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•  Lecture 1: Overview of unstructured grid technologies for CFD 

•  Lecture 2: Review of discontinuous Galerkin methods 

•  Lecture 3: Reconstructed discontinuous Galerkin methods 

•  Lecture 4: Discontinuous Galerkin methods for elliptic problems 



  

Lecture 1 
 

Overview of unstructured grid technologies for CFD 



Outline 

•  Background and Motivation 
•  Why Unstructured Grids ? 

•  2nd Order Finite Volume Methods on Unstructured Grids  
•  Well Established, Very Mature 
•  Widely Used in the Production CFD Codes 

•  Higher-order (>2nd) Reconstructed Discontinuous Galerkin 
Finite Element Methods on Arbitrary Grids 

•  Hierarchical WENO Reconstruction 
•  Ongoing Research 
•  Choice → Next Generation of CFD Codes 

•  Concluding Remarks 



Why Unstructured Grids ?  

•  Unstructured Grids Provide Great Flexibility to Handle 
Complex Geometries  

•  Typical Configurations of Engineering Interest, Such as 
Cars, Ships, and Airplanes Are Complex. 

•  Unstructured Grids Offer a Natural Framework for Grid 
Adaptation to Local Features 

•  Flow Fields Exhibit a Wide Range of Local Features, 
Such as Shock Waves, Contact Discontinuities, and 
Vortices. 



CAD Model for a Indy-Type Race Car 



Surface Mesh for Indy-Type Race Car 



Slices of the Volume Mesh  
across  the Car’s Spoiler, and Driver’s Compartment 



NURBE Model and Surface Mesh 



Hypersonic Flow past a Cylinder 

  Nelem=3,222, npoin=1,691, nboun=158                    nelem=32,644, npoin=16,593, nboun=540 

Computed Mach number contours in the field for M∞=8 



Shock and Tank Interaction 



FVFLO-NCSU: Flow Solver 

●  Physics 
● Compressible flow for all speeds 
●  Inviscid, Laminar, Turbulent, and DES 
● Real Air, Sesame, and JWL EOS 
●  6 DOF Integrator, Moving Bodies 

●  Numerics 
● Unstructured Triangular/Tetrahedral Elements Mesh 
● Vertex-based Finite Volume/Finite Element approximation 
●  Implicit / Explicit Time Integration 
● Upwind & FCT Spatial Discretization 
● Arbitrary Lagrangian Eulerian Formulation 
● Remeshing & H-Refinement Adaptation 
● Overlapping and Embedded Grid Capabilities 
 



External Aerodynamics Applications 



Example 1. Fully Turbulent Flow past DLR-F6 Wing/body/
Pylon/Nacelle  Configuration 

Single Point Test Case: CL=0.5, M∞=0.75, Re=3x106 
 

 

Luo, H., Baum, J. D., and Löhner, R. - High-Reynolds Number Viscous Flow 
Computations Using an Unstructured-Grid Method; Journal of Aircraft, Vol. 42, No. 2, 
pp. 483-492, 2005. 



DLR-F6 Configuration 

Single Point Case: Computed Cp vs. Experimental Data 



Example 2. Supersonic Flow Past a Space Shuttle 

     173,794 Boundary Points 
  2,679,754 Points 
15,197,690 Elements 

Mach	  Number	  Contours	  



Example 3. Viscous Flow past an Open-wheel Race Car 

●  Katz, J., Luo, H., Mestreau, E.L., Baum, J.D., and Löhner, R., Viscous Flow 
Simulation of an Open-Wheel Race Car; SAE Publication 983041, 1998. 



Test case 4. Reactive Turbulent flow in REST Scramjet Inlet   

Inlet Exit 
(Throat) Isolator 

Exit 

Modular REST 
Inlets 

Spiegel, S., Stefanski, D., Edwards, J., and D., Luo, H.,  
Regionally Structured/Unstructured Finite Volume Method for Chemically Reacting 
Flows, AIAA-2011-3048. 2011. 



Test case 4. Reactive Turbulent flow in REST Scramjet Inlet   

Inlet geometry and mesh 

Grid 
  ~ 4.1 million elements 
  ~ 4.2 million nodes 

Inflow conditions 
    M = 6.64 
    T = 319.3 K 
    ρ = 0.003395 kg/m3 

    P = 3.111 kPa 
    Re = 4.17 million 



Test case 4. Reactive Turbulent flow in REST Scramjet Inlet   

FVFLO VULCAN 

Top:  
Mach no. 

Bottom: 
density 



Test case 4. Reactive Turbulent flow in REST Scramjet Inlet   

FVFLO VULCAN 

Top:  
Pressure 

Bottom: 
Temp. 



