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A Brief Overview

1 High-Order Discontinuous Galerkin Discretizations and Implicit Schemes

2 Multigrid Solution Acceleration Strategies

3 Adjoint-Based Mesh Adaptation and Shape Optimization

4 Simulation of Turbulence Using High-Order Discontinuous Galerkin Methods

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 2 / 46



Outline (Lecture 4)

1 Background & Motivation

2 Governing Equations and Subgrid Scale Model

3 Discretizations
I Discontinuous Galerkin Discretizations
I Implicit Time Integration Schemes

4 Surface Mesh Representation and Mesh Movement

5 Numerical Examples

6 Concluding Remarks

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 3 / 46



Outline (Lecture 4)

1 Background & Motivation

2 Governing Equations and Subgrid Scale Model

3 Discretizations
I Discontinuous Galerkin Discretizations
I Implicit Time Integration Schemes

4 Surface Mesh Representation and Mesh Movement

5 Numerical Examples

6 Concluding Remarks

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 4 / 46



Background & Motivation

The turbulent world around us

Current state-of-the-art in CFD and challenges
1 Conventional second-order computational methods

2 Difficulty encountered in accurate simulation of complex
systems

High-order accurate computational methods
1 Reduction of mesh resolution while preserving accuracy

2 Developed to tackle more complex problems

3 Turbulent flow simulation

4 Previous investigations on discontinuous Galerkin (DG)
and stabilized upwind Petrov-Galerkin (SUPG) methods

Flow around a circular cylinder (ILES, DG p = 3) Taylor-Green vortex (DNS, DG
p = 4)
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Background & Motivation

Simulations of Turbulence
1 Direct Numerical Simulation (DNS)

F All time and length scales are resolved without any turbulence model.

F Stringent on grid sizes and time-step sizes

F Limitation for low Reynolds number flow and simple geometry

2 Reynolds Averaged Navier-Stokes (RANS)
F All turbulence scales are modeled.

F Turbulence eddy viscosity can be determined through solving transport equations.

F Generally produce too much eddy viscosity and over-damp the unsteadiness

F Inadequate for resolving both periodic and the true dynamics

3 Large Eddy Simulation (LES)
F Becoming a viable technique to predict unsteady turbulent flow

F Decompose a field-variable into resolved and subgrid components

F Directly resolve anisotropic large scales while modeling isotropic small scales

F Subgrid scale modeling, such as a wall-adapting local-eddy viscosity (WALE) model

Objective: to investigate High-order Computational Methods for RANS and LES

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 6 / 46



Background & Motivation

Simulations of Turbulence
1 Direct Numerical Simulation (DNS)

F All time and length scales are resolved without any turbulence model.

F Stringent on grid sizes and time-step sizes

F Limitation for low Reynolds number flow and simple geometry

2 Reynolds Averaged Navier-Stokes (RANS)
F All turbulence scales are modeled.

F Turbulence eddy viscosity can be determined through solving transport equations.

F Generally produce too much eddy viscosity and over-damp the unsteadiness

F Inadequate for resolving both periodic and the true dynamics

3 Large Eddy Simulation (LES)
F Becoming a viable technique to predict unsteady turbulent flow

F Decompose a field-variable into resolved and subgrid components

F Directly resolve anisotropic large scales while modeling isotropic small scales

F Subgrid scale modeling, such as a wall-adapting local-eddy viscosity (WALE) model

Objective: to investigate High-order Computational Methods for RANS and LES

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 6 / 46



Outline (Lecture 4)

1 Background & Motivation

2 Governing Equations and Subgrid Scale Model

3 Discretizations
I Discontinuous Galerkin Discretizations
I Implicit Time Integration Schemes

4 Surface Mesh Representation and Mesh Movement

5 Numerical Examples

6 Concluding Remarks

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 7 / 46



Governing Equations (RANS)

The compressible Reynolds Averaged Navier-Stokes (RANS) equations:

∂U(x, t)

∂t
+∇ · (Fe(U)− Fv (U,∇U)) = S(U,∇U)

Fully coupled with the modified Spalart-Allmaras turbulence model
Conservative flow vector: U = [ρ, ρu, ρv , ρw , ρE , ρṽ ]T

The modified turbulence model equation:

∂ρṽ

∂t
+∇ ·

(
ρuṽ − µ

σ
(1 + ψ)

