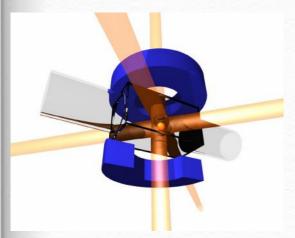
Fundamental Problems in Quantum Non-Equilibrium Dynamics I

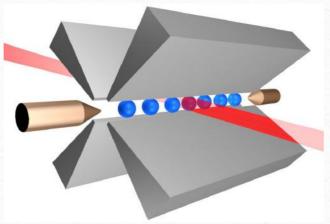
Hui Zhai

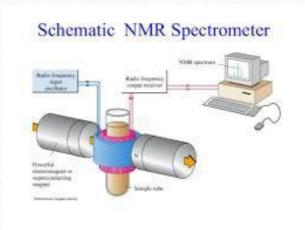
Institute for Advanced Study
Tsinghua University
Beijing, China

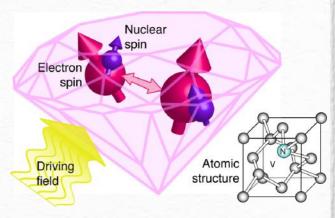
CSRC Workshop on Quantum Non-Equilibrium Phenomena June 2019

Synthetic Quantum Matter







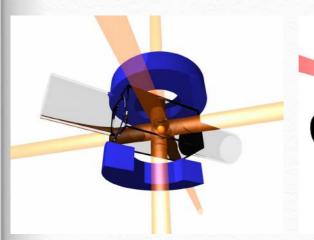


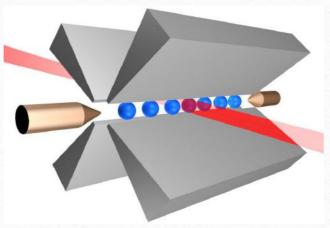
Cold Atoms Trapped Ion

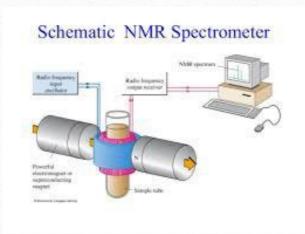
NMR

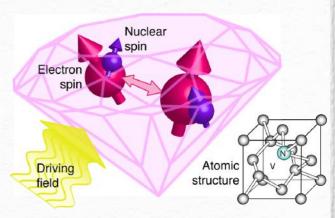
NV Center

Synthetic Quantum Matter









Cold Atoms

Trapped Ion

NMR

NV Center

v.s. Solid State Quantum Materials

Quantum Dynamics

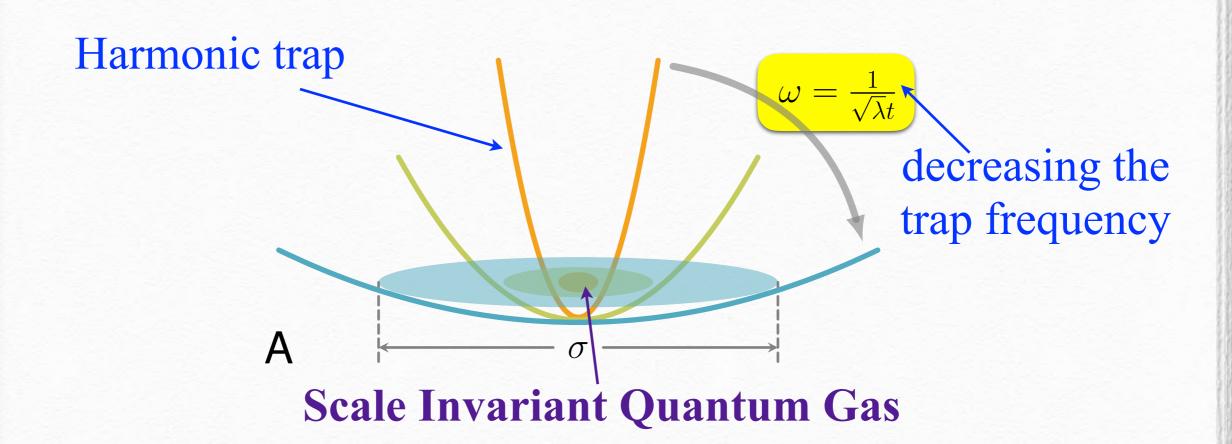
Non-Equilibrium Dynamics

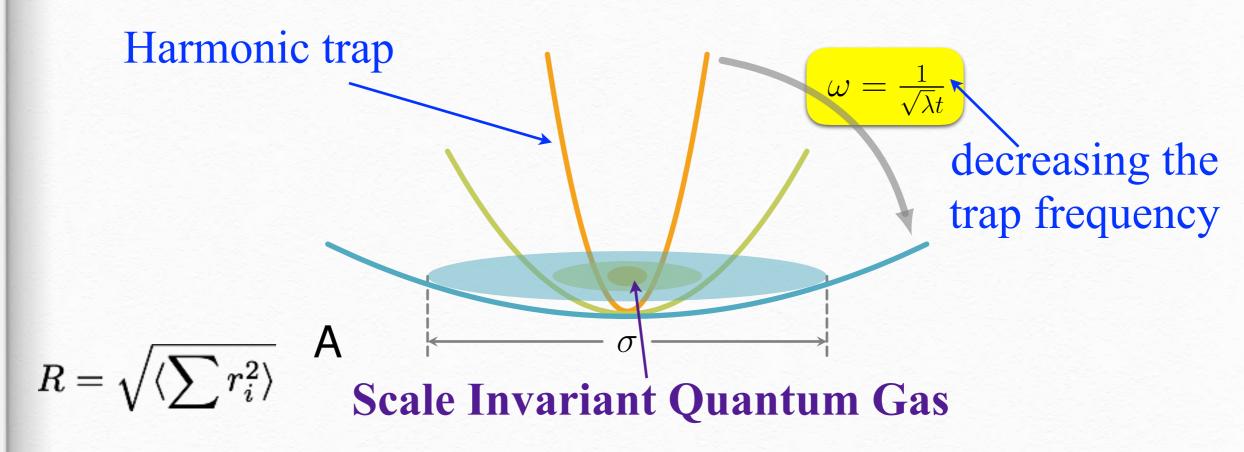
- Simple
- Fundmental

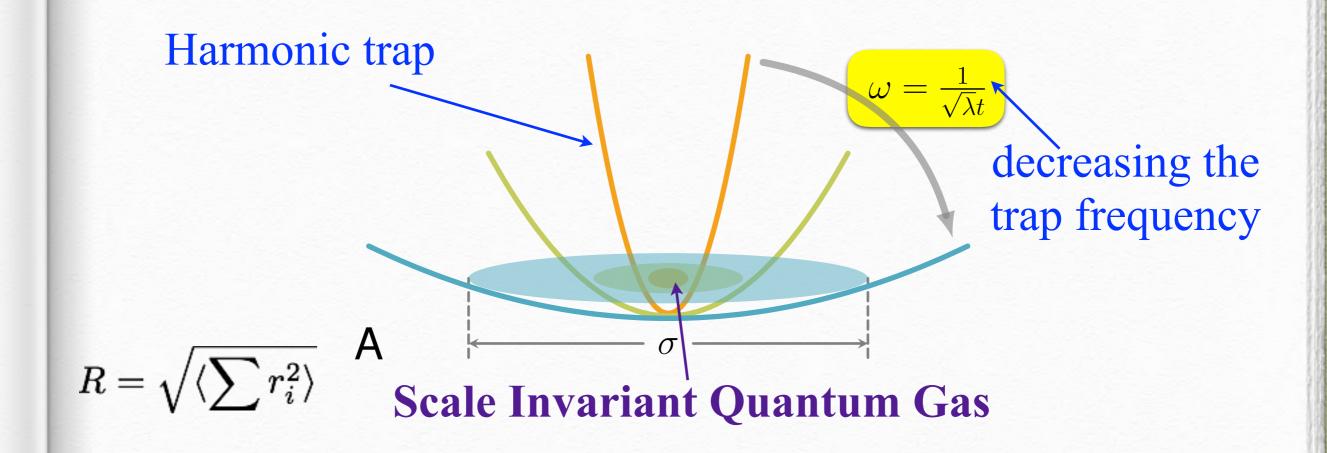
Universal

- Directly Relevant to Experiments
- Mathematically Solid/Rigorous

Symmetry





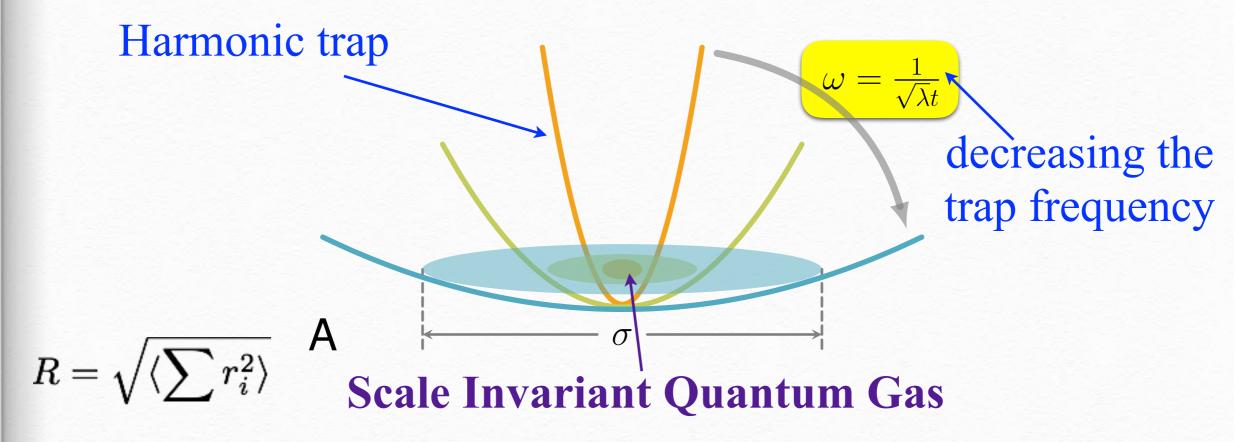


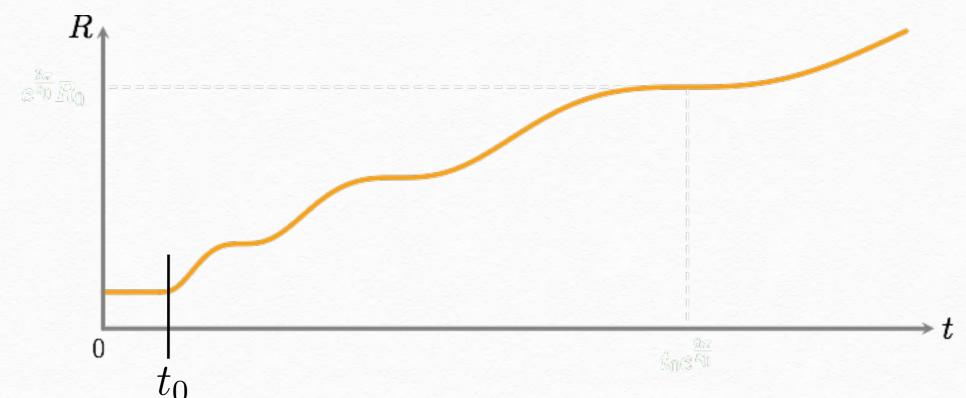
Harmonic length:

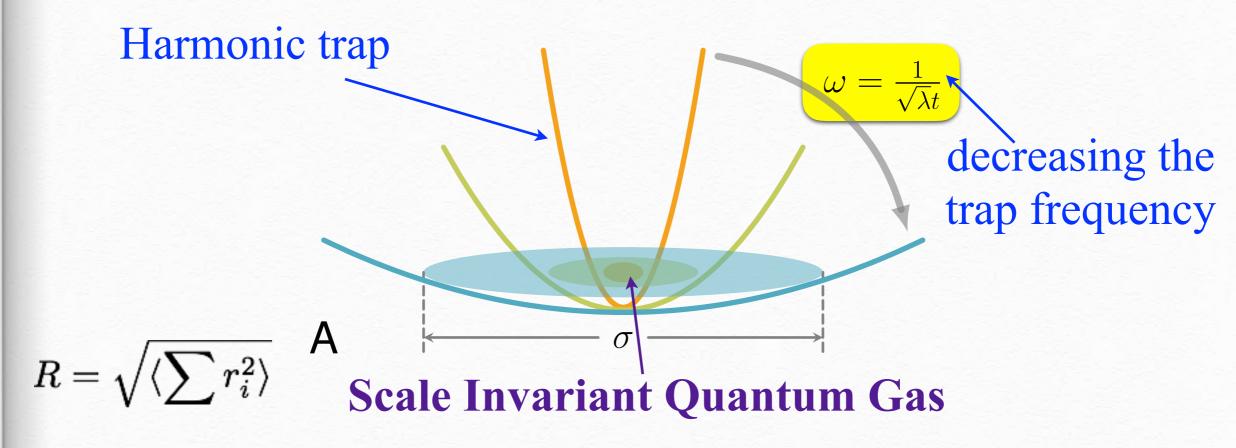
$$a = \sqrt{\frac{\hbar}{m\omega}}$$

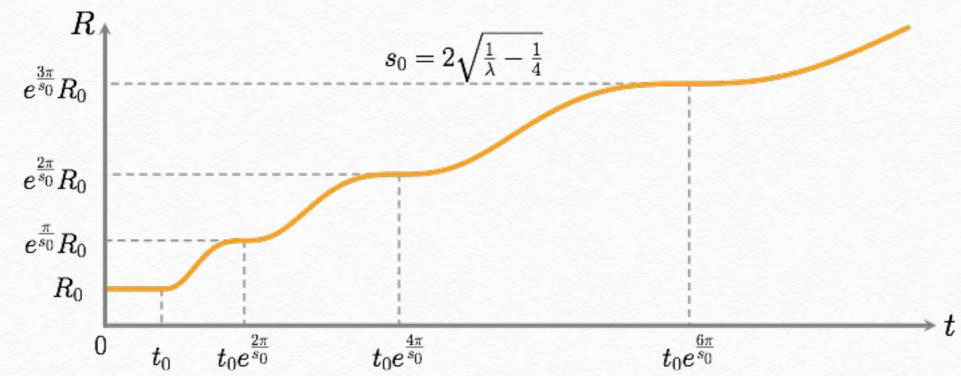
By dimension analysis: $\mathcal{R} \sim \sqrt{t}$

$$\mathcal{R} \sim \sqrt{t}$$









Scale Invariance

$$i\hbar \frac{\partial}{\partial t}\Psi = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 \Psi$$

Scale Transformation

$$egin{pmatrix} \mathbf{r}_i
ightarrow \Lambda \mathbf{r}_i \ t
ightarrow \Lambda^2 t \ \end{pmatrix}$$

$$\frac{1}{\Lambda^2}$$

$$\frac{1}{\Lambda^2}$$

No other energy scale except for the kinetic energy

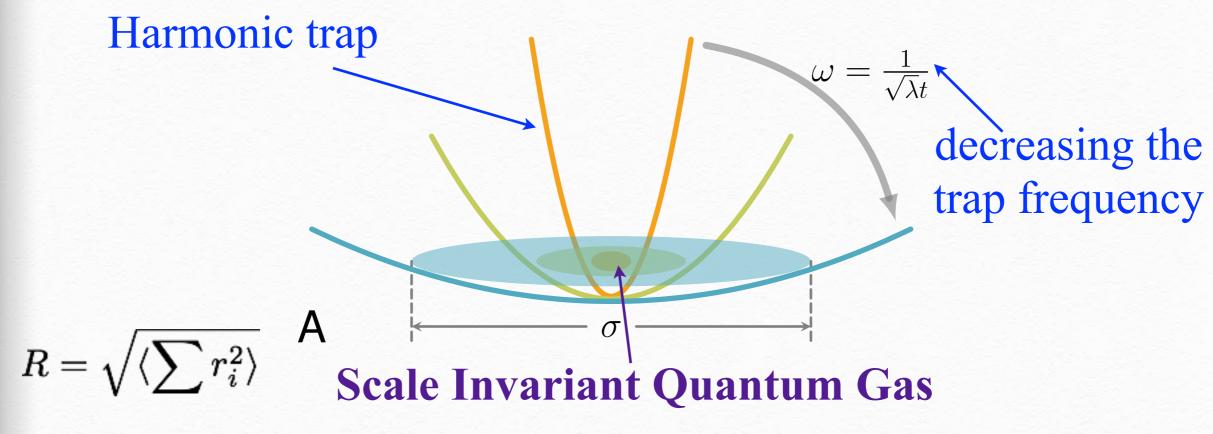
Zoo of Scale Invariant Quantum Gases

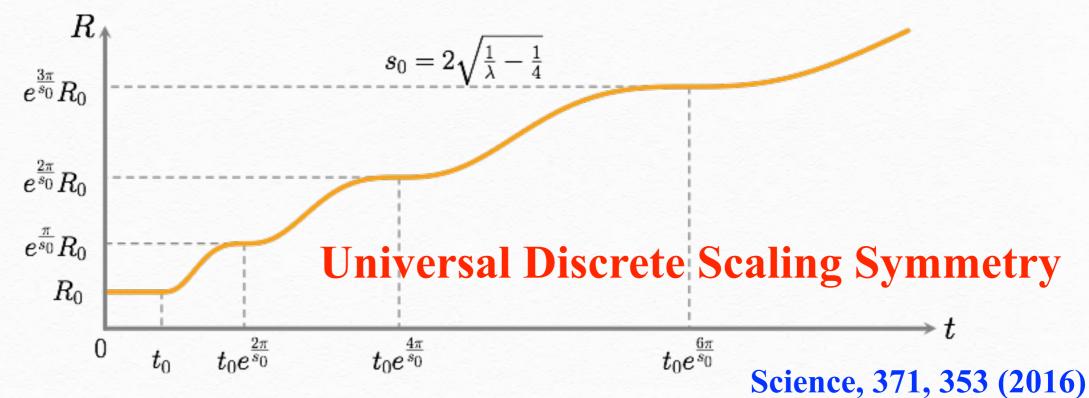
Non-interacting bosons/ fermions at any dimension	No other length scale except for density
Unitary Fermi gas at three dimension	Density and a_s $a_s=\infty$
Tonks gas of bosons/ fermions at one dimension	Density and g_{1D} $g_{1D}=\infty$

Universal behavior:

$$\langle V \rangle = \alpha \langle T \rangle$$

Universal Discrete Scaling Symmetry

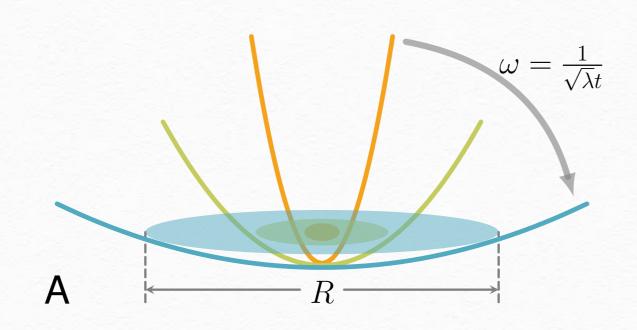




Universal Phenomena

- Universal
 - **☐** Independent of Temperature
 - ☐ Independent of State of Matter
 - □ Independent Dimension

Scaling Symmetry in a Harmonic Trap



$$i\hbar \frac{\partial}{\partial t}\Psi = \left| H + \sum_{i} \frac{1}{2} m\omega^{2} r_{i}^{2} \right| \Psi$$

Scale Transformation

$$egin{pmatrix} \mathbf{r}_i
ightarrow \Lambda \mathbf{r}_i \ t
ightarrow \Lambda^2 t \ \end{pmatrix}$$

$$\frac{1}{\Lambda^2} \quad \frac{1}{\Lambda^2} \quad \frac{1}{\Lambda^2}$$

This scaling symmetry exists only if

$$\omega = \frac{1}{\sqrt{\lambda}t}$$

$$i\frac{d}{dt}R^{2} = \sum_{i} \langle [r_{i}^{2}, H] \rangle = 2i \langle \hat{D} \rangle$$

$$\frac{1}{2} \sum_{i} (\mathbf{r}_{i} \cdot \mathbf{p}_{i} + \mathbf{p}_{i} \cdot \mathbf{r}_{i})$$

$$\sim \omega = \sqrt{rac{1}{4t^2} + rac{1}{\lambda t^2 \log^2 t/t_*}}$$
 Generator of spatial scaling transformation

-t

$$i\frac{d}{dt}R^{2} = \sum_{i} \langle [r_{i}^{2}, H] \rangle = 2i\langle \hat{D} \rangle$$
$$i\frac{d}{dt}\langle \hat{D} \rangle = \langle [\hat{D}, H] \rangle = 2i\left(\langle H \rangle - \omega^{2}R^{2}\right)$$
$$\frac{d}{dt}\langle H \rangle = \langle \frac{\partial}{\partial t}H \rangle = \omega \dot{\omega}R^{2}$$

$$i\frac{d}{dt}R^2 = \sum_{i} \langle [r_i^2, H] \rangle = 2i \langle \hat{D} \rangle$$

$$i\frac{d}{dt}\langle\hat{D}\rangle = \langle[\hat{D}, H]\rangle = 2i\left(\langle H\rangle - \omega^2 R^2\right)$$

$$\frac{d}{dt}\langle H\rangle = \langle \frac{\partial}{\partial t}H\rangle = \omega \dot{\omega}R^2$$

$$\frac{d^{3}}{dt^{3}}R^{2} + 4\omega^{2}\frac{d}{dt}R^{2} + 4\omega\dot{\omega}R^{2} = 0$$

$$\frac{1}{t^{3}} \qquad \frac{1}{t^{3}} \qquad \frac{1}{t^{3}}$$

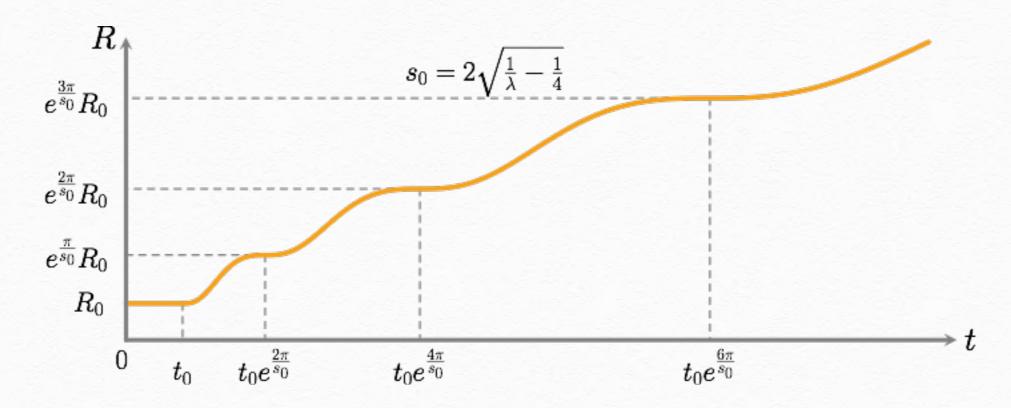
Scaling Symmetry in Time: $t \to \lambda t$