Blast and shock wave Applications 
 

●  Assess platform vulnerability and survivability 
 
●  Determine weapon lethality 

 



Example 1. Blast in a Boeing 747 

Baum, J. D., Luo, H., and Löhner, R., Numerical Simulation of 
a Blast inside a Boeing 747; AIAA-93-3091, 1993. 



Example 2. Rear Blast Simulation for T62 Tank 



Example 3. World Trade Center Explosion (New York) 

 
●  Baum, J.D., Luo, H., and Löhner, R., Numerical Simulation of Blast in the 

World Trade Center; AIAA-95-0085, 1995 



Example 4.  Kenya Terrorist Attack   



Example 4.  Kenya Terrorist Attack 
(Blast Initialization)   



Example 4.  Kenya Terrorist Attack 
 Pressure Field at Time=(2,2,172,512)ms 



Example 4.  Kenya Terrorist Attack 
 (Adaptive mesh simulation )  



Moving Bodies Applications 



F117 Store Separation 
 

Baum, J.D., Luo, H., and Löhner, R., Validation of a New ALE Adaptive Unstructured Moving 
Body Methodology for Multi-Store Ejection; AIAA-95-1792, 1995. 



F16 Fuel Tank Separation 
 

Baum, J.D., Luo, H., Löhner, R., Goldberg, E., and Feldhun, A., Application of 
Unstructured Adaptive Moving Body Methodology to the Simulation of Fuel Tank 
Separation From an F-16 C/D Fighter;  AIAA-97-0166, 1997. 



Canopy+2 Pilots Ejection 

Baum, J.D., Löhner, R., Marquette, T. J., and Luo, H., Numerical Simulation 
of Aircraft Canopy Trajectory; AIAA-97-1885, 1997. 



  

Fluid/Structure Interaction 



Example 1. Truck and Blast Wave Interaction 

Baum, J.D., Luo, H., Löhner,  R., Yang, C., Pelessone, D., and Charman, C., A Coupled 
Fluid-Structure Modeling of Shock Interaction with a Truck; AIAA-96-0796, 1996. 



Example 2. Bomb Fragmentation 
CFD & CSD Meshes @ t=0.0 ms 

R. Löhner, R., Yang, C., Baum, J.D., Luo, H., Pelessone, D. and Charman, C. - The Numerical 
Simulation of Strongly Unsteady Flow with Hundreds of Moving Bodies; International Journal 
for Numerical Methods in Fluids, Vol. 31, pp. 113-120, 1999. 
 



Example 2. Bomb Fragmentation 
CFD & CSD Meshes @ t=0.250 ms 



Example 2. Bomb Fragmentation 
CFD & CSD Meshes @ t=0.550 ms 



Example 2. Bomb Fragmentation 
 CFD & CSD Results @ t=0.101 ms 



Example 2. Bomb Fragmentation 
 CFD & CSD Results @ t=0.250 ms 



Example 2. Bomb Fragmentation 
 CFD & CSD Results @ t=0.420 ms 



Challenges 

•   The second-order CFD methods simply can not deliver 
engineering-required accuracy in time for a variety of applications. 

•  Large Eddy Simulation (LES)  
•  Blade-Vortex Interaction (BVI) 

•  Turn-around time in minutes and at most in hours on a moderate 
computer cluster is necessary for engineering applications. 

 
•  The second-order CFD methods cannot provide Uncertainty 

Quantification (UQ) for a requested simulation. 



Example 1: Large Eddy Simulation 

•   For flow problems with large regions of massive separation, there 
is a growing consensus that large eddy simulation techniques may 
offer the best hope for improving turbulence modelling. 

•  LES models are only reliable, when the numerical dissipation is 
low. 

•  Requirement  è Higher-order Methods 



Example 2: Blade and Vortex Interaction   

 

•  Several revolutions of vortex are required to study BVI.  
•  The second order methods can barely keep any revolutions of 

vortex → making the computation meaningless. 
•  Requirement  è Higher-order Methods 



Trend: Higher-order Methods 

•  One of intensive research efforts in the CFD is the development  
of higher-order (>2nd) methods for applications of scientific and 
engineering problems. 

•  Significant improvements in both accuracy and efficiency can be 
achieved by replacing second-order methods with higher-order 
(>2nd) methods for CFD applications.  

•  ENO and WENO Methods 
•  Compact Finite Difference Methods 
•  Spectral Volume Methods 
•  Discontinuous Galerkin Methods  



Background 

•  Why DG ? 

•  Several useful mathematical properties with respect to 
conservation, stability, and convergence. 

•  Easy extension to higher-order (>2nd) schemes. 
•  Well suited for complex geometries. 
•  Easy adaptive strategies, allowing implementation of hp-

refinement and hanging nodes. 
•  Compact and highly parallelizable. 
•  Accuracy for low Mach number flows. 



Background 

•  Why not DG ?   