∂ṽ

∂x

)
=

cb1S̃µψ − cw1ρfw (
νψ

d
)2 +

1

σ
cb2ρ∇ṽ · ∇ṽ −

1

σ
ν(1 + ψ)∇ρ · ∇ṽ

I ψ: auxiliary turbulence parameter
I ψ = f (X ) and X = ṽ

ν
I d: distance to the nearest viscous wall
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Governing Equations (LES)

Filtering Operation in LES

ϕ(x, t) = G(∆̄) ? ϕ(x, t) ϕ′′(x, t) = ϕ(x, t)− ϕ(x, t)

Filtered Compressible Navier-Stokes Equations
I Conservation of mass

∂ρ

∂t
+

∂

∂xj
(ρũj ) = 0

I Conservation of momentum

∂

∂t
(ρũi ) +

∂

∂xj
(ρũi ũj ) +

∂

∂xi
p −

∂

∂xj
τ̂ij = −

∂

∂xj
τ sgsij

I Conservation of energy

∂

∂t
(ρÊ) +

∂

∂xj
((ρÊ + p)ũj )−

∂

∂xj
(ũi τ̂ij ) +

∂

∂xj
q̂j = −

∂

∂xj
Qsgs

j

I Viscous stress tensor and heat flux vector

τ̂ij =
µ

Re
(
∂ũi

∂xj
+
∂ũj

∂xi
−

2

3
δij
∂ũk

∂xk
), q̂j =

γµ

PrRe

∂

∂xj
(Ê −

1

2
ũi ũi )

I Equation of state for ideal gas

p = (γ − 1)ρ(Ê −
1

2
ũj ũj )
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Subgrid Scale Model

A closure requires subgrid scale modeling to τ sgsij and Qsgs
j .

τ sgsij = −µT (
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

) Qsgs
j = ũiτ

sgs
ij +

γµT

PrT

∂

∂xj
(Ê − 1

2
ũi ũi )

Wall-Adapting Local-Eddy Viscosity (WALE) Model
I Turbulent eddy viscosity, µT

µT = ρ(Cw∆)2
(Sd

ij S
d
ij )3/2

(SijSij )5/2 + (Sd
ij S

d
ij )5/4

I Strain rate tensor, Sij , and traceless symmetric tensor, Sd
ij

Sij =
1

2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
Sd
ij =

1

2

(
∂ũi

∂xk

∂ũk

∂xj
+
∂ũj

∂xk

∂ũk

∂xi

)
−

1

3
δij
∂ũl

∂xk

∂ũk

∂xl

I Based on the square of the velocity gradient tensor
I Require local information that is easy to access for high-order methods
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∂ũj

∂xk

∂ũk
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Discontinuous Galerkin Discretizations

A weighted residual form for the RANS or the filtered LES-NS equations∫
Ωk

φj

[
∂Uh(x, t)

∂t
+∇ · (Fe(Uh)− Fv (Uh,∇Uh))− S(Uh,∇Uh)

]
dΩk = 0.

Integrate by parts and implemente of an explicit symmetric interior penalty (SIP)
method

∫
Ωk

φj
∂Uh

∂t
dΩk −

∫
Ωk

∇φj · (Fe (Uh)− Fv (Uh,∇hUh)) dΩk +

∫
∂Ωk\∂Ω

[[φj ]]Hc (U+
h ,U
−
h , n)dS

−
∫
∂Ωk\∂Ω

{Fv (Uh,∇hUh)} · [[φj ]]dS −
∫
∂Ωk\∂Ω

{(Gi1
∂φj

∂xi
,Gi2

∂φj

∂xi
,Gi3

∂φj

∂xi
)} · [[Uh ]]dS +

∫
∂Ωk\∂Ω

ϑ{G}[[Uh ]] · [[φj ]]dS

−
∫
∂Ωk∩∂Ω

φ
+
j Fbv (Ub,∇hU

+
h ) · ndS −

∫
∂Ωk∩∂Ω

(Gi1(Ub)
∂φ+

j

∂xi
,Gi2(Ub)

∂φ+
j

∂xi
,Gi3(Ub)

∂φ+
j

∂xi
) · (U+

h − Ub)ndS

+

∫
∂Ωk∩∂Ω

ϑG(Ub)(U+
h − Ub)n · φ+

j ndS +

∫
∂Ωk∩∂Ω

φjFe (Ub) · ndS −
∫

Ωk

φjS(Uh,∇hUh) = 0

where G1j = ∂Fxv/∂(∂U/∂xj ), G2j = ∂Fyv/∂(∂U/∂xj ) and G3j = ∂Fzv/∂(∂U/∂xj )

