DFTB

GW electronic structure calculations of cobalt defects in ZnO

Recently the point defect responsible for the emission of cobalt in doped zinc oxide (ZnO) samples has been identified [24]. In this work we extend our investigation to other point defects in Co-doped ZnO. We use density-functional theory and GW calculations to obtain the orbital-resolved band structure of cobalt doped ZnO. We show that mainly O-p and Co-d orbitals take part in the process and confirm that an oxygen interstitial nearby a cobalt atom is a likely defect to occur in ion beam Co-doped ZnO samples. We also rule out that other common point defects in ZnO can be responsible for the observed d-d transition. Finally, we suggest that defect complexes involving oxygen interstitials could be used to promote ferromagnetism in cobalt doped ZnO samples.

Electron paramagnetic resonance and theoretical study of gallium vacancy in β-Ga2O3

Unintentionally doped n-type β-Ga2O3 becomes highly resistive after annealing at high temperatures in oxygen ambient. The annealing process also induces an electron paramagnetic resonance (EPR) center, labeled IR1, with an electron spin of S = 1/2 and principal g-values of gxx = 2.0160, gyy = 2.0386, and gzz = 2.0029 with the principal axis of gzz being 60° from the [001]* direction and gyy along the b-axis. A hyperfine (hf) structure due to the hf interaction between the electron spin and nuclear spins of two equivalent Ga atoms with a hf splitting of ∼29 G (for 69Ga) has been observed. The center can also be created by electron irradiation. Comparing the Ga hf constants determined by EPR with corresponding values calculated for different Ga vacancy-related defects, the IR1 defect is assigned to the double negative charge state of either the isolated Ga vacancy at the tetrahedral site (V2−Ga(I)) or the VGa(I)–Gaib–VGa(I) complex.

Optically Driven Ultrafast Magnetic Order Transitions in Two-Dimensional Ferrimagnetic MXenes

Laser-induced switching of spins in materials is of great interest to revolutionize future magnetic storage technology and spintronics, which is generally realized in multicomponent ferrimagnetic (FiM) compounds but rare in 2D magnets. Using density functional theory (DFT) calculations, we show that 2D MXenes, including Cr2VC2F2, Mo2VC2F2, Mo2VN2F2, Mo3C2F2, and Mo3N2F2, have unusual FiM order. Interestingly, our real-time time-dependent DFT simulations demonstrate that laser pulses can directly induce ultrafast spin-selective charge transfer between magnetic sublattices in a few femtoseconds and further generate dramatic changes in the magnetic structure of these MXenes, including a transition from FiM to transient ferromagnetism (FM). The microscopic mechanism behind this ultrafast switching of spin is governed by the optically induced intersite spin transfer (OISTR) effect, which theoretically enables the ultrafast optical manipulation of the magnetic state in MXenes. Our results open new opportunities for exploring the optical manipulation of spin in 2D magnets.

An adaptive design approach for defects distribution modeling in materials from first-principle calculations

Designing and understanding the mechanism of non-stoichiometric materials with enhanced properties is challenging, both experimentally and even computationally, due to the large number of chemical spaces and their distributions through the material. In the current work, it is proposed a Machine Learning approach coupled with the Efficient Global Optimization (EGO) method—an Adaptive Design (AD)—to model local defects in materials from first-principle calculations. Our method takes into account the smallest sample set as possible, envisioning the material defect structure relationship with target properties for new insights. As an example, the AD framework allows us to study the stability and the structure of the modified goethite (Fe0.875Al0.125OOH) by considering a proper defect distribution, from first-principle calculations. The chemical space search for the modified goethite was evaluated by starting from different sizes and configurations of the samples as well as different surrogate models (ANN and Gaussian Process; GP), acquisition functions, and descriptors. Our results show that the same local solution of several defect arrangements in Fe0.875Al0.125OOH is found regardless of the initial sample and regression model. This indicates the efficiency of our search method. We also discuss the role of the descriptors in the accelerated global search for defects in material modeling. We conclude that the AD method applied in material defects is a successful approach in automating the search within huge chemical spaces from first-principle calculations by considering small samples. This method can be applied to mechanistic elucidation of non-stoichiometric materials, solid solutions, alloys, and Schottky and Frenkel defects, essential for material design and discovery.