 $\omega \sim \frac{1}{t}$

$$t \to \lambda t$$

Boundary Condition Breaks the Scaling Symmetry to a Discrete One:

$$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$$



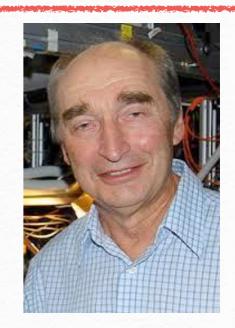
Why plateaus?

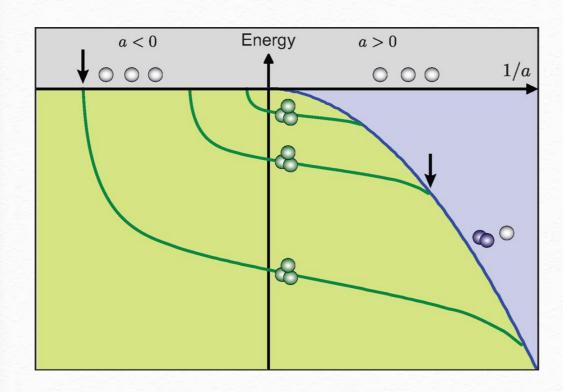
$$\frac{d^n}{dt^n} \langle \hat{R}^2 \rangle |_{t=t_0} = 0$$

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970





Universal Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970

$$\left[-\frac{\hbar^2\mathrm{d}^2}{2m\mathrm{d}\rho^2} - \frac{s_0^2 + 1/4}{m\rho^2}\right]\psi = E\psi$$

$$\left[\psi = \sqrt{\rho}\cos[s_0\log(\rho/\rho_0)]\right]$$

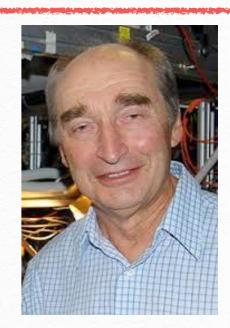
$$ho o e^{2\pi/s_0}
ho$$
 $E_{
m T}^{(n+1)}/E_{
m T}^{(n)} \simeq e^{-2\pi/s_0}$

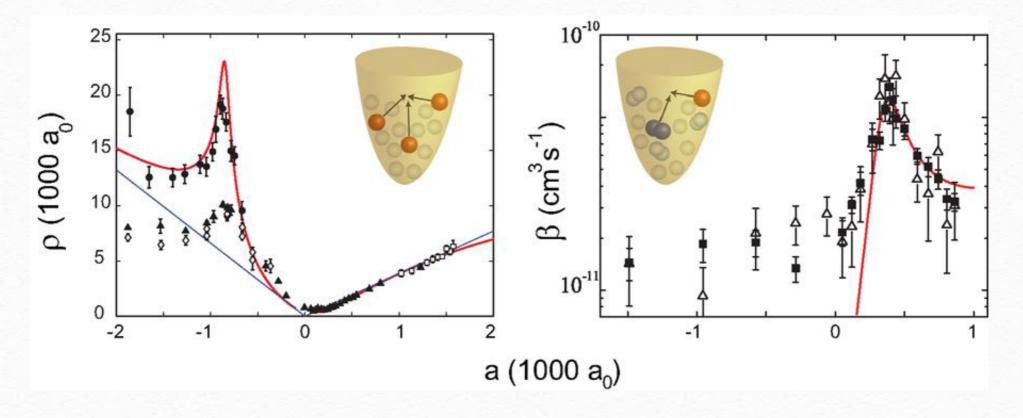
Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970



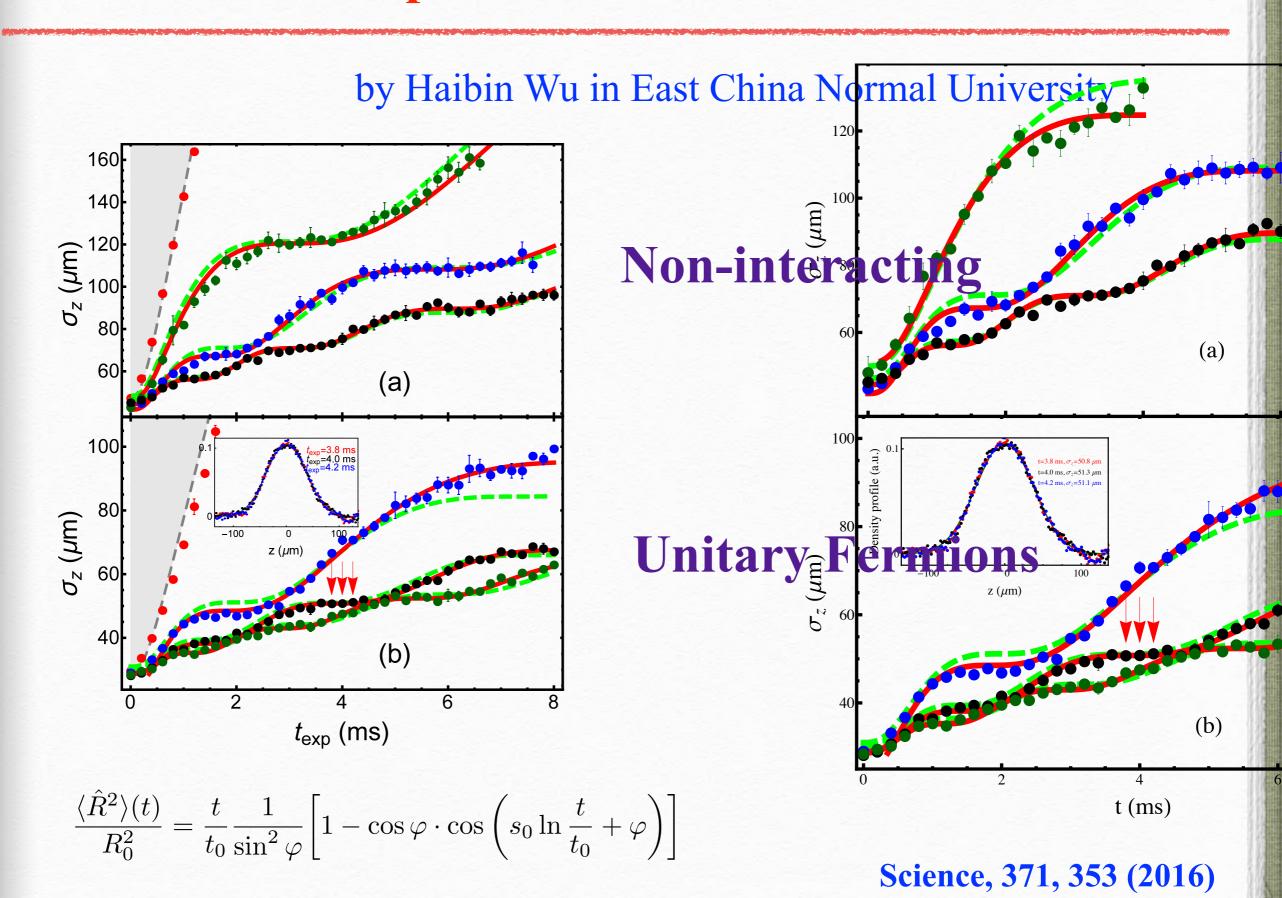


Innsbruck 2005, and many later

Connection to the Efimov Effect

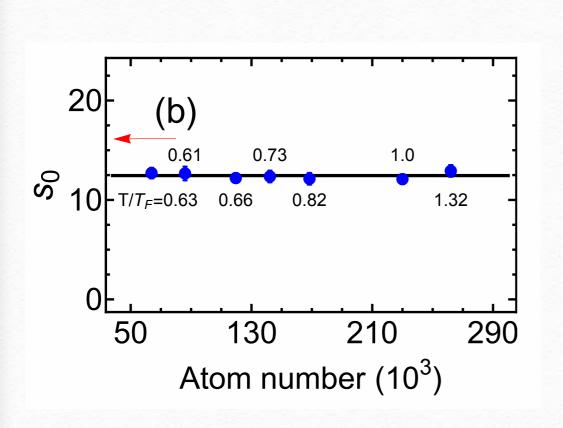
The Efimov Effect	The "Efimovian" Expansion
$-\frac{\hbar^2 d^2}{2md^2 \rho} \psi - \frac{\lambda}{\rho^2} \psi = E\psi$	$\frac{d^3}{dt^3}\langle \hat{R}^2 \rangle + \frac{4}{\lambda t^2} \frac{d}{dt} \langle \hat{R}^2 \rangle - \frac{4}{\lambda t^3} \langle \hat{R}^2 \rangle = 0.$
Spatial continuous	Temporal continuous
scaling symmetry	scaling symmetry
Short-range boundary condition	Initial time
$\psi = \sqrt{\rho} \cos[s_0 \log(\rho/\rho_0)]$	$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$
Spatial discrete scaling	Temporal discrete scaling
$\begin{array}{c} \text{symmetry} \\ \rho \rightarrow e^{2\pi/s_0} \rho \end{array}$	$\begin{array}{c} \text{symmetry} \\ t \rightarrow e^{2\pi/s_0}t \end{array}$

