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Although their individual motions are complex, their collective behaviour acquires qualitatively a
new form of simplicity - collective motion of “particles”.
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Kinoshita, Wenger, Weiss (Nature, 2006)
GHD theory: Caux, Doyon, Dubail, Konik, Yoshimura (2017)

Bragg pulse imparts the cloud into two oppositely-moved parts that do not thermalize

Non-equilibrium isolated quantum system in 1D does not thermalize.



Generalized Gibbs ensemble

1 Quantum Newton cradle |

T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006)

few hundreds ®Rb atoms in a 1D trap

Essentially
unitary tim
evolution

p= —exp < ZA,,J,,,) , Z=Trexp <—Z)\mfm>
m

“The absence of damping in 1D Bose gases may lead to potential applications in force sensing
and atom interferometry”.

Otp + Ox [ velf ] = (B:nV) Ogp

Caux et al, arXiv1711.00873



toplasm causes dysfunction of NAC, leading to

ncorrect sorting of proteins to the ER and
muochundm Alink between cytosolic protein
aggregatio tress is well established
(43),and it il hc interesting to investigate the
role of NAC in this context.
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QUANTUM GASES

Experimental observation of a
generalized Gibbs ensemble

Tim Langen,' Sebastian Erne,"

Thomas Gasenzer,>* Jérg Schmiedmayer'*

Remi Geiger,' Bernhard Rauer,' Thomas Schweigler,
‘Maximilian Kuhnert,' Wolfgang Rohringer," Igor E. Mazets,"

The description of the non-equilibrium dynamics of isolated quantum many-body
systems within the framework of statistical mechanics is a fundamental open question.
Conventional thermodynamical ensembles fail to describe the large class of systems
that exhibit nontrivial conserved quantities, and generalized ensembles have been

predicted to maximize entropy in these systems. We show

one-dimensi

experimentally that a degenerate

nal Bose gas relaxes to a state that can be described by such a gem.amd

encemble. This is verfied through a detailed study of correlation functions up to 1
order. The applicability of the generalized ensemble description for isolated quan!um

many-body systems poi
from the u

nformation theory provides powerful con-
cepts for statistical mechanics and quantum
many-body physics. In pamculzu, the prin-
ciple of entrop: n (1-3) leads to
the well-known ther mndynammal ensem-
bles, which are fundamentally constrained by
conserved quantities such as energy or particle
Sumbor (. However,physiea Sstem can con-
tain many additional conserved quantities, whmh
raises the question of whether there exists a m
enen) satisaldesription for the eady sues
of quantum many-body
E ¥, the presernce of nvnm\'ml conserved

a natural emergence of classical statist
itary quantum evolution.

ical properties

amics (6-9) and inhibits thermalization (10-12),

Instead of relaxing to steady states described by

the usual thermodynamical ensembles, a gener-

alized Gibbs ensemble (GGE) was proposed to

de:cnhe the corresponding steady states via the
any-body density matrix

5-1 (z i) [0}

(3,11, 13, 14), where 1, denotes a set of conserved
quantities and Z = Triexp(-SuknZn)] is
partition function. The Lagrange  muliples

n assocl:« ited with the mnstr\’od ities are
obt

space of a system, which mnl\gly afects the dy-
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institt, TU Wen, 1020 Viemna, Austra. “nsttuf for
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oty 0 semta Gamany. o P
ottt 10% s A e Prysec Tl
Insbtte, 194021 St Petersburg, Russ
“Cormespocing o, -mab schadmayes atomchprg

ned by of the entropy under
he condition that the ex‘mam." mlmn of the
conserved quantities are fixed to their initial
values. The emergence of such a maximum-
entropy state does not contradict a unitary evo-
lution according to quantum mechanics. Rather,
it reflects that the true quantum state is indis-
tinguishable from the maximum-entroy

ble with respect to a set of wﬂmel\uy Jocal
observables (5)
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A degenerated 1D Bose gas relaxes to a state that can be described by such a generalized Gibbs
ensemble. Langen, et al, Science 348, 207 (2015)
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I. Generalized Hydrodynamics: elementary

I. Generalized Hydrodynamics: elementary introduction
Lieb-Liniger model

1. . .
Hu = [ de( = 0w 0w + 'y wy

Two reservoirs:
t

Figure 1. A geometry for far-from-equilibrium transport: two half-line reservoirs
are prepared at one temperature or chemical potential for < 0 and a different
temperature or chemical potential for z > 0. At ¢ = 0 the left and right reservoirs
are connected in such a way that the final system is translation-invariant.