Solution expansion and geometric mapping

Uh =
M∑
i=1

Ũhi
φi (ξ, η, ζ) xk =

M∑
i=1

x̃ki φi (ξ, η, ζ)
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Implicit Time Integration Schemes

The system of equations is expressed as

M
dŨh

dt
+ R(Ũh) = 0

Implicit schemes are exclusively considered to avoid the stability limit.
1 BDF2 (second-order accurate backward difference formula)

Rn+1
e (Ũ

n+1
h ) = M

∆t
( 3

2
Ũ

n+1
h ) + R(Ũ

n+1
h )− M

∆t
(2Ũ

n
h − 1

2
Ũ

n−1
h ) = 0

2 CN2 (second-order accurate Crank-Nicolson scheme)

Rn+1
e (Ũ

n+1
h ) = M

∆t
Ũ

n+1
h + 1

2
R(Ũ

n+1
h )− M

∆t
(Ũ

n
h − 1

2
R(Ũ

n
h)) = 0

3 IRK4 (fourth-order accurate implicit Runge-Kutta scheme)

Rn+1
e (Ũ

(s),n+1
h ) = M

∆t
Ũ

(s),n+1
h + assR(Ũ

(s),n+1
h )−

(
M
∆t

Ũ
n
h −

∑s−1
j=1 asjR(Ũ

(j),n+1
h )

)
= 0

Solved by an approximate Newton method
I ILU(k) preconditioned GMRES algorithm [Saad and Schultz 1996]
I p-multigrid method driven by a linearized element Gauss-Seidel smoother [Wang and

Mavriplis 2007]

For steady state problems, a local time-stepping method is used to alleviate initial
transient effects.
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Surface Mesh Representation and Mesh Movement

High-fidelity surface definition is required for high-order methods.

Incorporate CAPRI [Haimes and Follen 1998] to allow communication with CAD software

Determine the coordinates of additional surface quadrature points

3D analytical body

ONERA M6 wing High-order surface representation for
Trap wing
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Surface Mesh Representation and Mesh Movement

Mesh movement is required for viscous meshes.

Interior mesh deformations are determined by solving the linear elasticity equations:

∂

∂x

[
d11

∂δx

∂x
+ d12

∂δy

∂y
+ d13

∂δz

∂z

]
+
∂

∂y

[
d44

(
∂δx

∂y
+
∂δy

∂x

)]
+
∂

∂z

[
d66

(
∂δx

∂z
+
∂δz

∂x

)]
= 0

∂

∂x

[
d44

(
∂δx

∂y
+
∂δy

∂x

)]
+
∂

∂y

[
d21

∂δx

∂x
+ d22

∂δy

∂y
+ d23

∂δz

∂z

]
+
∂

∂z

[
d55

(
∂δy

∂z
+
∂δz

∂y

)]
= 0

∂

∂x

[
d66

(
∂δx

∂z
+
∂δz

∂x

)]
+
∂

∂y

[
d55

(
∂δy

∂z
+
∂δz

∂y

)]
+
∂

∂z

[
d31

∂δx

∂x
+ d32

∂δy

∂y
+ d33

∂δz

∂z

]
= 0

d11 = d22 = d33 =
E(1−υ)

(1+υ)(1−2υ)

d12 = d13 = d21 = d23 = d31 = d32 = Eυ
(1+υ)(1−2υ)

d44 = d55 = d66 = E
2(1+υ)

I δ = (δx , δy , δz )T represents the perturbations at mesh points and quadrature points.
I Dirichlet boundary conditions are realized progressively in a sequence of small steps.
I Solved by ILU(k) preconditioned GMRES algorithm.
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Numerical Examples

1 2D turbulent NACA-0012 airfoil

2 Assessment of accuracy and efficiency for LES

3 LES computation for flow over a bluff-body square cylinder

4 LES computation for flow over a three-dimensional NACA-0012 airfoil
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Turbulent 2D NACA-0012 Airfoil

Re = 6, 000, 000,M∞ = 0.15, α = 0◦

Study on the effect of wall coordinate (y+) and viscous stretching factor (β)

Use of the DG p = 2, 3 and 4 discretizations with the modified SA model

Computational mesh (containing 9671 triangular ele-
ments) with y+ = 1

Contours of Mach number solution (p = 4)
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Turbulent 2D NACA-0012 Airfoil