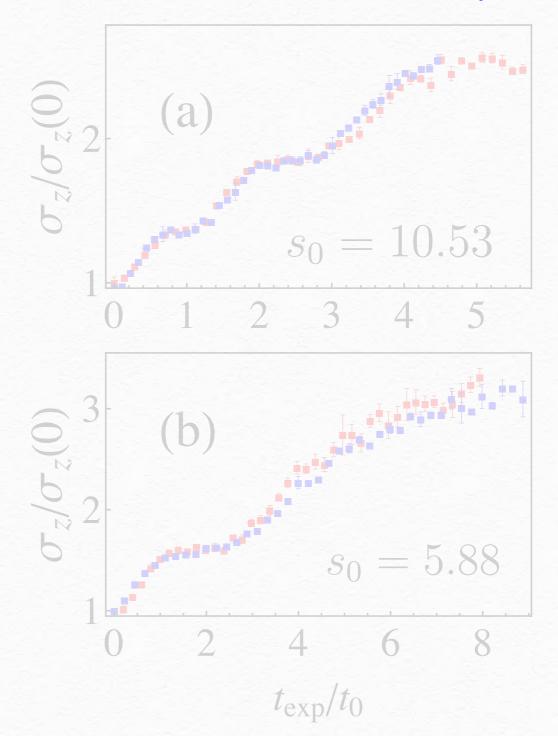
Experimental Observation



Experimental Observation

by Haibin Wu in East China Normal University



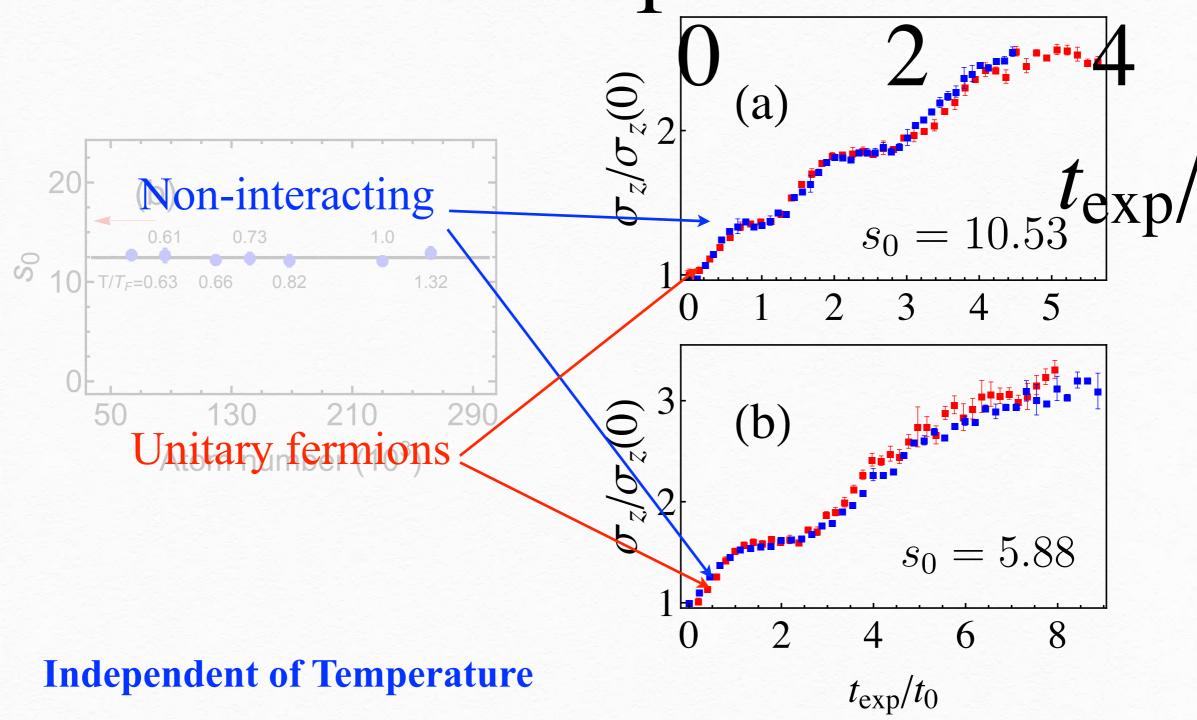


Independent of Temperature

Independent of State of Matter

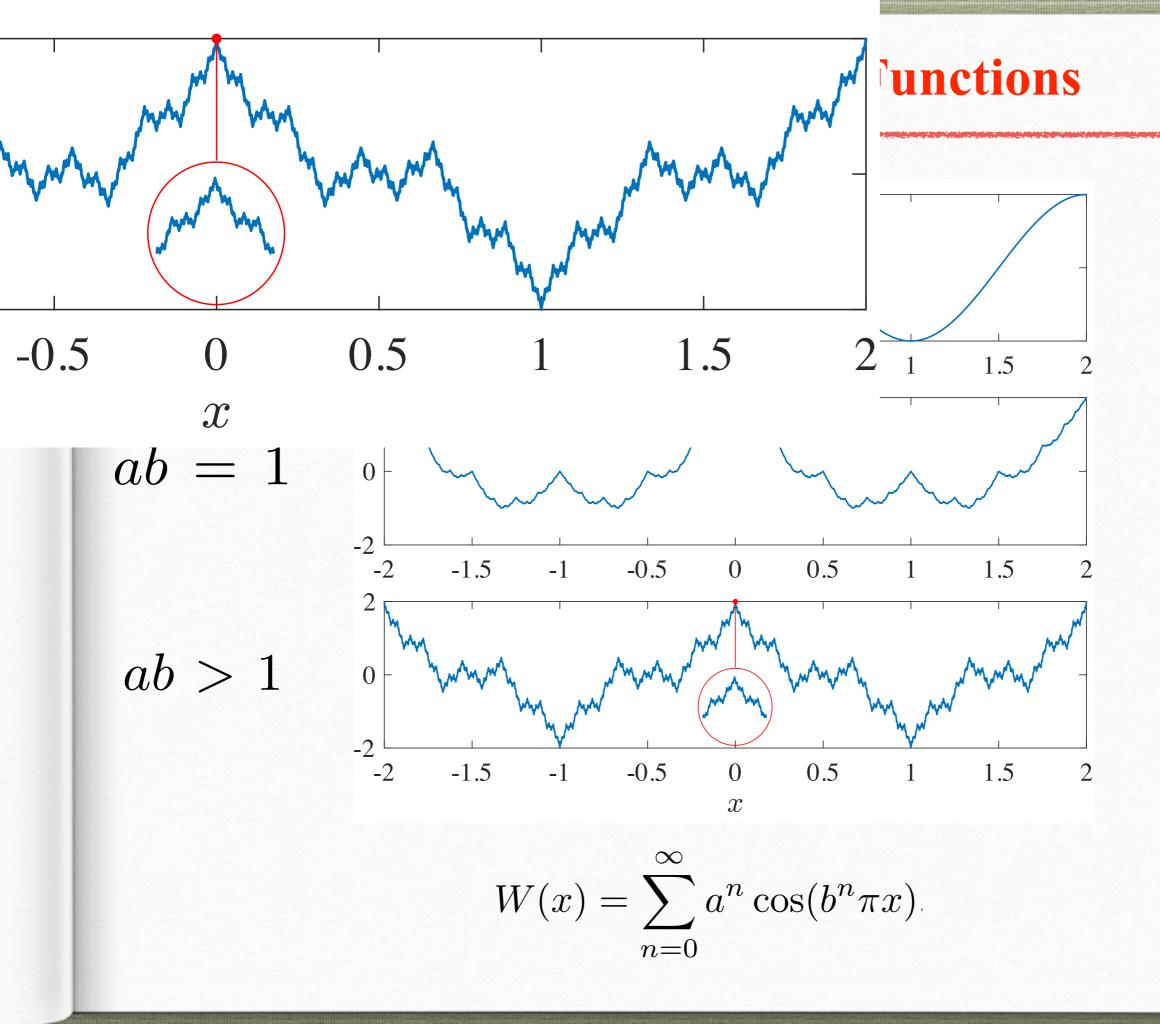
Science, 371, 353 (2016)

Experimental Observation



Independent of State of Matter

Science, 371, 353 (2016)



Eigen-Energy with Scaling Symmetry

$$\left[-\frac{\hbar^2 \mathrm{d}^2}{2m \mathrm{d}\rho^2} - \frac{s_0^2 + 1/4}{m\rho^2} \right] \psi = E\psi$$

$$\rho \to \lambda \rho$$

$$E \to \frac{E}{\lambda^2}$$

The Equation is Invariant

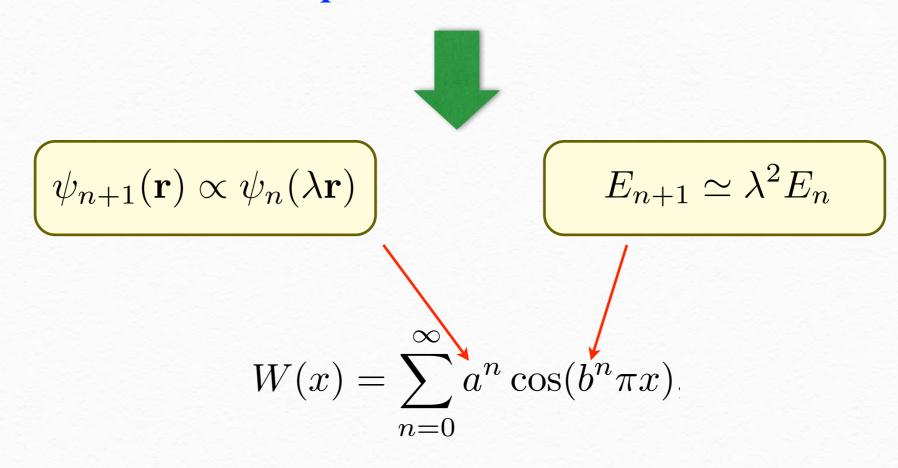
Eigen-Energy with Scaling Symmetry

$$\left[-\frac{\hbar^2 \mathrm{d}^2}{2m \mathrm{d}\rho^2} - \frac{s_0^2 + 1/4}{m\rho^2} \right] \psi = E \psi$$

$$\rho \to \lambda \rho$$

$$E \to \frac{E}{\lambda^2}$$

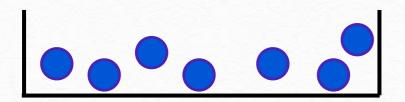
The Equation is Invariant



Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

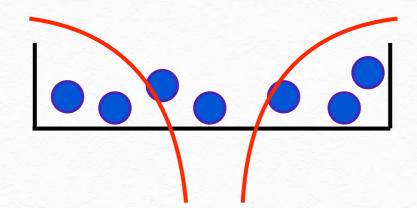
Dynamical Fractal from Quench Dynamics

Potential Quench:



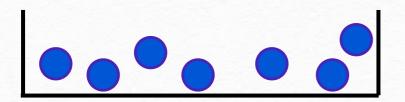
$$t = 0$$

$$V(x) = -\frac{\hbar^2}{2m} \frac{s_0^2 + 1/4}{x^2 + r_0^2}$$

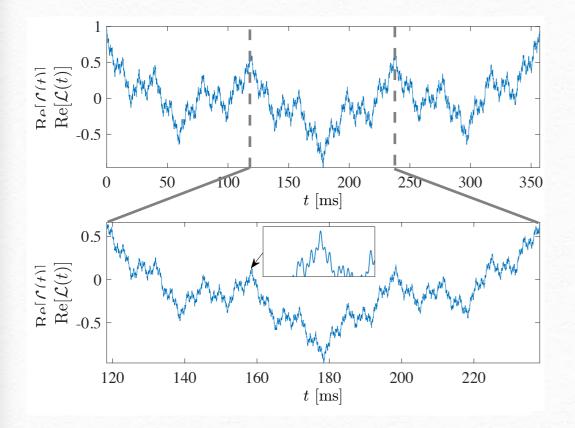


Dynamical Fractal from Quench Dynamics

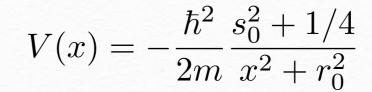
Potential Quench:

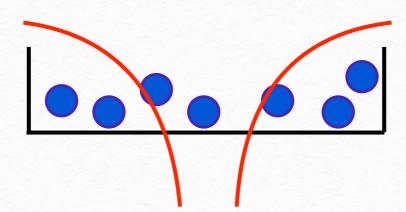


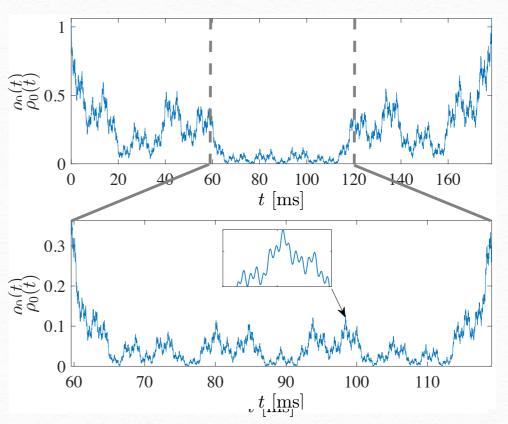
$$t = 0$$



Loschmidt Echo







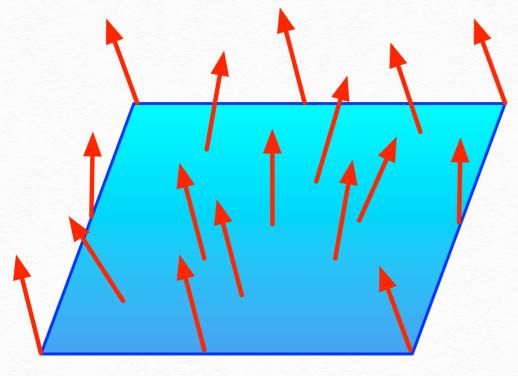
Zero-momentum Distribution

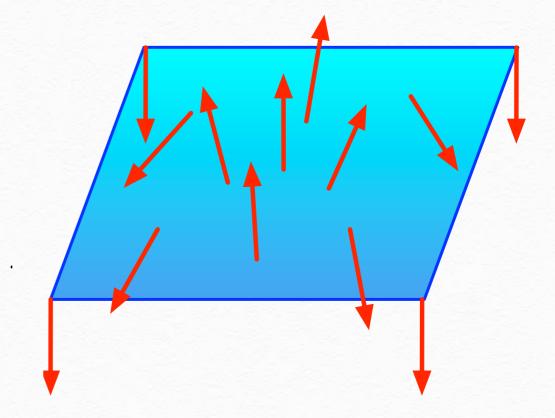
Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

Topology

Topological Band Theory

$$\hat{\mathcal{H}} = \sum_{\mathbf{k}} (\hat{c}_{\uparrow,\mathbf{k}}^{\dagger}, \hat{c}_{\downarrow,\mathbf{k}}^{\dagger}) H_{\mathbf{k}} \begin{pmatrix} \hat{c}_{\uparrow,\mathbf{k}} \\ \hat{c}_{\downarrow,\mathbf{k}} \end{pmatrix}$$
$$\mathcal{H}(\mathbf{k}) = \frac{1}{2} \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$



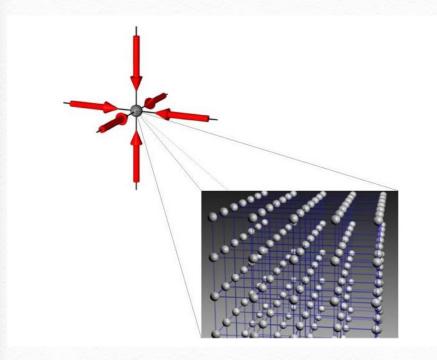


Topological Trivial

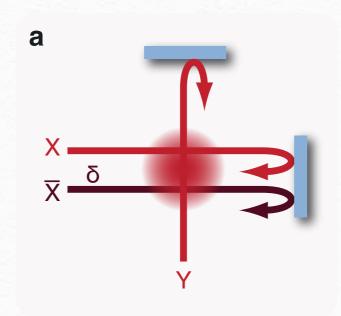
Topological Non-trivial

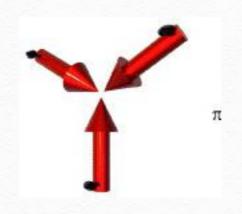
$$\Pi_2(S^2) = Z$$

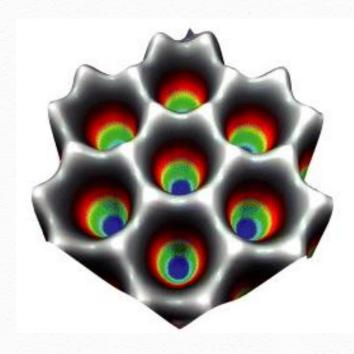
Optical Lattice



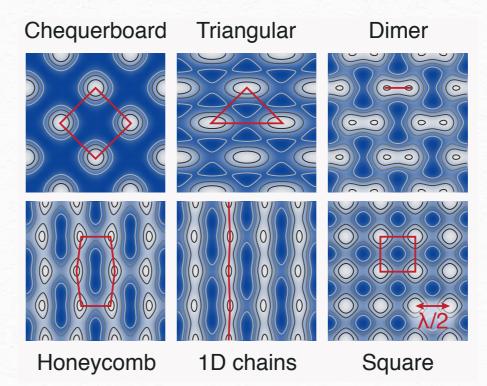
Cubic Lattice





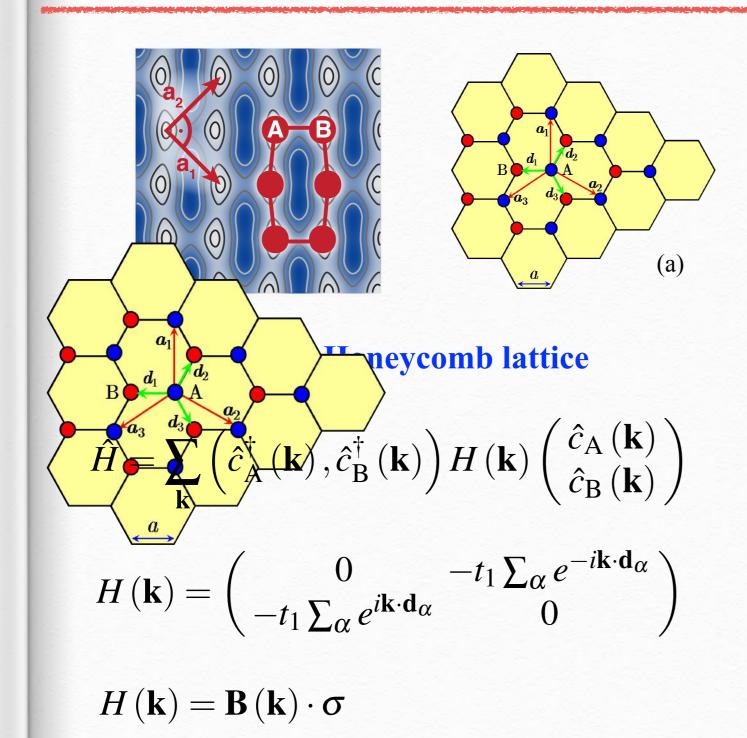


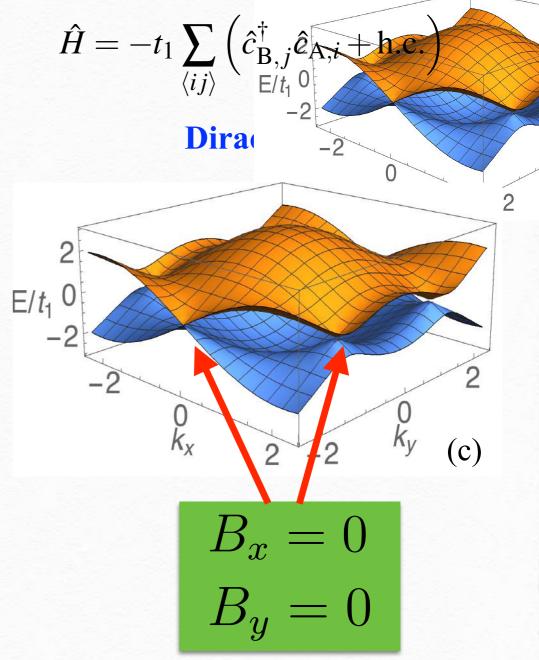
Triangular Lattice



Tunable Geometry (ETH, 2012)

Dirac Point: Gapless





$$B_{x}(\mathbf{k}) = -t_{1} \sum_{\alpha} \cos(\mathbf{k} \cdot \mathbf{d}_{\alpha}); B_{y}(\mathbf{k}) = -t_{1} \sum_{\alpha} \sin(\mathbf{k} \cdot \mathbf{d}_{\alpha})$$

From Dirac Point to Haldane Model

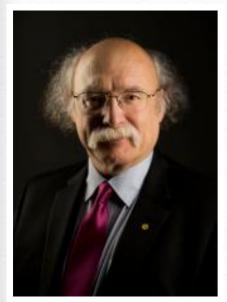


Photo: A. Mahmoud

F. Duncan M. Haldane

Prize share: 1/4

VOLUME 61, NUMBER 18

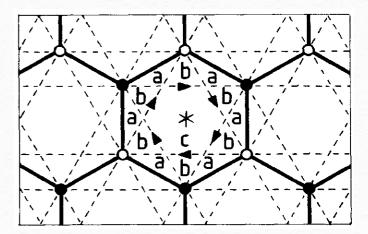
PHYSICAL REVIEW LETTERS

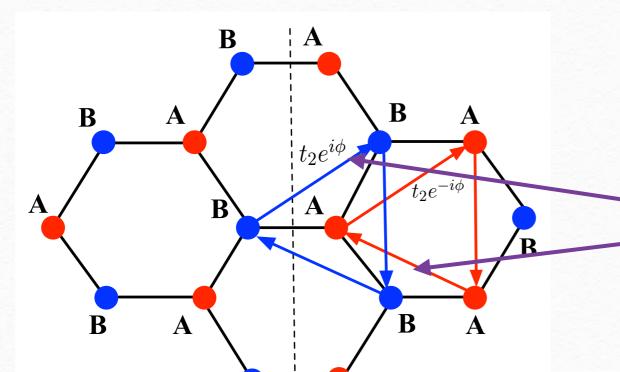
31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)



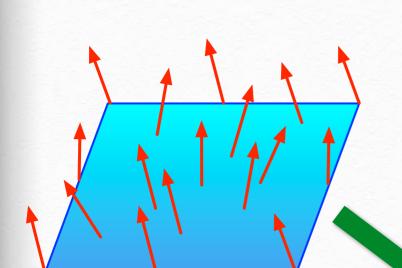


How to realize this nontrivial next-nearest hopping ??