[1] Castro-Alvaredo et. al., Emergent hydrodynamics in integrable quantum systems out of equilibrium[J]. Physical Review X, 2016, 6(4): 041065
[2] Bertini et. al. Transport in out-of-equilibrium XXZ chain: Exact profiles of charges and currents, Phys. Rev. Lett. 117, 207201 (2016)

[3] Jiang, Chen, Guan, Chin. Phys. B 24, 050311 (2015)
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Conformal field theory out of equilibrium: a review

||‘.w1

* Unitary evolution *
|

Steady-state limit

[1 N
Asymptotic Transition Steady-state Transition Asymptotic
reservoir region region region reservoir

Figure 2. The partitioning approach. The direction of the flow is z, and Z
represents the transverse coordinates. After any finite time, asymptotic reservoirs
are still present and infinite in length. The central region, around z; = 0, is the
steady-state region. At very large times, it is expected to be of very large extent.

Transient current (j ) s = 7{—5 (TR - T2)

How to understand the emergent transient current in the Lieb-Liniger Bose gas?
What does Transient current behave like in the systems with two degrees of freedom?



I. Generalized Hydrodynamics: elementary introduction

@ Do the non-equilibrium isolated quantum systems thermalize? open question

@ The integrable systems has no thermalization because of the infinitely many
conserved charges.

@ For homogeneous systems, local observables are described by Generalized
Gibbs Ensemble in the relaxed state:

= —exp ( ZAan) , Z=Trexp (—ZAmfm>

@ Weakly inhomogeneous systems can be described by the Generalized
Hydrodynamics at large space-time scales, i.e. continuity equations for particle
density in each conserve charges

Op + Ox [Veffp} =0



I. Generalized Hydrodynamics: elementary introduction
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Figure 1: Castro-Alvaredo et al. [1] and Bertini et al. [2] used a
hydrodynamics approach to describe interacting quantum particles
in 1D (bottom). The approach takes a zoomed-out picture of the
particles (middle), viewing it on a length scale I that is much longer
than the average distance d between particles. In this way, the
particles appear as a continuous medium, like a fluid. A
description of the system on a very long length scale L can then be
calculated, such as how its mass density varies in space (top) and
how this quantity evolves in time. (APS/Carin Cain)

@ Dynamical generalization of thermodynamic Bethe ansatz equations
@ Generalized Hydrodynamic: 0:q(x, t) + Oxj(x,t) =0
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Hydrodynamic description

@ |. The generalized Gibbs ensemble: density matrix p = e~ 27 /Tr (e~ X 5i%), where
Q = (@...) are all the conserved quantities and 8 = (84 ...) are all the associated potentials.
To determine an equilibrium of integrable systems, we need all associated potentials or all
conserved quantities.

@ II. Local time-space (equilibrium) approximation: densities g;(x, t) = (g;(x, 1)) = (a;) g(x,1)s
and currents ji(x, t) = (i(x, t)) = (i) p(x.1)- The intervals (cells ) are locally homogenous
enough, satisfying the GGE. In a Iarge space and time scales, the cells present slow
variations of quantum dynamics.

@ ll. Hydrodynamic equation: The densities §;(x, t) and currents 7,-()(, t) satisfy the Euler-type
equation 9;;(x, t) + dxj(x, t) = 0.

@ V. The steady state: The currents ji(x, t) = (i p(x,ny = F(q), then we have

Ori(x, t) + J(Qi(x, t))0xq(x, t) = 0 with the Jacobian matrix of transformation from
densities to currents J(g;(x, t)) = 9F;(q)/9q;. For a proper choice the state coordinates,

one can get d;7;(x, t) + vET(A(x, 1)ox Ai(x, t) = 0.
@ V. Rescaling: g(x,t) — g(¢ = x/t), B(x, t) — B(¢£ = x/t). Then the Euler equation and the
steady states read
[J(Gi(§)) — €194, =0

) —
qstat . a(é ) stat . j(f — 0)
that determine a critical ray.
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Lieb-Liniger model: fundamental concepts and experiments

Lieb & Liniger in 1963 solved the 1D §-function interacting
Bose gas (Interaction range is much less than the mean

I distance between atoms)
N 82 N
OO N X,
M= oY)
i=1 i i<j
c = —4r?/map, y=c¢/n
@ Bethe anasatz wave function: quantum correlations
) iy — ikpi N
V(x1, %, Xn) = D (—1) [ 11 (1 + T)] exp (Z‘kpfxi)
P 1<i<j<N j=1

@ Energy spectrum: thermodynamics and collective nature
2 N ok ktic
E=—>S K exp(ikl)=-J[L——, j=1,...N
2mj§11 Xp(ik;L) gk/—kg—ic J

@ Notations k;: wave number, c: interaction strength, N: particle number
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Table 1. Experiments of Lieb—Liniger gas.

quantum dynamics 87TRp[61.71,74-76]

thermalization 8TRp[61.70,74,75]
solitons 87Rp[68.77]
fermionization 39K 157,721

YY thermodynamics 8TRp[56.61.62.65-67.78]

strong coupling 87TRp[24.25]

phase diagram Cs[7]

3-body correlations 87Rpb, 58631 Cgl60]
excited state Csl64]

Jiang, Chen, Guan, Chin. Phys. B 24, 050311 (2015)

However, the observation of the Luttinger liquid and quantum criticality of a 1D quantum
system is a long-standing challenge.