Effect of wall coordinate y+ (β = 1.15)

y+ 1 5 10 15
nElem 9671 8573 7775 7269

u

y

0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01
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p = 2

u

y
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0
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y+=1
y+=5
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y+=15

p = 3

u

y

0 0.2 0.4 0.6 0.8 1 1.2
0

0.005

0.01

0.015

0.02

0.025

=0.55

=0.8

=0.9
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y+=1
y+=5
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y+=15

p = 4

Solution profiles for meshes with y+ of 1, 5, 10 and 15 using different DG schemes from p = 2 to

p = 4
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Turbulent 2D NACA-0012 Airfoil

Effect of wall coordinate y+ (β = 1.15)

y+ 1 5 10 15
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p = 4

Profiles of law-of-the-wall for meshes with y+ of 1, 5, 10 and 15 using different DG schemes from

p = 2 to p = 4
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Turbulent 2D NACA-0012 Airfoil

Effect of viscous stretching factor β (y+ = 5)
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Solution profiles for meshes with β of 1.15, 1.2, 1.3 and 1.4 using different DG schemes
from p = 2 to p = 4
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Assessment of Accuracy and Efficiency for LES

Assessed by means of the Method of Manufactured Solution (MMS)

Performed using the LES-WALE equations while excluding the time-derivative term

Manufactured solution:

{ρ, u, v , ρE}Tex =


ρ0(1 + sin(πx) cos(πx) sin(πy) cos(πy))

u0(1 + sin(kπx) cos(kπx) sin(kπy) cos(kπy))
v0(1 + sin(kπx) cos(kπx) sin(kπy) cos(kπy))

Et0 (1 + sin(πx) sin(πx) sin(πy) sin(πy))


Parameter setting: (ρ0, u0, v0,Et0 ) = (1, 2.5, 1.5, 10), k = 2 and Re = 20000

L2-norm error:

||Uex −Uh||L2 =

√∫
Ω

(Uex −Uh)2dΩ∫
Ω
dΩ

Various orders of discontinuous Galerkin schemes ranging from P = 1 to P = 3

A sequence of 4 grids of N = 800, 3200, 12800 and 51200 triangular elements in a
square domain of dimension 1× 1
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Assessment of Accuracy and Efficiency for LES

Exact solutions in the MMS

Density, ρ Streamwise velocity, u Turbulent eddy viscosity, µT
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Order-of-Accuracy

Solution error versus mesh spacing, h = 1/
√
N

Log 10(1/h)

||U
ex

- 
U

|| L2

1.4 1.6 1.8 2 2.2 2.4
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P = 1, slope = 1.99
P = 2, slope = 3.07
P = 3, slope = 3.86

I Optimal order of accuracy (∼ hP+1) is achieved.
I Saving in mesh density can be achieved through the use of a higher-order scheme.

F Example: to achieve an error level of 10−4:

Order P = 1 P = 2 P = 3
N 288,403 7,585 1,318
Factor 1 38 218
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Computational Efficiency

P-multigrid algorithm with a linearized element Gauss-Seidel smoother

Solution error versus CPU time

CPU Time
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10-1

P = 1
P = 2
P = 3

I A higher-order scheme outerperforms a lower-order counterpart.

F Example: to achieve an error level of 10−4:

Order P = 1 P = 2 P = 3
CPU Time (s) 23030 375 82
Speedup 1 61 280
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Turbulent Flow Over a Bluff-Body Square Cylinder

M∞ = 0.1 and Re = 22, 000

Two dimensional in the mean

Various orders of spatial schemes: P = 1 to P = 3

Temporal schemes: BDF2, CN2 (∆t = 0.001) and IRK4 (∆t = 0.002)

Computational domain: [−10D, 30D]× [−10D, 10D] in x and y directions

X

Y

­1 0 1 2 3 4

­2

0

2

Computational mesh (N = 41, 816
and D = 1)

Instantaneous z-vorticity (P = 3) Streamlines (P = 3)
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Effect on Temporal Accuracy

Turbulent boundary-layer statistics studies

Fix the spatial scheme as P = 3 to eliminate the effect of spatial error

Comparison among the BDF2, CN2 and IRK4 schemes with Lyn’s experiments [Lyn

and Rodi 1995]
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Effect on Spatial Accuracy

Turbulent boundary-layer statistics studies

Fix the temporal scheme (IRK4) to eliminate the effect of temporal error

Comparison among the second, third and fourth-order DG schemes with Lyn’s
experiments [Lyn and Rodi 1995]
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Turbulent boundary-layer statistics studies
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Effect on Spatial Accuracy