•  High computing costs (more degrees of freedom) 
    → CPU time 
    → Storage requirements 

•  Treatment of discontinuities (like all other high-order 
methods) 

    → Sensitive to the implementation of limiters 
    → Lead to loss of high-order accuracy 

•  Requirement of higher-order boundary representation  
 → Geometric modelling capability 
 → Curved boundary elements 

•  Efficient discretization of  diffusion terms 



Background 
To reduce high computing costs of the DG methods, Reconstructed 
DG (RDG(PnPm)) schemes  were introduced by Dumbser et al. 
 

•  Pn indicates that a piecewise polynomial of degree of n is 
used to represent a DG solution. 

•  Pm represents a reconstructed polynomial solution of degree 
of m (m≥n) that is used to compute the fluxes and source 
terms.  

•  Provide a unified formulation for both finite volume and DG 
methods, and contain both classical finite volume and 
standard DG methods as two special cases of RDG(PnPm) 
schemes. 



Background 
Classification of the RDG(PnPm) Schemes 

Order of Accuracy 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Schemes         	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

O(1)                                   RDG(P0P0 ) (DG(P0)) 

O(2)                          RDG(P0P1 )      RDG(P1P1) (DG(P1)) 

O(3)               RDG(P0P2 )          RDG(P1P2 )        RDG(P2P2) 

O(4)        RDG(P0P3)      RDG(P1P3)     RDG(P2P3 )     RDG(P3P3) 

                                         : 

O(M+1)  RDG(P0Pm )  …               RDG(PnPm )        …       RDG(PmPm) 
        FV                            New Class                         DG 



Background 

•  A RDG method based on a hierarchical WENO reconstruction: 
HWENO(P1P2), has been developed for compressible flows with 
strong discontinuities on hybrid grids. 

•  enhance the accuracy, and therefore reduce the high 
computational costs of the underlying DG methods 

•  avoid the spurious oscillations in the vicinity of strong 
discontinuities, and therefore maintain the non-linear 
stability, and naturally linear stability.  

•  Effectively address the two weakest links of the DG methods !!! 



Governing Equations 

 Compressible Navier-Stokes Equations 
 
 
 
 

 F: inviscid  flux vector 
    G: viscous flux vector 

 U: conservative variable state vector 
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DG(Pn) Method 

 
 
 

 Bi(x): basis functions of the polynomials of degree Pn, 1≤i≤N. 
     N: dimension of the polynomial space Pn. 

↑ 
	   	   	  Discontinuous Galerkin method of degree Pn (DG(Pn)) : O(hn+1) 

 
  Fk(Uh)nk =Hk(UL
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The computation of the viscous fluxes has to properly resolve the 
discontinuities at the interfaces. 



Reconstructed Discontinuous Galerkine Method: RDG(PnPm)   

 
 
 

          : reconstructed polynomial solution of degree Pm  
 
     Bi(x) : basis functions of  polynomials of degree Pn  , 1≤i≤N 
 

     N: dimension of the polynomial space Pn 
 

↑ 
	  Reconstructed Discontinuous Galerkin method  RDG(PnPm) : O(hm+1) 

  

d
dt

UPn
Ωe

∫ BidΩ+ Fk
Γe

∫ (UPm

R )nkBidΓ− Fk (UPm
R )∂Bi

∂xkΩe

∫ dΩ = Gk
Γe

∫ (UPm
R )nkBidΓ− Gk (UPm

R )∂Bi
∂xkΩe

∫ dΩ,     1≤ i ≤N

UPm
R



HWENO reconstruction: HWENO(P1P2)  

•  A quadratic polynomial solution is obtained using a hierarchical WENO 
reconstruction by the following two steps:  

•  Step 1: Reconstruct second derivatives by WENO : WENO(P1P2)  
•  The second derivatives on each cell are first computed using 

underlying DG solution from its face-neighbouring cells 
using a 2-exact least-squares reconstruction.  

•  The final second derivatives are obtained by WENO 
reconstruction using the least-squares reconstructed 2nd order 
derivatives at the cell itself and its face-neighboring cells. 

 
•  Step 2: Reconstruct first derivatives : HWENO(P1P2) 

•  Reconstruct and modify the first derivatives of the resulting 
quadratic polynomial solution using WENO reconstruction.  
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Cost Analysis (Tetrahedral Grids) 

RDG(P0P1) RDG(P1P1) RDG(P1P2) RDG(P2P2) 

Number of quadrature 
points for boundary 

integrals 

 
1 

 
3 

 
4 

 
7 

Number of quadrature 
points for domain 

integrals 

 
0 

 
4 

 
5 

 
11 

Reconstruction Yes No Yes No 

Order of Accuracy O(h2) O(h2) O(h3) O(h3) 

Storage for Implicit 
Diagonal Matrix 

25 words 
Per 

element 

 
400 

 
400 

 
2500 



Cost Analysis (Hexahedral Grid) 

Spatial method RDG(P1P1)) RDG(P1P2) RDG(P2P2) 

Nr. of quadrature points for 
boundary integrals 

4 4 9 

Nr. of quadrature points for domain 
integrals 

8 8 27 

Reconstruction NO YES NO 

Order of spatial accuracy O(h2) O(h3) O(h3) 

Storage for the implicit diagonal 
matrix per element 

400 words 400 words 2500 words 

The memory requirement for  RDG(P1P2) is much smaller than  DG(P2). 
  