Cazalilla, Citro, Giamarchi, Orignac, & Rigol, Rev. Mod. Phys. 83, 1405 (2011)
Guan, Batchelor, and Lee, Rev. Mod. Phys. 85, 1633 (2013)
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LLL Lol Ly Lol Iy
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Elementary excitations give the universal low energy physics

o (
@ (b
o (

a) the quantum numbers for the ground state
) adding a particle near right Fermi point (AN or backward scattering 2AD).
¢) a hole excitation. The total number of particles is N — 1.

@ (d) a single particle-hole excitation (N*).

Total momentum and excitation energy

AP

AE

ZL” [ANAD + N* — N~] + 2ADk,

27 Vs

[1(AN/Z)2 4+ (ADZ)? + N* + N—]
ol [vsz 2(ANY? + vsZ202 + AvsN* + 4vsN~ ]
2AD, K =vs/vy, Z =27p(Q)



Origin of Quantum liquid

27V,
Bethe Ansatz result AE s

TENT N+ o (ﬁAN2 +wZ2(2D)?)

Haldane’ s Bosonization Hamiltonian H = v, Z \q\b bq + oL ( VN AN? 4+ %1 J2 )
q#0

H:/dx(”";an o K(ax¢)>

where the canonical momenta I conjugate to the phase ¢ obeying the standard Bose commutation
relations [¢(x), M(y)] = i6(x — y).

Luttinger parameter K=+v/w=2°
L2 92E
Sound velocit Ve = /N = A — ——
Y ) N mN B2
Density stiff w=2 L (82E>
ensity stiffness N= —=— [ ——
K h\ON2 )y No
82
Phase stiffness vi=vwK=nL—E
Oa

e.g. K determines the leading order correlation (W1 (x)w(0)) ~ 1/x1/2K
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Bosons and Fermions

Quantum statistics:

@ quantum man-body systems
@ microscopic state energy E;
@ partition function Z = S°2°, W;e—Fi/(keT)
= © freeenergy F = —kgTInZ
@ challenge: finding new physics

TEMPERATURE

BOSONS FERMIONS
@ Yang-Yang equation (Gibbs ensemble): a brilliant method(J. Math. Phys. 10, 1115 (1969))

Tc dq
— K2 e(q)/T
E(k)_k 1 / > ( )2 In<1+e )

@ Equation of state: per length pressure

_ T _e(k))T
P, T) = g/mln(we ) dk

Dynamical generalization of the thermodynamics Bethe ansatz:
The generalized hydrodynamics of the 1D Bose gas
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Dynamical generalization of the thermodynamics Bethe ansatz

Lieb-Liniger model eigenstate |{A;})
number operator: <~"2u:§p‘3 Qol{A) =Qol{A), Qo=N= Z/\”
momentum operator: leém Q11 = Q1A Z/\
Hamiltonian: Q= if Q2 110D = Q2 1A\, Z A2
=3 QD = @uliD. @ = 3

(Ho. 0,1 = 0, [Or. O] = 0, Vi, m.

Bulding up the densities and currents of the conserved charges with the thermody-
namic Bethe ansatz
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Generalized Hamiltonian g7 (48} = > BuOn

N

oo N
HABDIA) = EABDIY.  EABNOD = D3 B =D eo(h)).
n=0 j=1 Jj=1
in which we have defined the function

(k) =) B
n=0

by interpreting the coefficients j,, as those of its power series.

Thermodynamic limit

oo

Expectation values of the conserved charges: On = Lf dAr"p(X)

o0

generalized Gibbs “free energy”  Glp, pu] = ZﬂnQn — S[p, o]
n=0

Generalized TBA equation: () +ay«In(1 +e*®) = & (1)
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hj (0): the one-particle eigenvalue of conserved charge Qj

0 is the velocity, hg (0) = 1,h1 (0) =p (0) =m0, h2 (0) =E (0) = m02/2.