While the particular model presented here is unlikely to be directly physically realizable, it indicates that, at

Haldane Model

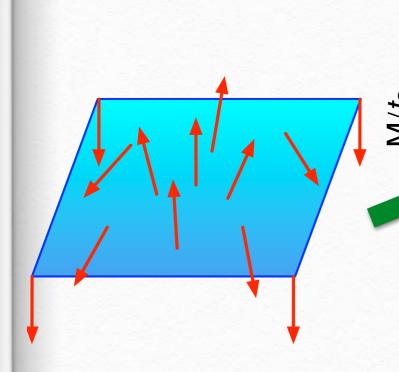
$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

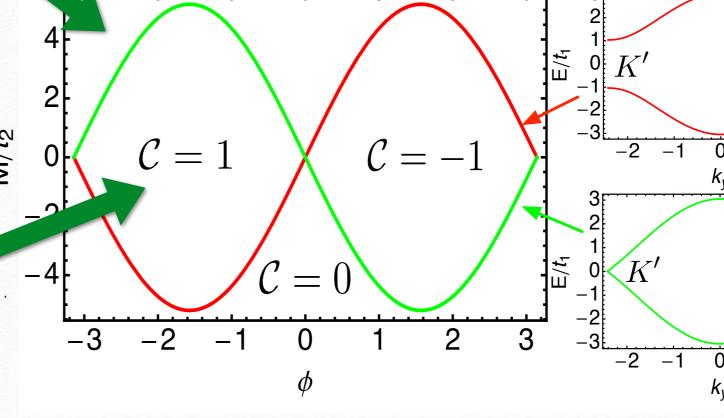


$$h_x = -J_1 \left[\cos k_x + \cos \left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) + \cos \left(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2} \right) \right]$$

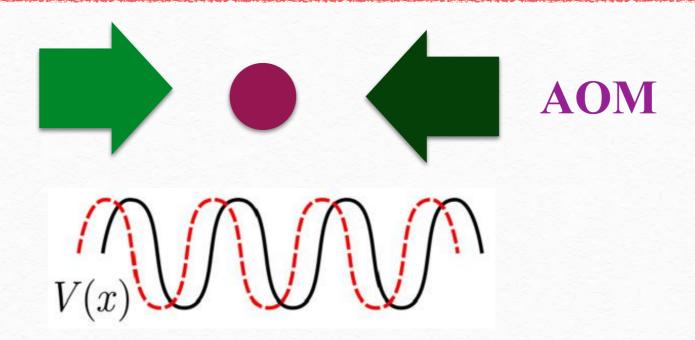
$$h_y = -J_2 \left[\sin \left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) + \sin \left(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2} \right) \right]$$

$$h_z = M + 2J_2 \sin \phi \left[\sin \left(\sqrt{3}k_y \right) + \sin \left(\frac{3k_x}{2} - \frac{\sqrt{3}k_y}{2} \right) - \sin \left(\frac{3k_x}{2} + \frac{\sqrt{3}k_y}{2} \right) \right]$$





Shaking Optical Lattice



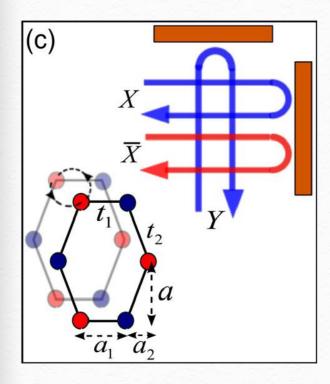
$$\hat{F} = \hat{U} (T_i + T, T_i) = \hat{T} \exp \left\{ -i \int_{T_i}^{T_i + T} dt \, \hat{H} (t) \right\}$$

For sufficiently fast modulation, if one only concerns the observation at integer period

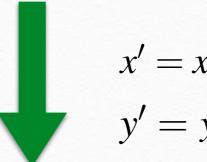
$$\hat{F} = e^{-i\hat{H}_{\rm eff}T}$$

$$\hat{H}_{\text{eff}} = \hat{H}_0 + \sum_{n=1}^{\infty} \left\{ \frac{[\hat{H}_n, \hat{H}_{-n}]}{n\omega} - \frac{[\hat{H}_n, \hat{H}_0]}{e^{-2\pi n i \alpha} n \omega} + \frac{[\hat{H}_{-n}, \hat{H}_0]}{e^{2\pi n i \alpha} n \omega} \right\}$$

Shaking Optical Lattice



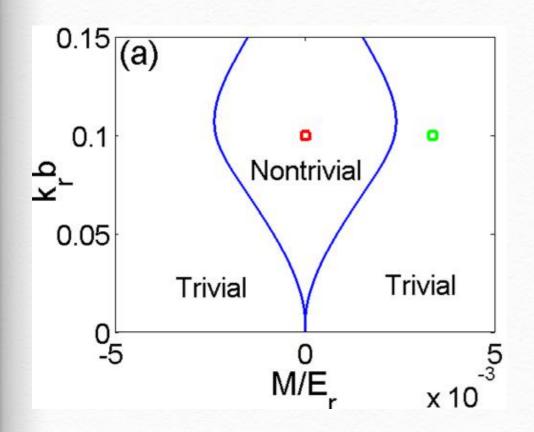
$$H = -\frac{\hbar^2 \nabla^2}{2m} + V \left[x + b \sin \left(\omega t + \varphi \right), y + b \sin \left(\omega t \right) \right]$$



$$x' = x + b\cos(\omega t)$$

$$y' = y + b\sin(\omega t)$$

$$H(x, y, t) = \frac{\hbar^2}{2m} \left[-i\partial_x - A_x(t) \right]^2 + \frac{1}{2m} \left[-i\partial_y - A_y(t) \right]^2 + V(x, y)$$



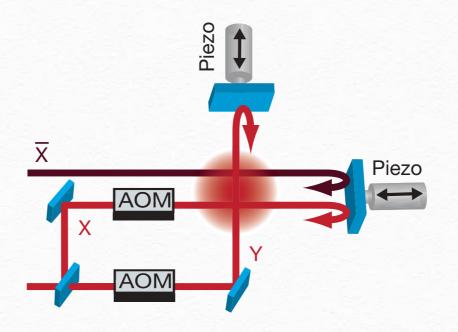
$$A_{x}(t) = m\omega b \sin(\omega t)/\hbar$$

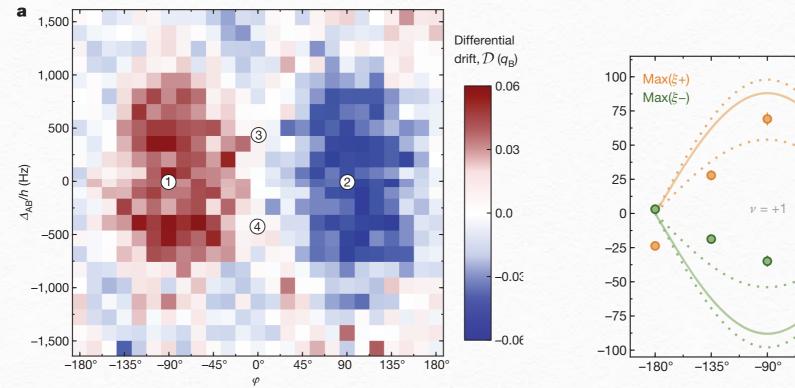
$$A_{y}(t) = -m\omega b \cos(\omega t)/\hbar$$

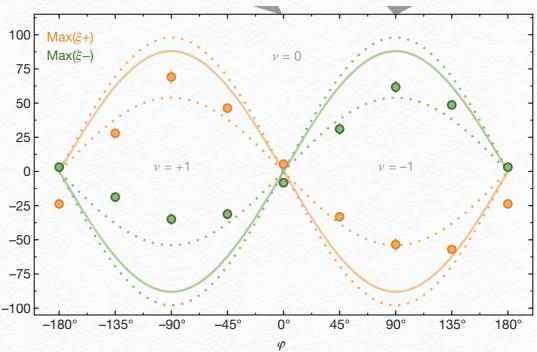
$$H_{\mathrm{eff}}(\mathbf{k}) \approx H_{0}(\mathbf{k}) + \frac{\left[H_{1}(\mathbf{k}), H_{-1}(\mathbf{k})\right]}{\omega}$$

Wei Zheng and Hui Zhai, PRA 2014

Experimental Realization







ETH, Nature (2014), See also Hamburg group, USTC group

Physical Consequence of 2D Chern Insulator

Physical Consequence of Topological Number

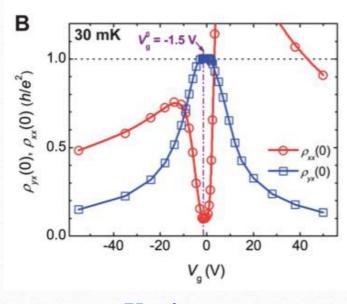
At or Near Equilibrium

From from Equilibrium

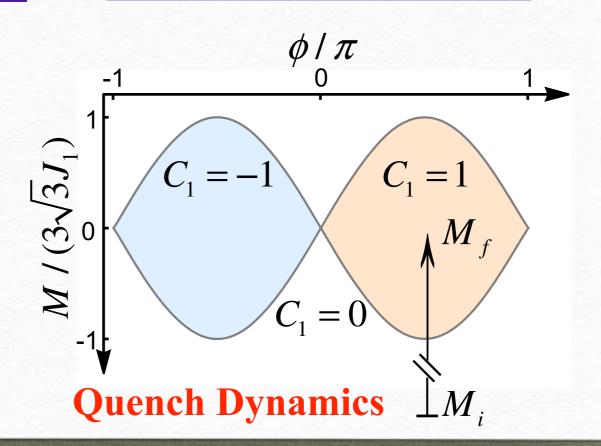
Quantized Edge State
Quantized Hall Conductance

?