Design Goal 

 
  FVFLO 

 
  RDGFLO 

Unstructured triangular/
tetrahedral grid 

Unstructured arbitrary grid 

Finite volume/finite element 
formulation 

Reconstructed Discontinuous 
Galerkin formulation 

h-adaptation hp-adaptation 

None Error Estimation 
Uncertainty Quantification 



RDGFLO 
•  Physics 

•  Compressible flow for all speeds 
•  Inviscid, Laminar, Turbulent (RDG(P0P1)) 
•  Chemically reactive flows (RDG(P0P1)) 

•  Numerics 
•  Unstructured Hybrid Mesh(tetrahedral, pyramidal, prismatic, and hexahedral ) 
•  Reconstructed Discontinuous Galerkin Formulation 
•  Taylor basis 
•  Explicit/Implicit (RK) Time Integration 
•  LU-SGS/SGS/GMRES for linear systems 
•  p-multigrid 
•  HLLC, LDFSS, AUSM for Inviscid Fluxes 
•  BR2, RDG for Viscous Fluxes 
•  BGK for Inviscid+Viscou Fluxes 

•  Parallelization 
•  MPI 

•  GPU 
•  OpenACC 



Numerical Examples 

•  Strengths of the RDG methods 

•  Accuracy 

•  Robustness 

•  Essentially oscillation-free property 
 



      Strengths of the RDG methods 

 
 

Accuracy Demonstration 

 
 



Example 1: Convection of a Gaussian and a square wave  

 

 
 

The superior dissipation and dispersion property of DG !  



      Convection of a Gaussian and a square wave  

 

 
 

Note  the high accuracy and oscillation-free of the RDG ! 



 Example 2: Solution to a Heat Conduction Equation 

 

 
 

The superior convergence of RDG methods for diffusion!  

Access the order of accuracy of RDG methods for diffusion    



Example 3.  A Subsonic Flow through  
a Channel with a Smooth Bump (M∞=0.5, α=0°) 

•  Access the order of accuracy of the RDG(P1P1), WENO(P1P2) and 
HWENO(P1P2) methods for internal flows. 

•  Entropy production is served as the error measurement. 

889 cells 
254 pts 
171 boundary pts 

449522 cells 
81567 pts 
10999 boundary pts 

6986 cells 
1555 pts 
691 boundary pts 



Computed Velocity Contours by HWENO(P1P2) 

  Coarse Grid                 Medium Grid                 Fine Grids  



Convergence Study for different RDG methods 

  L2-error and order of convergence for  the RDG(P1P1),  
WENO(P1P2),  and HWENO(P1P2) methods   

Both WENO(P1P2) and HWENO(P1P2) deliver  
the designed 3rd order of convergence !! 

RDG(P1P1) WENO(P1P2) HWENO(P1P2) 

Length 
Scale 

L2-error Order L2-error Order L2-error Order 

6.552E-2 2.438E-3 2.183E-3 2.220E-3 

3.295E-2 7.356E-4 1.744 2.794E-4 2.992 2.851E-4 2.987 

1.650E-2 1.807e-4 2.032 4.539E-05 2.626 4.565E-5 2.647 



 Example 4. A Subsonic Flow past a Sphere (M∞=0.5)  

•  Access the order of accuracy of the RDG(P1P1), WENO(P1P2) and 
HWENO(P1P2) methods for external flows. 

•  Entropy production is served as the error measurement. 

535 cells 
167 points 
124 boundary pts 

16467 cells 
3425 points 
1188 boundary pts 

62426 cells 
598 points 
322 boundary pts 



Computed Velocity Contours by HWENO(P1P2) 

  Coarse Grid                 Medium Grid                 Fine Grids  



Convergence Study for different RDG methods 

 L2-error and order of convergence for  the RDG(P1P1),  
WENO(P1P2),  and HWENO(P1P2) methods   

Both WENO(P1P2) and HWENO(P1P2) deliver  
the designed 3rd order of convergence !! 