Average denSIty quasiparticle density:  ” (©)
hole density: Pn(0)
g = /d@pp (0)h;(0) state density: Ps (0) = pp (6) + pn (6)
occupation number: " (#) =2, (6) /05 (6)

discrete BA egn wi— 27p,(0) = p'(0) +/da(p(9— a)p,(a)

“dressing” operation i > A% *
d
#0) = 1(0) + [ 57000~ Pty (r)
pdr — (1 _ (pN)_ll’l 2”/’11(9) = ”(‘9)(p/)dr(6)
U=N(1-9N)! gi=h;-Up' =p' -Uh;
a-b= [ do/(2x)al0)b(0) g = / d’;f) n(0)15(6)




Average current

in= [Z oo

[ §20u0) 1 0)
7i= / dZiff)”(@)h?r(G), zi= / dgi(f)n(e)h?r(g) /EZZT o) 0)
. / O o) (6 N / %911(9) ) i q/ 405, 0) 0
i / aB )

o () ™ (8) = F' -Uh; = h; - UE' = / %hl @) n(9) (E’)dr ) = / dfp. (0) h; ()
2mp. (0) = n (0) (B')™ (6) = 270" (0) p, (6)
n) = 1 e ,

T 1te -

d9'
€o(0) —

560 —0)In (14"

The densities and currents of charge in each cells depend on the states via occupation number
n(#), which can be obtained by the BA equation. v*ff is the effective velocity of quasiparticles
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method: hydrodynamic
equaﬂon
Oy (x.1) + 0,7 (x. 1) light-cone ansatz
i da: a); ) ‘
0ipp(0) + 0ypc(6) =

V d - ff
27p.(6) = n(0)(E')*(0) = 2mv (O)p,( FIG. 1. The partitioning protocol. With ballistic transport, a
current emerges after a transient period. Dotted lines represent
different values of & = /1. If a maximal velocity exists (e.g., due

to the Lieb-Robinson bound), initial reservoirs are unaffected
eff —
0pp(0) + 0. [ (0)p, (0)] = 0

beyond it (light-cone effect). The steady state lies at & = 0.
v E=uzx/t
off () _
B (8) + v* (8) 0, (6) = 0| mm—gm [0 (€)= €] 9n (6) =0

fluid cell




initial condition

Jim n () = lim n (6) o =n(6) i

[0 (0) — €] Oen () =0

solution
n(0) =n"(0)O (0 -0, +n(0)0 (0, —0)

veff (0,) =¢

P (0.) =0

Conservation of entropy density is a fundamental propeerty of perfect fluids, as no viscosity effects
are taken into account.

S(0) = ps(6)10g ps(0) — pp(6) In pp(8) — p1(0) In p1(0)
9S(0) + Ox [veff(e)g(e)] -0
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B,=1,0=5,1=6,)=3
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Br=1, Br=5, u=6, 1=50

0.25 —se—=sT
l.‘ “
’
0.20F ’,' ‘\‘ ]
0.15 4 ‘°\
g o1 ! \ *
N 4 .
0.10 F H \ 1
/ i
0.05F b ! 1
1
I’ \
000 . ‘dl L L L ‘\- e
) -1 0 1 2
EN2p

FIG. 7. Energy current in the Lieb-Liniger model for low
temperatures, large coupling, and chemical potential u =6
(circles). Local stationary points occur at a; p =0, that is,
&= +/2u = £3.46 (the Fermi velocity). The dashed curve
represents the current [Eq. (47)] for the same temperatures and
chemical potential, whose profile is not dissimilar to the plots
shown in Fig. 5. As before, the bold horizontal line is the CFT
value 75 (1 — %) The agreement is extremely good.

Emergence of generalized hydrodynamics determined by such a generalized Gibbs ensemble.

-tt_”Cké 2 2
7= (TE-TR)
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density
(atom/pm)

30 =40 m:
20|
time 19
ms|
400 200 ) 5( ) 200 g 200
(a) position (um) 200 400 (b)

FIG. 3. (i) Longitudinal expansion of a cloud of N = 6300 +

200 atoms initially trapped in a double-well potential, compared

with GHD. (ii) Even though the initial state is the same for GHD

and CHD, both theories clearly differ at later times. CHD

wrongly predicts the formation of two large density waves.

The error bar shown at the center at r = 40 ms corresponds to a

68% confidence interval, and is representative for all data sets.
Emergence of generalized hydrodynamics determined by such a generalized Gibbs ensemble.
Schemmer, et al, PRL 122, 090601(2019)

K V(x)

Axp(x, V) + Ox [ve”p(x, v)] = ( -

) Ovp(x,Vv), v : rapidity
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[I. Ballistic transport of the Bose-Fermi mixures in 1D

Key collaborators:
Sheng Wang, Xiangguo Yin, Yang Yang Chen and Yunbo Zhang

Beijing Computational Science Research Centre, June 2019

Hydrodynamics



» The integrable systems has no thermalization because of the
infinitely many conserved charges.

