-step size.

The use of higher-order time-integration schemes aims to balance spatial and
temporal errors.

To make high-order discontinuous Galerkin methods competitive, solution
acceleration methods are required, which will be discussed in the next lecture.
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