RDG(P1P1) WENO(P1P2) HWENO(P1P2) 

Length 
scale 

L2-error Order L2-error Order L2-error Order 

7.760E-2 1.783E-2 1.052E-2 1.117E-2 

4.688E-2 5.010E-3 2.519 1.317E-3 4.124 1.503E-3 3.980 

2.476E-2 1.232E-3 2.198 1.978E-4 2.964 2.201E-4 3.009 



Efficiency Comparison for Different RDG Methods 

Convergence order 
versus 
number of degree of freedom 

Convergence history  
versus  
CPU time (Second) 



Efficiency Comparison for Different RDG Methods 

L2 norm versus CPU time 



Example 5. Blasius Boundary Layer (M=0.2, Re=100,000)   

η=0.95 

Eta =1.2 
dy= 0.1291E-2  

Eta=1.3 
dy= 0.155869E-3  

61x17x1 
40 cells on the plate 

Npoin=1800  
Nboun=210  
62 grid points on 
the flat plate. 
 Dy=0.3464E-03 
at LE,  
 
Dy=0.82649E-03  
at TE 



  Computed skin friction coefficients (RDG(P1))   

η=0.95 

Eta =1.2 
dy= 0.1291E-2  

Eta=1.3 
dy= 0.155869E-3  

Eta=1.2 

Hybrid 
Triangular 

Eta=1.3 



  Computed skin friction coefficients (RDG(P2))   

η=0.95 

Eta =1.2 
dy= 0.1291E-2  

Eta=1.3 
dy= 0.155869E-3  

Eta=1.2 

Hybrid 
Triangular 

Eta=1.3 



   Computed X-velocity profiles at x=0.2(RDG(P1))   

Eta=1.2 

Hybrid 
Triangular 

Eta=1.3 



   Computed X-velocity profiles at x=0.2(RDG(P2))   

Eta=1.2 

Hybrid 
Triangular 

Eta=1.3 



   Computed Y-velocity profiles at x=0.2(RDG(P1))   

Eta=1.2 

Hybrid 
Triangular 

Eta=1.3 



   Computed Y-velocity profiles at x=0.2(RDG(P2))   

Eta=1.2 

Hybrid 
Triangular 

Eta=1.3 



      Strengths of the RDG method 

 
 

Robustness Demonstration 

 
 



Example 1. Water flow in a convergent-divergent nozzle 

 
 
  

 
 



      Vapor flow in a convergent-divergent nozzle 

 
 
  

 
 Stiffened EOS 
No single parameter is changed !!! 
No time-derivative preconditioner is required !!! 



Example 2. Low Mach Number Flow past a Sphere 

 
 
  

 
 

•  Access the accuracy for solving low Mach number flow problems.  

Obtained by the  
RDG(P0P1)  
on the finest grid 

Obtained by the  
RDG(P1P1)  
on the fine grid 

Obtained by the  
RDG(P1P2)  
on the fine grid 



Comparison of the Computed Velocity Distributions 
 on the Surface of the Sphere 



      Strengths of the RDG method 

 
 

Essentially oscillation-free property 
  

 
 



Example 1. Transonic Flow past  
an ONERA M6 Wing (M∞=0.84, α=3.06°) 

•  Access the accuracy and non-oscillatory property of the 
HWENO(P1P2) method for flows with discontinuities.  

                                      Computed Pressure Contours 
                  WENO(P0P1)                                        HWENO(P1P2) 
                 nelem = 593,169                                     nelem = 95,266 
                 npoin = 110,282                                      npoin = 18,806 
                 nboun = 19,887                                       nboun = 5,287 



Example 1. Computed Pressure Coefficient and Entropy 
Production Distributions at different spanwise locations  

η=0.20 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.44 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.65 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.80 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.90 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.95 



Example 2. Transonic Flow past  past a Wing/Pylon/Finned-Store 
Configuration (M∞=0.95, α=0°) 

•  Access the accuracy and non-oscillatory property of the 
HWENO(P1P2) method for flows with strong discontinuities.  

Computed Pressure Contours 
 (nelem=319,134, npoin=61,075, nboun=14,373) 



Computed Pressure Coefficient  Distributions at different 
spanwise locations  

η=0.4077                                                                           η=0.51 
 



        

 
 

Parallel Performance 

 
 



        

 
 
 
 
 
 
 

Graph of domain decomposition by METIS  
128 partitions and 124,706 elements 



        

 

 
 

    Explicit Method                                         Implicit Method 
 

Parallel speedup and efficiency on a single node (up to 16 CPUs)  



        

 

 
 

    Explicit Method                                     Implicit Method 
 

Parallel speedup and efficiency on a multiple nodes (up to 8 nodes with16 
CPUs per node)  



        

 
 

Applications 

 
 



 Transonic flow past a B747 configuration 

•  Demonstrate that the HWENO(P1P2) method can be used for 
computing complicated flows of practical interest.  