» For homogeneous systems, local observables are described by
Generalized Gibbs Ensemble (O) = TrpgqeO in the relaxed
state:

p== exp ( Z/\ Im> , Z="Trexp <— Z)\mfm>

m

» Weakly inhomogeneous systems can be described by the
Generalized Hydrodynamics at large space-time scales, i.e.
continuity equations for particle density in each conserve
charges

Oip + O [veffp] =0

Hydrodynamics



Conformal field theory out of equilibrium: a review

Z
|| 71
* Unitary evolution *

Steady-state limit

Asymptotic Transition Steady-state Transition Asymptotic
reservoir region region region reservoir

Figure 2. The partitioning approach. The direction of the flow is z;, and &
represents the transverse coordinates. After any finite time, asymptotic reservoirs
are still present and infinite in length. The central region, around z; =0, is the
steady-state region. At very large times, it is expected to be of very large extent.

Transient current (j)gu = 25 (77 — T3)
How does this transient current occur in the Lieb-Liniger Bose gas?

What does the transient current behave like in the systems with two
degrees of freedom?

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

A Bose-Fermi mixture system (BF) is described by the Hamiltonian,

L hZ hZ
H = /0 dx < xw Oy + xwf ij
—I—g%lﬁ: (UNEURTISS ghfl/Jb (CR ¢f¢h>

where v, and vy are boson and fermion field operators, n;, and my
are boson and fermion masses, g,, and g, are boson-boson and
boson-fermion interaction strengths. here the fermions we consider
are spinless, so gy = 0.

When m;, = my = m and gy, = g1,y = g, the system is integrable.

Lai, Yang, Phys. Rev. A 3, 393 (1973)

Imambekov, Demler, Phys. Rev. A 73, 021602 (2006); Ann. Phys. 321, 2390 (2006)

Batchelor, Bortz, Guan, Oelkers, Phys. Rev. A 72, 061603 (2005)

Guan, Batchelor, Lee, Phys. Rev. A 78, 023621 (2008)

Yin, Chen, Zhang, Phys. Rev. A 79, 053604 (2009)
Guan, Batchelor, and Lee, Rev. Mod. Phys. 85, 1633 (2013)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Considering a system with N total particles, M of which are
bosons, and the rest are spinless fermions. The first-quantized
form of the solvable Hamiltonian is

N
H= Z —|—2c25 Xi — Xj)

i<j

where 2m = h = 1, ¢ = mg/h?.

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Wavefunction of the system is supposed to be symmetric with
respect to indices i = 1, ..., M(bosons) and antisymmetric with
respecttoi =M + 1, ..., N(fermions).

Coordinate Bethe wavefunction: 0 < xp, < xg, < ... <xg, <L

Uy () = Y Ag(P, Q) Eikrve
P

where o = (01,02, ..., 05), With o; denoting the SU(1]1)
component of the jth particles; P, Q are arbitrary permutations
from Sy group.

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

By solving the Schrédinger equation and using the continuity of
wavefunction, we get the two-body scattering relation

(kp, — kp,)Po.0, + ic
kpﬂ — kpb —ic

AU(P7 Q) = AU(P/,Q)

where
AU (P/7 Q,) = PQaQbAU (P/7 Q)

0 = (-Qu0p--), 0" = (.-0pQ0--)
P=(..PPy.),P = (.PyP,...),b=a+1

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Permutation operator P of two o¢,09,:

00490,

Pyy,00,P0.0, = 1 (identical principle)

A"'UQH'“UQb"'(P/’ Q) — PUQaUQbA---UQﬂ--'UQb"'(P/’ Q/)

Two-body scattering operator:

AO’(P> Q) = SQaQb (ka - kPa)AU(P/v Q)

where .
(ka - kPa) - lCPUchUQb

kpb —kp, +ic

S0.0,(kp, — kp,) =

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Periodic boundary condition:
W(X] ooy Xy ooy XN) = W (X1, ey Xi + Ly ooy X))
Then
As(Pi, Py, ..PN; 0,01, ..., Q) = €NLA, (P, ...Px, Pi; Q1 ..., On, Oi)
Finally, the following equation need to be diagonalize

Sit1,i(kit1 — ki)...Sni(kn — ki)S1,i(ki — ki)...Si—1,i(ki-1 — ki)As(P, Q)
:eikl‘LAa_ (P, Q)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Local state space as the Hilbert space: 1, = C>.
Entire state space with N particles: Hy = [["_, ®h,.
Operator R;j(u):

p—

uPjj — ic

Rij(u) = uric fi=

co o |
o—o o
co~o
— o oo

which acts on the space V; ® V;. Vis auxiliary space, V = C2,
and Pj; is the graded permutation operator.
Yang-Baxter equation:

Ria(A — p)R13(A)Ra3(p) = Rz (p)Ri3(N)Ria (A — p)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Lax operator:
u — icP;
u+ic
which acts in h; ® V and the auxiliary space V is C>.
Monodromy operator:

Lj(kj — u) =

TN(M) = LN(kN — u)...L1 (kl — u) = ( C(u) gEZ; )
Graded RTT relation

R(u —v)[Ty(u)Ty(v)] = [Ty (") T ()R (4 — v)

where
Tn(u) = Ty(u) @41

Ty(v) = 1@, Ty(v)
®; is the graded tensor product, and the definition is
(A @, B)& = (—1)P@-+p(e)p() gagh

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Graded ransfer matrix:
7(u) = str:Tn(u) = A(u) — D(u)

After diagonalize the following equation

7(k)As (P, Q) = e"*A,(P, Q)

Bethe Ansatz equation is obtained

ic

M ic
Hm 1.2 N

oz:lkj_Aa‘_2
N )
Hw:15:12,,,1\/[
jzlkj_Aﬁ_%

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Eigenvalue of transfer matrix:

B Y u—A, +ic/2 - Hjl'v:1(“_kj)
i) =[] (u—Aa — ic/2> (1 T, (u— ki — ic)

a=1 j=1

The coefficients of the polynomial are the eigenvalue of
conserved quantities. They can be expressed as the
multiplication of two parts. One part involves only the &y, ..., ky,
and the other one involves only the Ay, ..., Ay.

There are two independent sets of conserved quantities
respectively in terms of ky,....ky and Ay, ..., Ay.

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

In the thermodynamic limit, Bethe Ansatz equation

p(k) + pu(k) :% + /DO a(k, N)o(A)dA

a(A) + on(A) :/_OO a(\, k)p(k)dk
where
1 4c

alk A = S A=A

Denoting the two sets of single-particle conserved quantities

as hi,(k) and ki, (A). The conserved quantities of the whole
system can be expressed as below.

0,/ = [ Wbk
0, /L = / B (Mo (K)dk



Il. Ballistic transport of the Bose-Fermi mixures in 1D

With the exact expression of the Yang-Yang entropy, and
minimizing the Gibbs free energy, the thermodynamic Bethe
Ansatz equations for equilibrium states at finite temperature are

obtained
e(k) =k* — = T/ a(k,A\)In(1 + e—<P(A)/T)dA
@(A) =pp —pp =T / a(A, k) In(1 + e==®/T) gk,

where 1, and 11, are chemical potentials of fermions and
bosons.

Hydrodynamics
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5.0

3 bosons+fermions IUUBSUD
o bosons - g
. fermions - @
acuum \ 1
- ” ii‘/lna * * 01 00 01 02 03 04 05 06
wley
Phase diagram Entropy at H — 0.1¢,
: I 7CT? /1 1
Luttinger liquid F=E,— — 4=
6 Vb Ve
S gL _
Quantum criticality n(T,p) =ng+T:T'"%G <M luc)
Tz

K (T, p) = ko + TSH-%F <#;LMC>

Guan, Batchelor, and Lee, Rev. Mod. Phys. 85, 1633 (2013)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

For the two independent sets of conserved quantities,
continuity equations are

Orgly(x, 1) + Ol (x,
&qf, (x,1) + axjf, (x,

) =0,
1)=0,i=1,2,..

Local density approximation: For any time and any fuild cell Ax
of the system, the Bethe Ansatz equations hold

1 o0
plk,x,1) + palk,x, 1) =5+ / alk, No(A, x, 0)dA

oo

(A, x, 1) + (A, x, 1) = / a(A, K)plk, x, 1)k

—0o0

Then
ahlot) = [ dkptex. 0 (1

g (n,1) = / dho(A,x, A (A)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

The expectation value of the currents are very difficult to
calculate, but for homogeneous stationary state, they are
expressed as

1) = / kv, (k. x, 1) p(k, x, O (K)
Jon = / vy (A, x, o (A, x, DA (A)

where v, and v, are the sound velocities of the excitations.

_ Oe(k) _ e’ (k)
o)~ P k)
_Op(A) PN
T~ P

vy (k)

—_

vo(A)

where (k) and ¢(A) are the energies of the excitations, p‘,ﬁ’(k)
and p? (A) are the momenta of the excitations.

