Speaker: Sandra Isabelle Schmind
Beijing Computational Science Research Center
Abstract: My talk will be about the research on coupled systems of whispering gallery resonators, atoms and fibers, which we performed in the group of Joerg Evers at the Max-Planck Institute in Heidelberg/Germany. A setup for a controllable photon turnstile consisting of a multilevel atom and a cavity by exploiting the properties of the photon statistics is suggested. Furthermore, a chain of atom-cavity systems connected via a fiber is considered. Due to the energy flux between the subsystems in both directions so-called supermodes with vastly enhanced transmission compared to a chain of independent subsystems develop. Interference effects between pathways on which light can propagate through the system cause these special modes. Moreover, pathway interference effects in an array of microcavities are studied. It is observed that the phase angles of the complex coupling constants describing the interaction of neighboring cavities influence crucially the transmission and reflection behavior of the array. We show that this can be exploited for precision measurements of the refractive index of a thin slab or determining the position of a nearby particle on a sub-wavelength scale. A quantitative analysis of the sensitivity of the setup is performed via FDTD simulations. Light propagation through a disk resonator with a hole as light scatterer in the terahertz regime is studied. The results are compared to experimental data and a very good agreement is observed.
Date&Time: May 25, 2012 14:30 - 15:00
Location: 606 Conference Room