We use first-principles quantum mechanics to simulate the transient electrical response through carbon nanotube-based conductors under time-dependent bias voltages. The dynamic admittance and time-dependent charge distribution are reported and analyzed. We find that the electrical response of these two-terminal molecular devices can be mapped onto an equivalent classical electric circuit and that the switching time of these end-on carbon nanotube devices is only a few femtoseconds. This result is confirmed by studying the electric response of a simple two-site model device and is thus generalized to other two-terminal molecular electronic devices.