Statistical study on the wake structures

Comparison among the second, third and fourth-order DG schemes with
experimental data from Lyn [Lyn and Rodi 1995] and Durao [Durao and Heitor 1958]
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Turbulent Flow over a Three-Dimensional NACA-0012 Airfoil

M∞ = 0.1, Re = 50, 000, AOA=5◦ and 8◦

Second and third-order discontinuous Galerkin schemes

Time-integration: the BDF2 scheme with ∆t = 0.001

Geometry definition Computational mesh (N = 925, 200 un-
structured tetrahedrons)

I Spanwise: 16 two-dimensional planes with a constant interval
I Wall spacing y+ ≈ 1, streamwise x+ ≈ 60 and spanwise z+ ≈ 40
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Flow Field Description

Instantaneous flow field, AOA=5◦ and 8◦

Contours of entropy (P = 2)

AOA=5◦

AOA=8◦
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Flow Field Description

Instantaneous flow field, AOA=5◦ and 8◦

Isosurfaces of Q-criterion (P = 2) of values ranging from 1 to 20, colored by
vorticity magnitude; Q = − 1

2
(SijSij − ΩijΩij).

AOA=5◦

AOA=8◦
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Study on Case of AOA=8◦

Turbulent boundary-layer statistics and wake

Obtain combined time-and-spanwise averaged (i.e. mean) solutions

< u > < p >

< u′u′ > < u′v ′ >
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Study on Case of AOA=8◦

Time-and-spanwise averaged surface pressures

Comparison with the DNS solution [Lehmkuhl et al. 2011]
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Computation xsep/c xreatt/c

DNS 0.0241 0.320
LES-WALE DG P = 1 0.0273 0.231
LES-WALE DG P = 2 0.0281 0.341
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Mean Velocity Profiles

Combined time-and-spanwise averaged (i.e. mean) solutions

Various stations on the airfoil suction side and wake

Comparison with the DNS solution [Lehmkuhl et al. 2011]
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Mean Velocity Profiles

Combined time-and-spanwise averaged (i.e. mean) solutions

Various stations on the airfoil suction side and wake

Comparison with the DNS solution [Lehmkuhl et al. 2011]
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Turbulent Statistics

Combined time-and-spanwise averaged (i.e. mean) solutions

Various stations on the airfoil suction side and wake

Comparison with the DNS solution [Lehmkuhl et al. 2011]

Profiles of normalized streamwise Reynolds stress < u′u′ > /U2
ref
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Turbulent Statistics

Combined time-and-spanwise averaged (i.e. mean) solutions

Various stations on the airfoil suction side and wake

Comparison with the DNS solution [Lehmkuhl et al. 2011]

Profiles of normalized shear stress < u′v ′ > /U2
ref
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Instantaneous Turbulent Eddy Viscosity

Comparison of µT resolved in the second and third-order DG schemes

Contours at z = 0 plane

P = 1

P = 2
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Outline (Lecture 4)

1 Background & Motivation

2 Governing Equations and Subgrid Scale Model

3 Discretizations
I Discontinuous Galerkin Discretizations
I Implicit Time Integration Schemes

4 Surface Mesh Representation and Mesh Movement

5 Numerical Examples

6 Concluding Remarks
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Concluding Remarks

A consistent high-order discretization to the modified SA turbulence model performs
very well regarding accuracy and robustness.

The conventional setting for the wall spacing and stretching factor can be less
stringent when high-order methods are used for RANS.

I Attached flow and p ≥ 2: wall coordinate y+ ≈ 5 or 10, stretching factor β ≈ 1.4

Geometry curvatures must be properly represented to guarantee the solution
accuracy.

I High-order representation for surface geometry

I Determination of the physical positions for surface quadrature points
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Concluding Remarks

A high-order discontinuous Galerkin FE method is developed for large-eddy
simulation (LES).

I The wall-adapting local-eddy viscosity (WALE) model is investigated.

I Turbulent eddy viscosity can be explicitly computed for subgrid scale terms.

I Compact stencil is maintained and robustness is improved.

Order-of-accuracy and computational efficiency are assessed by means of MMS.
I Optimal error convergence is attained for the LES-WALE equations.

I Higher-order DG schemes outperform a lower-order counterpart to achieve a given
error level.

Higher-order schemes are capable of accurately capturing both mean flow quantities
and turbulent statistics.

I Turbulent fluctuations are often several orders of magnitude smaller than the mean
flow.

I Difficulty is encountered for resolving the smaller scales using a lower-order scheme.
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