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

From the exact expressions of the densities and currents, the
continuity equations can be expressed as

/ dk (Dip(k,x,1) + Ox(vy(k,x,1)p(k, x,1))) hiy(k) = 0
/dA (00 (Ao, 1) + De(ve (A, x, D)o (A,x, 1)) B (A) = 0, = 1,2, ..
From the completeness of the function spaces {4}, (k)} and
{5 (A)}

Orp(k,x,1) + vk, x, 1)p(k, x, 1)) =

0
0o (A, x, 1) + Or(ve (A, x,1)o (A, x,1)) =0

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

For sound velocities,

) = 2nlp6) + pu(l)] = 1+ [ dhatk, e () ()
P 8) = 2nl0(4) + 04(0)] = [ dka(, g 0

& (k) =¢' (k) + /_ Z dMa(k, My (A)¢! (A)

SA) = /_ Z dka(A, k), (K)e' (k)

where
np(k) = p(k)/lp(k) + pn(k)]
ne(A) = a(A)/lo(A) + an(A)]
Then, the continuity equations can be simplified
Omp(k,x,t) +v,(k,x,t)0n,(k,x,t) =0
O (A, x,t) +vo (A, x,1)0ung (A, x, 1) =0

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Scaling invariant
» Scaling transformation
x =A%
/=Nt

(ny;n) = X (np,no)

pr o

» After this transformation, the continuity equations and
¢ =xt and V(£) = (n,, ny)t” should keep unchanged.

7=0
a=0
a=-1,b=0

» n, and n, are functions of .
5 =

X X
t

»(1png) = V() = V(=)



Il. Ballistic transport of the Bose-Fermi mixures in 1D

» The continuity equations become

(vo(k, &) = &)Oen,y(k,§) =0
(0 (A,€) — €)eng(A,€) = 0

» Boundary conditions

im (k€)= a0, lim_my(k,€) = (R
lim n,(A€) = nﬁ(k),g ligl ny (A, €) = n% (k)

E——o0

» Solutions

np(k, §) ng(k)H vy (k, ) — &) + ng(K)H(& — v, (k,€))
ne(A,§) = ng(MH(vs(A€) =€) +ng(AMH(E = va(A,€))

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

08

= < 2 0sf

> - < 04

=z [ Zo6f oo

<04
02
oLo-

The sound velocities at zero temperature and the occupation number
solutions of quasi-momentum (a-d) and rapidity (e-h) with p = 12,
up = 11,¢ = 10. The Asterisks mark k£ = 0, +ko( and/or A = 0, +=Ay)

(m*)fl _ azgo(k) | _ Vg/(ko)vg(ko)
Pl ()T T ey (ko)
np(k,€) = nb(Hy(k,€) — &) + nR(K)H(E — v, (k,€))

no(A,€) = ng(MHvs(A, ) =€) +ng(A)H(E —va(A,€))

Hydrodynamics
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2

1.5 0.2
- | | 0.15
0.1
0.5
0.05
0
-10 0 10

T

The light-core diagram of the energy current. 7, = 1, Tx = 0.5,
wp = 11, pp = 12, ¢ = 10 which is in Bose-Fermi mixture phase.
Key observation: there exist steady states and transition regions

JE = (T} — T3) S, H (vi — [€])

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

» Dressed charges f,(k) and g,(A) are the charges carried

by the excitations, and f(k) and g(A) are the charges
carried by single particle.

Ao

£,(0) =) + / alk — A)gy(A)dA

Ao

,ko
8q(A) =g(A) + Lk a(A — k)f,(k)dk

» Energy
f) =K =y, g(A) =y —

» For total number of particles f(k) =1, g(A)=0
» For number of bosons f(k) =0, g(A) =1

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

» Densities

- [ " (k. )k + / " e(W)o (A E)dA

» Currents

o= [ Rk, )k, Ok + / e (A (A E)dA

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

» Regime lim [ + 9 (ko)| # 0 and lim |¢ 4 v (Ag)| # 0.
T—0 T—0

q(€) =qo + T (g, ) H (v (Ro) — [€]) + T2 (g, DH(=v5(Ao) — &)
+ T2 (q. DH(E — vy (Ao)) + T2 (g, r)H (v (ko) — [€])
+ T2y (g, H(=vp (ko) — &) + r*T*Q(g, H(E — v (ko)) + O(T°)

» Definitions of Q,(g,r) and (g, r)

™

12000 (A0)vY (Ao)

VO/ A
— (84(Ro) + r*g4(—Ao)) <B(A0) " VE((A(?)))]