A Real-Time Time-Dependent Density Functional Tight-Binding Implementation for Semiclassical Excited State Electron–Nuclear Dynamics and Pump–Probe Spectroscopy Simulations

The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear–electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies. In particular, the optical properties of periodic materials such as graphene nanoribbons or the use of corrections such as the “LDA+U” and “pseudo SIC” methods to improve the optical properties in some systems can now be handled at the TD-DFTB level. Moreover, the simulation of fully atomistic time-resolved transient absorption spectra and impulsive vibrational spectra can now be achieved within reasonable computing time, owing to the good performance of the implementation and a parallel simulation protocol. Its application to the study of UV/visible light-induced vibrational coherences in molecules is demonstrated and opens a new door into the mechanisms of nonequilibrium ultrafast phenomena in countless materials with relevant applications.

Exploring charge density distribution and electronic properties of hybrid organic-germanium layers

Band gap tuning and dielectric properties of small organic ligands adsorbed on bidimensional germanium monolayers (germanene) have been investigated using first-principles calculations. We show that the adsorption of these small groups retains the initially stable free-standing pristine buckled structure form. Charge density and chemical bonding analyses show that the ligands are chemisorbed on the germanium layers. Finally, we demonstrate that the dielectric properties of the bare and ligand adsorbed germanene have a large anisotropy. Our findings of a finite gap open a path for the rational design of nanostructures with possible applications in biosensors and solar cells.

Electronic Properties and Charge Transfer of Topologically Protected States in Hybrid Bismuthene Layers

We have performed first-principles calculations of electronic and dielectric properties of single-layer bismuth (bismuthene) adsorbed with −COOH groups. We show that in a high coverage regime, the Bi–COOH hybrid structure is a two-dimensional topological insulator with protected edge Dirac states. The adsorption process of −COOH induces a planar configuration to the initially pristine buckled bismuthene. We claim that the stability of these planar structures mainly stems from strain induced by the adsorption of the −COOH organic group, but it is also related to ligand–ligand interactions. Furthermore, we demonstrate that many-body corrections are crucial to obtain a proper description of the electronic and dielectric properties of the investigated hybrid systems. Analysis of the charge density shows that the role of this organic group is not only to stabilize the layer but also to functionalize it, which is very important for future applications such as sensing and biomolecules immobilization, as well as in electronic spintronic and even optical devices.

Intrinsic defects of GaSe

GaSe is a layered semiconductor with an optical band gap tunable by the number of layers in a thin film. This is promising for application in micro/optoelectronics and photovoltaics. However, for that, knowledge about the intrinsic defects are needed, since they may influence device behavior. Here we present a comprehensive study of intrinsic point defects in both bulk and monolayer (ML) GaSe, using an optimized hybrid functional which reproduces the band gap and is Koopmans' compliant. Formation energies and charge transition levels are calculated, the latter in good agreement with available experimental data. We find that the only intrinsic donor is the interlayer gallium interstitial, which is absent in the case of the ML. The vacancies are acceptors, the selenium interstitial is electrically inactive, and small intrinsic defect complexes have formation energies too high to play a role in the electronic properties of samples grown under quasi-equilibrium conditions. Bulk GaSe is well compensated by the intrinsic defects, and is an ideal substrate. The ML is intrinsically p-type, and p-type doping cannot be compensated either. The opening of the band gap changes the defect physics considerably with respect to the bulk.

Inartificial Two-Dimensional Ge4Se9 Janus Structures with Appropriate Direct Band Gaps and Intrinsic Polarization Boosted Charge Separation for Photocatalytic Water Splitting

DFTB+, a software package for efficient approximate density functional theory based atomistic simulations

DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green’s functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.