•  Flow condition: M∞=0.85, α=2° 

 

 
 

  (nelem = 253,577, npoin = 48,851, nboun = 11,802)                                                 
Computed Mach Number Contours 



Unsteady Viscous Flow over Tandem Airfoils  
M=0.2, Re=10,000, α=0   

 

 
 
 
 
 
 

2,902 hexahedral elements, 4,385 prisms, 10,418 grid points,   



 Subsonic Flow past a Delta Wing   

•  Demonstrate that the WENO(P1P2) method can be used for 
computing vortex flows of practical interest.  

•  Flow condition: M∞=0.3,  Re=4,000 

 

  (Tetrahedral grid: Nelem = 674,260, Npoin  = 120,531, Nboun = 12,991)                                                  
 

Computed Mach Number Contours and streamlines 



        

 
 

Implicit Solutions 

 
 



Computational Results 

•  Numerical Examples 
•  1. Inviscid shedding flow past a triangular wedge 
•  2. Kármán vortex street at Re = 200 
•  3. Viscous flow past an SD7003 airfoil 
•  4. Implicit large eddy simulation of a lid driven cavity 

•  Default parameters for solving the pseudo-time system  
•  Linear solver: LU-SGS preconditioned GMRES algorithm 
•  The pseudo time-step term is off, which is equivalent to solving a quasi-

Newton system at each implicit Runge-Kutta stage  
•  The relative residual tolerance is 1.0×10-4. 
•  The maximum iteration number is 5.  

•  Compilation and runtime toolkit 
•  METIS for domain partitioning 
•  PGI Fortran compiler + OpenMPI 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Objective: illustrate the importance of the temporal discretization schemes 
on the accuracy of the numerical solutions  

•  Grid: 13, 250 hexahedral elements, 27, 026 grid point, and 27, 026 
quadrilateral faces 

•  Initial condition: we use intermediate solution (M∞ = 0.5, α=0°) obtained 
by DG(P0) as IC for the unsteady shedding flow 

Global view of the grid Local view of the grid 

Density contour by P0 solution Mach number contour by P0 solution 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Comparison of computed density contours at t = 400 (M∞ = 0.5, α=0°) 
•  With a fixed time-step size of dt = 0.05 

 
•  With a fixed time-step size of dt = 0.10 

BDF1 + RDG(P1P2)       IRK2 +RDG(P1P2)                  IRK3+RDG(P1P2)              IRK3+DG(P1) 

BDF1 + RDG(P1P2) IRK2 + RDG(P1P2) IRK3 + RDG(P1P2) IRK3 + DG(P1) 

Reference solution: explicit 3-stage RK + RDG(P1P2) with a fixed dt = 0.0004 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Animations (up to solution time t = 400) 
•  With a fixed time-step size of dt = 0.10 

BDF1 + RDG(P1P2)                                                          IRK3+DG(P1) 

IRK2 + RDG(P1P2)                                                           IRK3+RDG(P1P2) 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Comparison of the CPU time (evaluated by running on 64 
cores) between the explicit and implicit methods.  

 
•  Performance of the LU-SGS preconditioned GMRES solver 

•  In average, a drop of 4 orders of magnitude for the 
unsteady residual can be achieved within 5 inner iterations 
at each implicit RK stage 

For solution at t = 40 Time-step size Time steps CPU time (sec) 

IRK2 + RDG(P1P2) dt = 0.05 800 1,770 

IRK3 + RDG(P1P2) dt = 0.05 800 5,182 

IRK2 + RDG(P1P2) dt = 0.10 400 1,008 

IRK3 + RDG(P1P2) dt = 0.10 400 2,825 

Explicit RK3 + RDG(P1P2) dt = 0.0004 800,000 13,498 

The IRK3+RDG(P1P2) method provides accurate solutions in space and time 
and requires much less CPU time compared with its explicit counterpart!  



Example 2. Kármán vortex street at Re = 200 

•  Grid: 10,204 hexahedral elements, 20,800 grid points, and 20,800 
boundary faces. The normal grid spacing near the cylinder surface is 0.001 
(normalized by the cylinder diameter)  

•  Boundary condition: no-slip, adiabatic condition on cylinder surface, 
symmetry condition on spanwise wall, characteristic condition at far-field. 

•  Initial condition: we use steady-state solution (M∞ = 0.2, α=3°, Re = 50) 
obtained by DG(P0) as IC for the vortex shedding 

Grid: global view               Grid: local View                Mach Number                       Entropy           
You can find the grid and report at the NASA website 
http://www.grc.nasa.gov/WWW/Acoustics/code/adpac/sample/CYLINDER_VORTEX_SHEDDING/ 



Example 2. Kármán vortex street at Re = 200 

•  Comparison of the computed instantaneous Mach number and entropy 
contours (M∞ = 0.2, α = 0°, Re = 200) 

 
 
 
 

•  Animations (up to solution time t = 40) 
IRK2+RDG(P1P2), dt=0.05            IRK3+RDG(P1P2), dt=0.05              IRK3+RDG(P1P2), dt=0.5 



Example 2. Kármán vortex street at Re = 200 

•  Time histories of lift and drag coefficients (Strouhal number = 1.923) 
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IRK2+RDG(P1P2), dt=0.05                  IRK3+RDG(P1P2), dt=0.05                IRK3+RDG(P1P2), dt=0.5 
      

Agree well with the results in the referred literature! 