Bulk-Edge Correspondence



Xue's group Science 2013

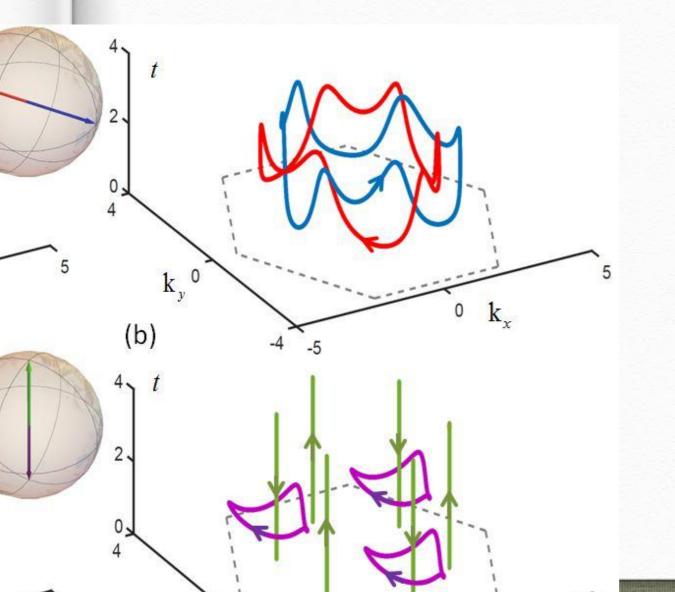


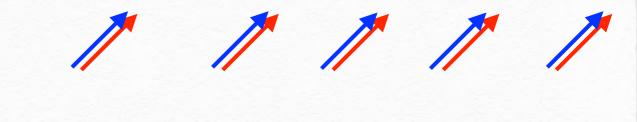
Description of Quench Dynamics

A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

 $\begin{array}{ll} \textbf{Initial} \\ \textbf{hamiltonian} & \mathbf{h}^i(\mathbf{k}) \end{array}$



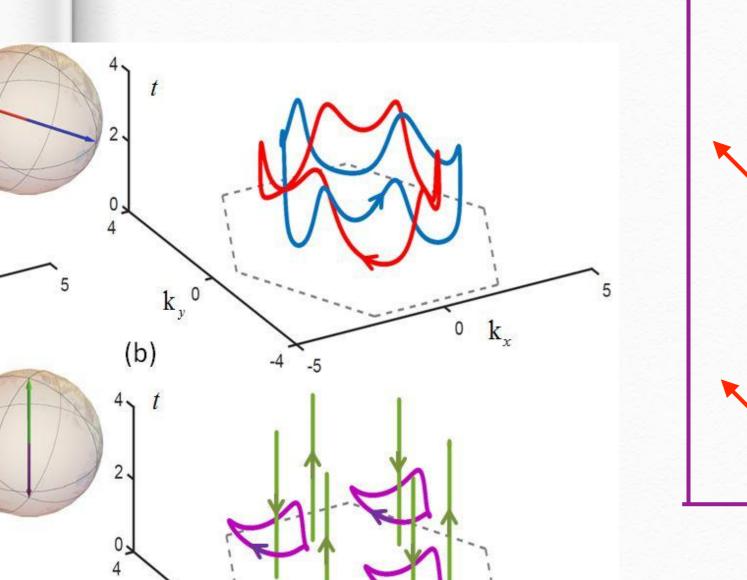


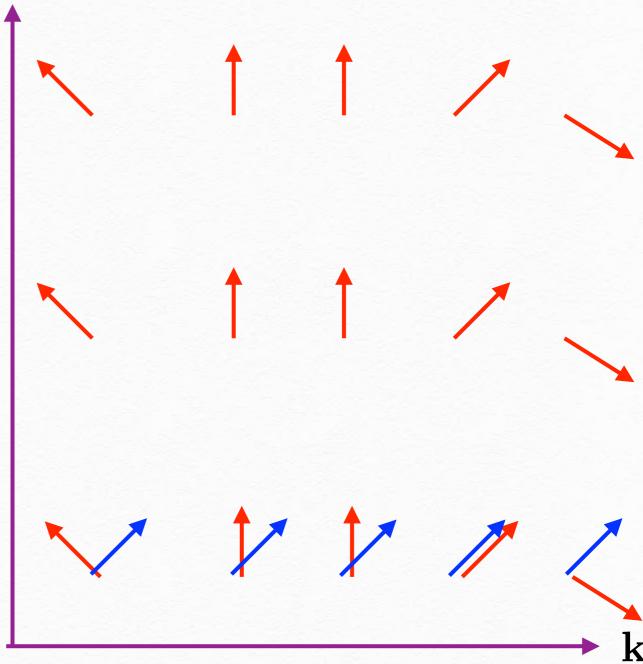
Description of Quench Dynamics

A two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

Quench from $h^i(k)$ $h^f(k)$





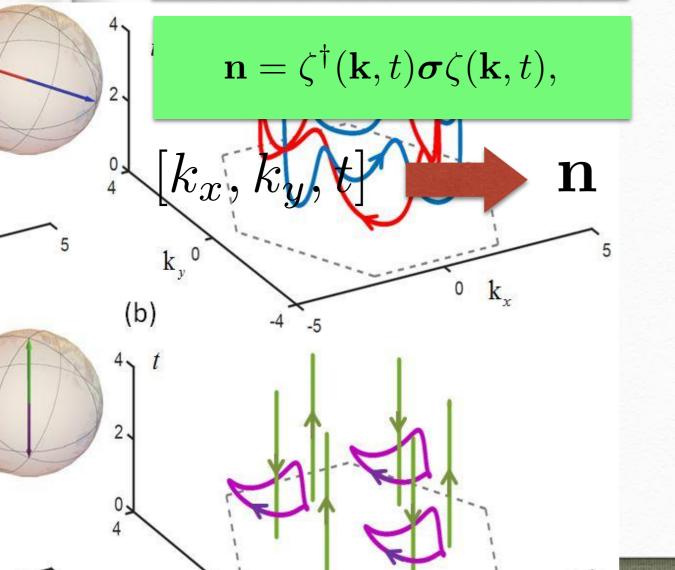
Description of Quench Dynamics

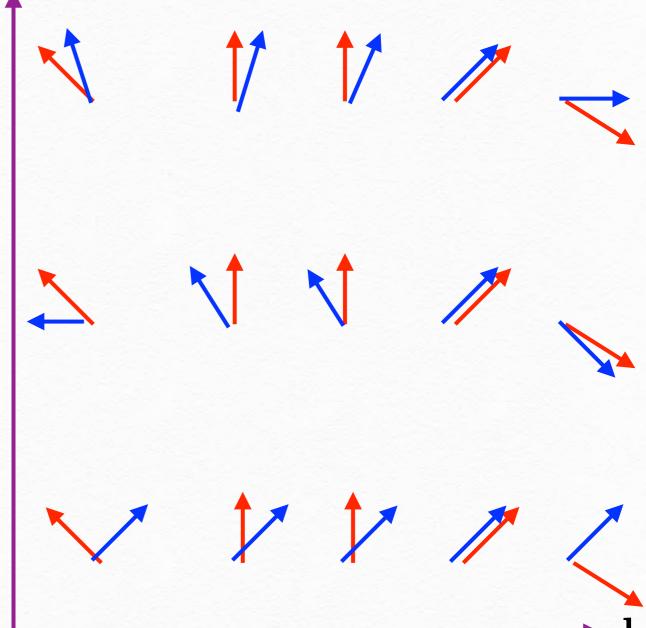
A two-band Chern Insulator

 $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

Quench from $h^i(k)$ $h^f(k)$

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$





Theorem: Topology from Dynamics

For a two-band Chern Insulator $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

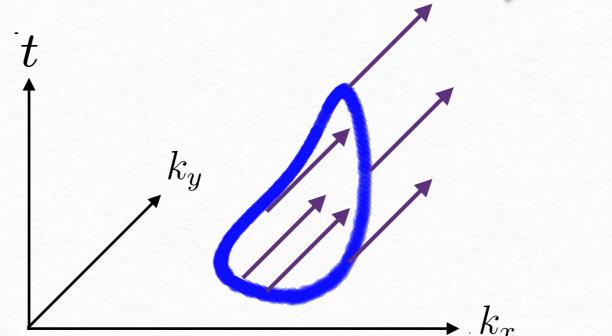
Considering the quench dynamics described by:

$$\zeta(\mathbf{k}, t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma}t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),$$

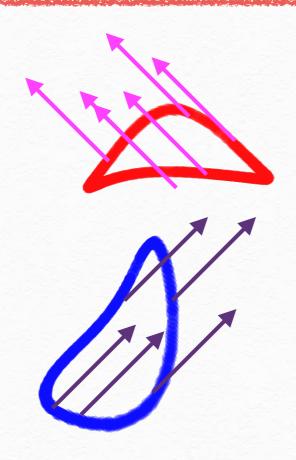
$$\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$$

this defines a Hopf map f: $[k_x, k_y, t]$

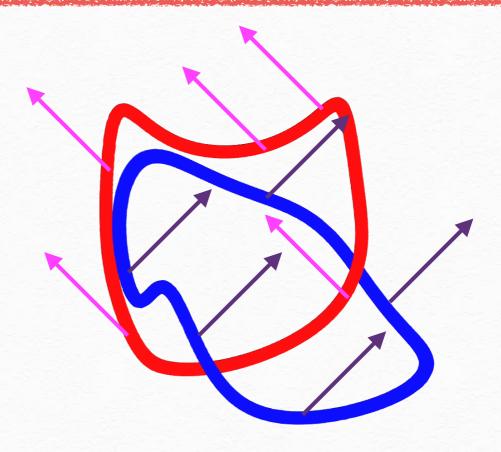
$$f^{-1}(\mathbf{n}_1)$$



Theorem: Topology from Dynamics



linking number = 0



linking number = 1

The linking number of $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$

= The Chern number of the final Hamiltonian

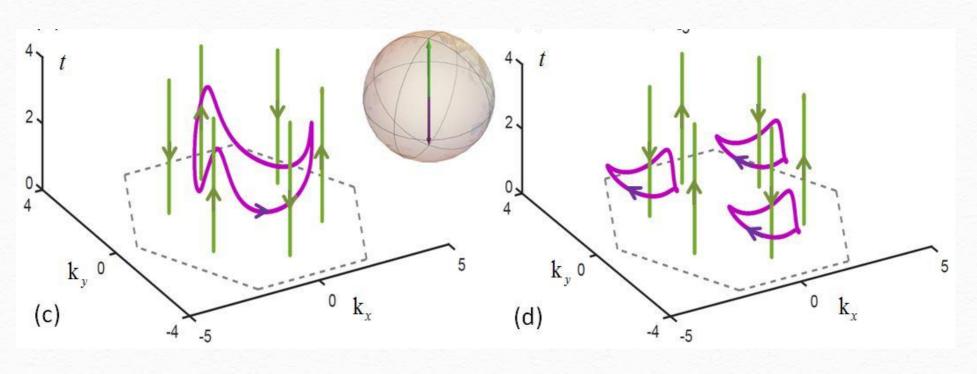
$$\Pi_3(S^2) = \Pi_2(S^2) = Z$$

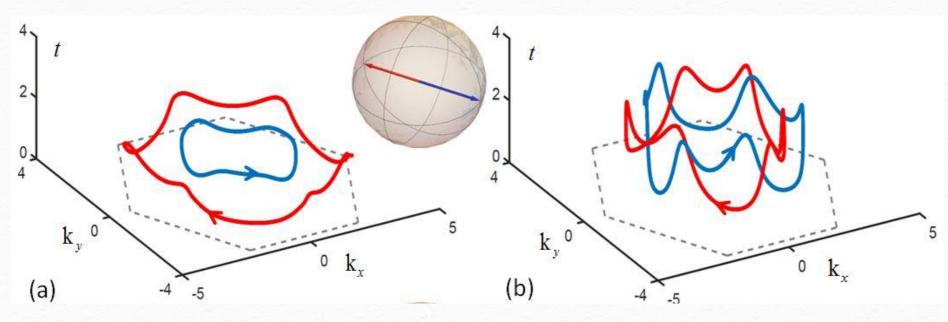
Ce Wang, Pengfei Zhang, Xin Chen, Jinlong Yu and Hui Zhai, PRL (2017)