Qulg.r) = Fgmn—ﬁgeﬂm

Q(q,r) = m [f,;(ko) - rzfl;(—ko)
. 2, g/(kO)
-—mww+rh@m»<<m»+&@®>]

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

» Regime lim |€ +v9(ko)| # 0 and lim [ +v)(Ag)| # 0.
T—0 T—0

J(&) = TN, (q, r)H(V) (Ao) — [€]) + T*THg(g, H(—vg (o) — €)
+ T (g, 1)H(E — V) (Ao)) + T°TI(q, r)H (V) (ko) — |€])
+ T’ (g, )H(—V) (ko) — &) + r*TIs(q, 1)H (§ — v) (ko))
+0(T?)

» Definitions of Q,(q,r) and Q¢ (g, r)

(g r) = [g;<Ao>+r2g;<—Ao>—(gqmo)—rzgq(—Ao))B(Ao)}

T
12¢5(Ao)

I1y(q. ) = [f<k0>—r2f ~ (fy ko) + 7y (ko)A (k@}

12¢4(ko)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

The energy current indicates a ballistic transport of quasiparticles

2
Fo= (1T Y H i [8)

i=c,b

It is well established that a linear Luttinger liquid approximates
the dynamics of a real critical Hamiltonian up to contributions
that are irrelevant in the renormalization group sense. While this
guarantees that such description gives the most relevant contri-
bution to the large distance behavior of correlation functions on
the ground state, one could wonder whether or not the irrelevant
terms affect the characterization of low-temperature transport,
i.e. (k) = vIk| + 5= |k|k + O(K?).

(PRL 120, 176801 (2018)).

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

> The transition regime & 19 (ko) ~ O(T)

B 5 (ko)
q(&) = qo + T (q,1)D: (5(’(k°)w>

f + V k()
+
_ TQf (g, r)D, (5(, ko) v 0/ (ko) + 0
. _ - VO k()
J(§) =TIl (¢, r)D, <60 ko) = T (k)
f + VO k()
+ TTLf (g, r)D: <50 ko) TO’ +O0(T

» Definition of D,(z)

D,(z) =1In(1 + €°) — rin(1 + €

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

» The transition regime ¢ 19 (Ag) ~ O(T)

_ .0
9(&) = qo + T (¢, 1D, (wé(A())fT QV'(E/(\AOO)
0
— T (q,7)D; (@6(&))%) +0(T?)
. . o e—(A
j(€) =TT, (¢,1)D, (@O(Ao)%@(&o‘;))
0 A
+TIL (¢,7)D; (996(1\0)5;;/7?5\03))) +0(1?%)

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

> Definitions of (¢, r) and2 (g, r)

sign(vg’(ko))

in(q,r) - 2mv9 (ko)) JalFho)
sign(V0!
Qgi(q,r) = %&(?AO)

» Definitions of Hfi(q, r) and IT¥ (¢, )

117 (g, r) = V), (ko))$% (g, 1)
Hgi(q, r) = v((),(/\o))ﬂgt(% r)

Hydrodynamics
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Profiles of energy current at low temperature. T, = 0.04, Tx = 0.01,
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Profiles of Bose density at low temperature. T, = 0.04, Tx = 0.01,
wp = 11, pp = 12, ¢ = 10 which is in Bose-Fermi mixture phase.
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Profiles of Bose current at low temperature. T, = 0.04, Tx = 0.01,
wp = 11, pp = 12, ¢ = 10 which is in Bose-Fermi mixture phase.

The backward currents of bosons due to the negative mass of
effective excitations €, (k) = v|k| + 5=|k|k + O(k*) and p,(k) = r|k|.
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Profiles of Fermi density at low temperature. T, = 0.04, Tz = 0.01,
wp = 11, pp = 12, ¢ = 10 which is in Bose-Fermi mixture phase.
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Profiles of Fermi current at low temperature. 7, = 0.04, Tz = 0.01,
wp = 11, pp = 12, ¢ = 10 which is in Bose-Fermi mixture phase.
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The light-core diagram of the energy current. 7, = 1, Tx = 0.5,
wp = 11, pp = 12, ¢ = 10 which is in Bose-Fermi mixture phase.
Key observation: there exist steady states and transition regions

JE = (T} — T3) S, H (vi — [€])

Hydrodynamics



Il. Ballistic transport of the Bose-Fermi mixures in 1D

Conclusion

[.  Universal ballistic transports of integrable systems has
been introduced, i.e. Lieb-Linger Bose gas and the Bose-Fermi
mixtures.

Il. A close connection to the Luttinger liquid theory has been dis-
cussed.

On-going research topics
» Emergent Hydrodynamics of quansi-1D ultracold atoms and
hydrodynamic diffusion in integrable systems
Oqi(x, 1) + OuJi(x, 1) = 0
<Jf(x7 t)> = ]:i(xv t) + ZEJ(xa t)aX<Qj(x7 t)> +..

J

Hydrodynamics
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