Example 2. Kármán vortex street at Re = 200 

•  Comparison of the CPU time (evaluated by running on 128 
cores) between the explicit and implicit methods. 

 
•  Performance of the LU-SGS preconditioned GMRES solver 

•  In average, a drop of 4 orders of magnitude for the unsteady residual 
can be achieved within 5 inner iterations at each implicit RK stage 

For solution at t = 40 Time-step size Time steps CPU time (sec) 

IRK2 + RDG(P1P2) dt = 0.05 10,000 1,603 

IRK3 + RDG(P1P2) dt = 0.05 10,000 5,524 

IRK3 + RDG(P1P2) dt = 0.50 1,000 1,047 

Explicit RK3 + RDG(P1P2) dt = 0.00005 10,000,000 Estimated 77,960 

§  The IRK’s can greatly accelerate the solution over its explicit counterpart, 
while rendering accurate solution in time and space for viscous flows.  

§  The IRK3 enables the use of much larger time-step size and thus can improve 
the overall efficiency.  



Example 3. Viscous flow past an SD7003 airfoil  

•  Grid: 50,781 prismatic elements, 52,176 grid points, 101,562 triangular 
boundary faces, and 279 quadrilateral boundary faces.  

•  Boundary condition: no-slip, adiabatic condition on the airfoil surface, 
symmetry condition on spanwise wall, characteristic condition on far-field. 

•  Initial condition: uniform flow (M∞ = 0.1, α=4°, Re = 10,000) in the field. 

Airfoil: global view Airfoil: leading edge 

Airfoil: trailing edge 



Example 3. Viscous flow past an SD7003 airfoil  

•  Comparison of the computed instantaneous pressure number contours 

 
•  Comparison of the computed vorticity contours 

By the compact method*                                     By IRK3+RDG(P1P2), dt = 0.01 
 

               By the compact method*                                                 By IRK3+RDG(P1P2), dt = 0.01 
 
* Raymond E Gordnier and Miguel R Visbal. Compact Difference Scheme Applied to Simulation of Low-Sweep 
Delta Wing Flow. AIAA journal, 43(8):1744–1752, 2005.  



Example 3. Viscous flow past an SD7003 airfoil  

•  Local details of the computed instantaneous solution by 
IRK3+RDG(P1P2) 

 

•  Animations (up to solution time t = 100 with dt = 0.01 and 1 sec / frame) 

Pressure contours near the upper surface            Velocity vectors near the trailing edge  

           Entropy contours                                     vorticity Magnitude contiurs 



Example 3. Viscous flow past an SD7003 airfoil  

•  Comparison of the CPU time (evaluated by running on 256 cores) 
between the explicit and implicit methods.  

 
 
 

•  Performance of the LU-SGS preconditioned GMRES solver 
•  In average, a drop of 4 orders of magnitude for the unsteady residual 

can be achieved within 5 inner iterations at each implicit RK stage 

For solution at t = 100 Time-step size Time steps CPU time (sec) 

IRK3 + RDG(P1P2) dt = 0.01 10,000 83,178 

Explicit RK3 + RDG(P1P2) dt = 0.00001 10,000,000 Estimated 1,669,400 

A speedup factor of more than 200 by IRK3 over its explicit counterpart !  

Indeed, the relative tol. = 10-4 is a overkill in running these problems.  
If we use relative tol. = 10-2, even higher speedup may be achieved.  



Example 4. Implicit LES of a lid driven cavity 

•  Implicit LES 
•  Without the use of an explicit sub-grid scale model. 

•  Why DG methods? 
•  The DG methods only dissipate the scales that the model is not able to 

capture correctly, thus acting like a sub-grid scale model. 
•  Why RDG methods? 

•  DG methods like P2, P3, and P4 have shown the ability of helping 
improve the solution accuracy in a few benchmark DNS and LES 
problems. Yet they are expensive in terms of computing time and 
storage requirement.  

•  Assess the RDG methods like P1P2 and even P2P3 for computing 
large-scale.  

•  Why 3D lid driven cavity? 
•  The 3D lid driven cavity presents complex physical phenomena, though 

the geometry is simple. Therefore it is an adequate example to assess 
the performance of the implicit LES with the developed methods.  



Example 4. Implicit LES of a lid driven cavity 

•  Problem description 
•  Domain: x = [0, 1], y = [0, 1], and z = [-0.25, 0.25] (x: y: z = 1: 1: 0.5 ). 
•  Top lid velocity vb = (0.2, 0, 0), Re = 10,000. 
•  No-slip, adiabatic conditions for the rest of boundary walls. 
•  Grid: 64x64x32 grid points; hmin = 0.005 in x-y plane (y+ = 3.535); uniform 

grid distribution in spanwise z-direction.   

The 64x64x32 grid                             Instantaneous Mach No. iso-surface          Animated Mach No. iso-
surface 
      



Example 4. Implicit LES of a lid driven cavity 

•  Problem setup 
•  Step 1. Run 5000 time steps with BDF1+DG(P1) and CFL = 500 from zero-

velocity field, so that the flow filed reaches a cyclically oscillating status. 
•  Step 2. Restart the computation with a fixed time-step size of dt = 0.1, and use 

a desired method as shown below. The width of window for time averaging is 
30 second per frame (every 300 steps).  

Density residual vs. time steps (fixed dt = 0.1)                Total energy residual vs. time steps (fixed dt = 0.1) 
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Example 4. Implicit LES of a lid driven cavity 

•  Mean velocities 
•  Exp. (Prasad&Koseff,1989) 
•  LES (Zang et al., 1993) 
•  BDF1+RDG(P1P2) 
•  IRK2+RDG(P1P2) 
•  IRK3+RDG(P1P2) 
•  IRK2+DG(P1) 

Profiles along the x and y centerlines on spanwise mid-plane (z = 0) 

•  RDG(P1P2) match 
all well. 

•  DG(P1) is a little off 
near bottom region.  -1
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Example 4. Implicit LES of a lid driven cavity 

•  RMS velocities 
•  Exp. (Prasad&Koseff,1989) 
•  LES (Zang et al., 1993) 
•  BDF1+RDG(P1P2) 
•  IRK2+RDG(P1P2) 
•  IRK3+RDG(P1P2) 
•  IRK2+DG(P1) 

Profiles along the x and y centerlines on spanwise mid-plane (z = 0) 

•  DG(P1) is not accurate 
enough. 

•  RDG(P1P2) matches 
exp. data well! 

•  IRK’s are slightly 
better than BDF1. 

•  IRK3 is close to IRK2.  
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Example 4. Implicit LES of a lid driven cavity 

•  Reynolds stress tensor component <u’v’> 
•  Exp. (Prasad&Koseff,1989) 
•  LES (Zang et al., 1993) 
•  BDF1+RDG(P1P2) 
•  IRK2+RDG(P1P2) 
•  IRK3+RDG(P1P2) 
•  IRK2+DG(P1) 

Profiles along the x and y centerlines on spanwise mid-plane (z = 0) 

•  DG(P1) is far from 
good in lower region. 

•  RDG(P1P2) matches 
exp. data well! 

•  IRK’s are better than 
BDF1 in some regions. 

•  IRK3 is close to IRK2.  -1
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Example 4. Implicit LES of a lid driven cavity 

•  Comparison of the CPU time (evaluated by running on 256 cores) between 
the explicit and implicit methods.  

 
•  LU-SGS preconditioned GMRES solver 

•  In average, a drop of 4 orders of magnitude for the unsteady residual 
can be achieved within 5 inner iterations at each implicit RK stage. 

For solution at t = 3000 Time-step size Time steps CPU time (sec) 

BDF1 + RDG(P1P2) dt = 0.1 30,000 52,542 

IRK2 + RDG(P1P2) dt = 0.1 30,000 86,066 

IRK3 + RDG(P1P2) dt = 0.1 30,000 263,010 

IRK2 + DG(P1) dt = 0.1 30,000 69,050 

Explicit RK3 + RDG(P1P2) dt = 0.0001 30,000,000 Estimated 7,347,942 

•  A speedup factor of more than 85 by IRK over its explicit counterpart! 
•  IRK+RDG(P1P2) greatly improve solution accuracy for  implicit LES 

without much extra cost than the underlying IRK+DG(P1)!  



Concluding Remarks 
•  A reconstructed discontinuous Galerkin method based on a Hierarchical 

WENO reconstruction, HWENO(P1P2) has been developed for compressible 
flows at all speeds on hybrid grids.  

•  The HWENO(P1P2) method is able to provide sharp resolution of shock 
waves essentially without over- and under-shoots for discontinuities and 
achieve the designed third-order of accuracy for smooth flows.  

•  RDG methods have the potential to provide a superior alternative to the 
traditional FV methods, and to become a main choice for the next generation 
of CFD codes. 

 
•  A higher-order RDG-based CFD code will ultimately deliver a more 

accurate, efficient, robust, and reliable simulation tool with confidence that 
will enable us to solve flow problems at resolutions never before possible by 
the current state-of-the-art CFD technology. 



  
  

Thank You ! 