Example of Theorem

Topological Trivial

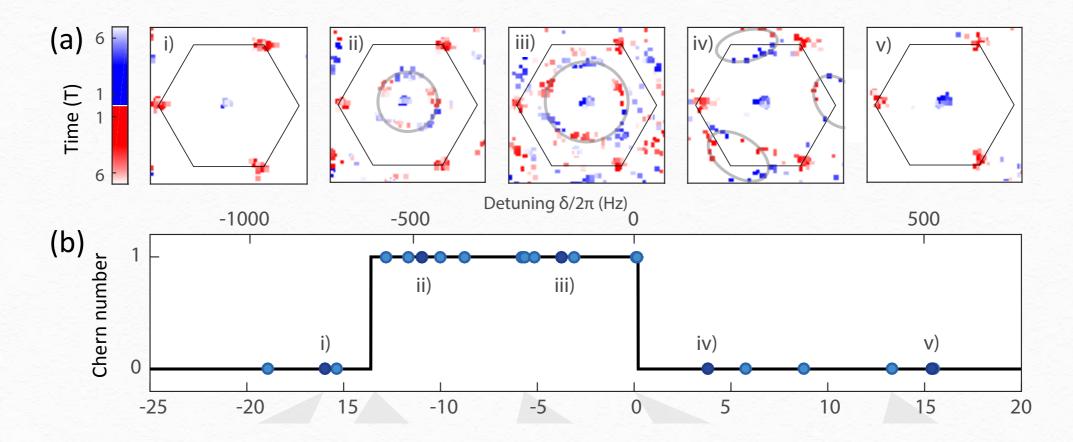
Topological Non-trivial





Experimental Observations

Haldane Model: Hamburg group



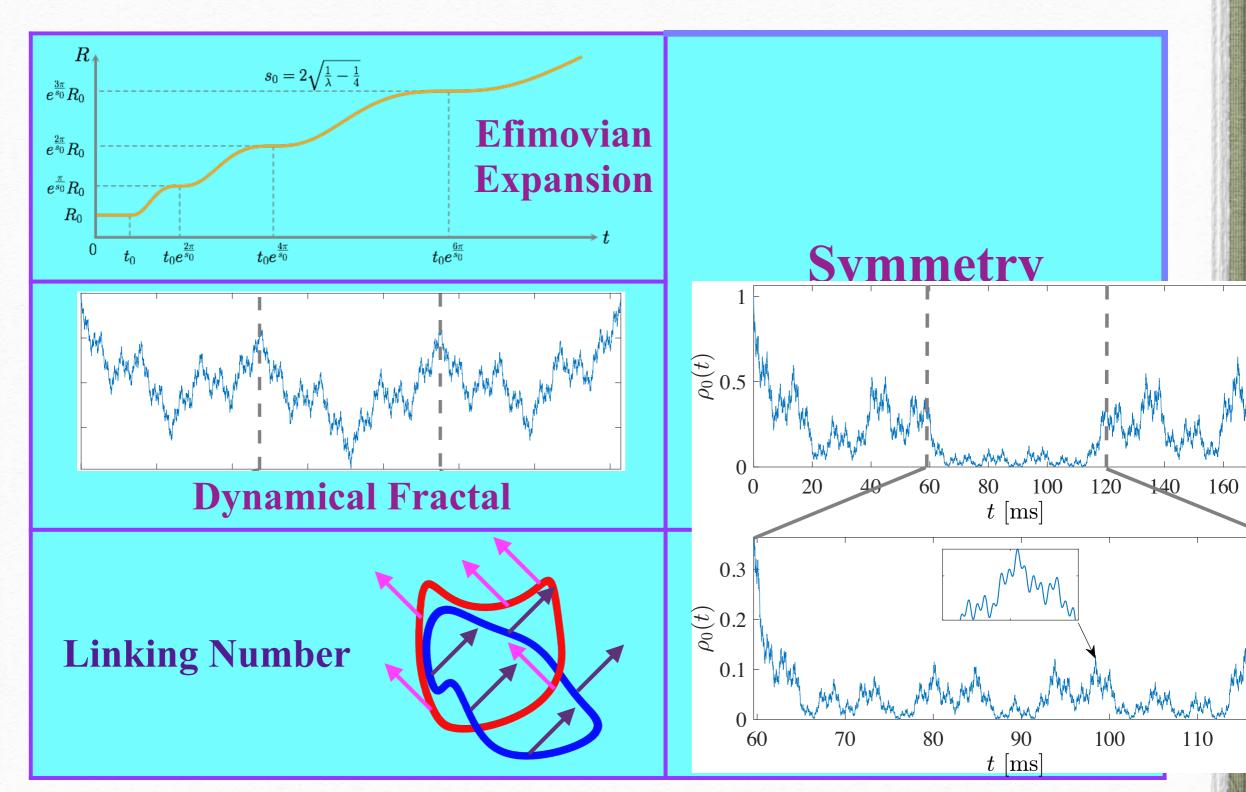
Nat. Comm. 2019

See similar result from USTC group

We thereby map out the trivial and non-trivial Chern number areas of the phase diagram. As shown by Wang et al. (ref. [13]), the Chern number of the post quench Hamiltonian maps onto the linking number between this contour and the position of the static vortices [Fig. 1(a)]. We thus demonstrate that the direct mapping between two topological indices – a static and a dynamical one – allows for an unambiguous measurement of the Chern number.

Take-Home Message

Symmetry and Topology can be detected from non-equilibrium dynamics.



Thank You Very Much for Attention!

Fundamental Problems in Quantum Non-Equilibrium Dynamics II

Hui Zhai

Institute for Advanced Study Tsinghua University

CSRC Workshop on Quantum Non-Equilibrium Phenomena June 2019

What this is all about?

Hayden and Preskill ask:

Can one retrieval information from a black hole?

What this is all about?

Hayden and Preskill ask:

Can one retrieval information from a black hole?

Why you talk about this HERE?

Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation

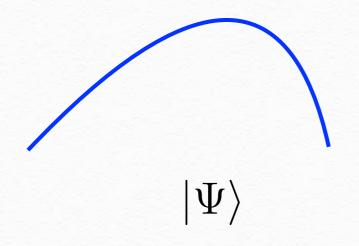
Thermofield Double State

Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation

Thermofield Double State

Quantum Thermalization



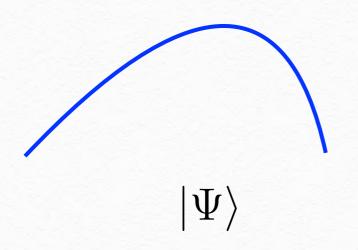
 T, μ, \dots

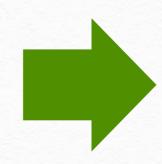
Quantum wave function

Unitary evolution

Thermal equilibrium

Eigenstate Thermalization Hypothesis





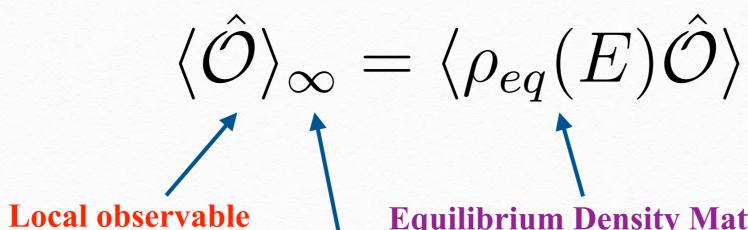
 T, μ, \dots

Quantum wave function

Unitary evolution

Thermal equilibrium

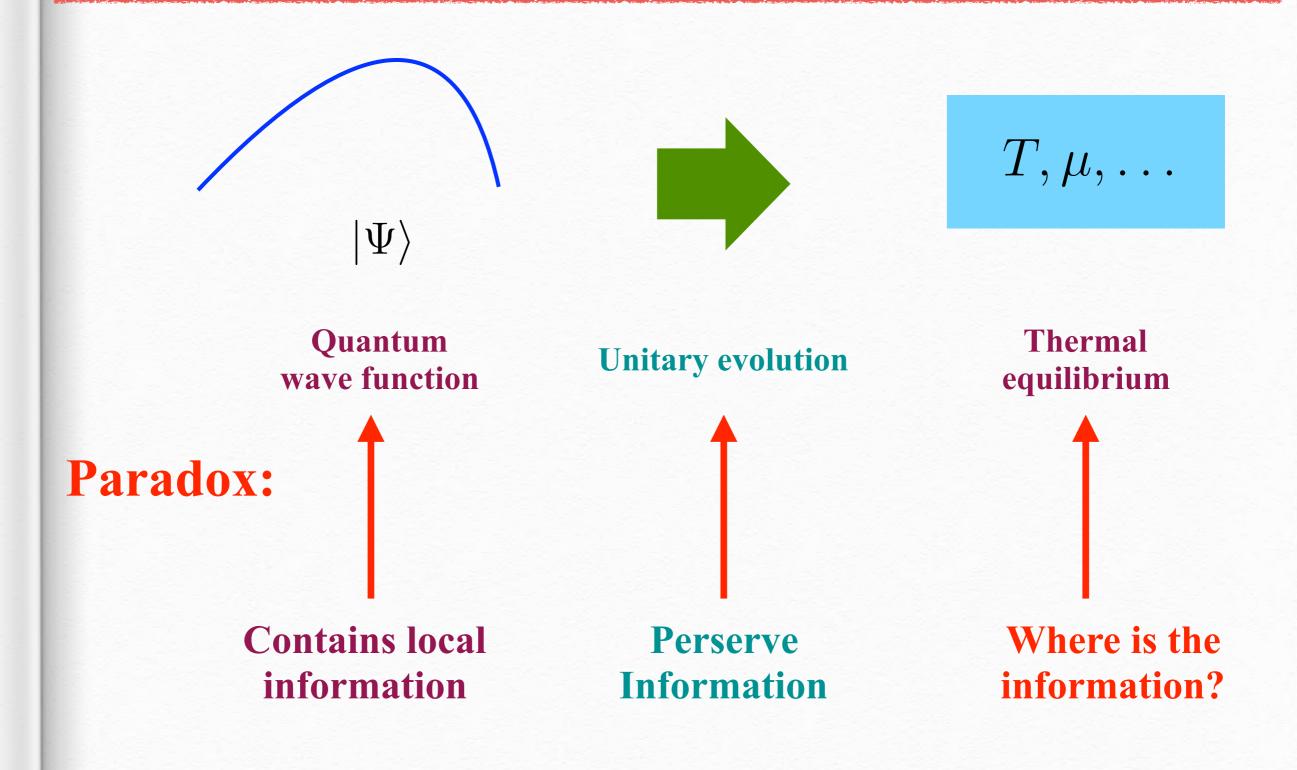
Eigenstate Thermalization Hypothesis



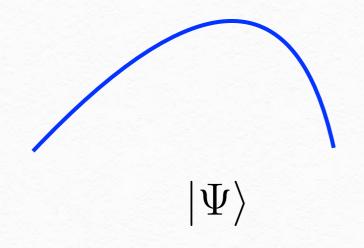
Equilibrium Density Matrix of the Whole System

Sufficient Long Time Evolution

Quantum Thermalization "Paradox"



Information Scrambling

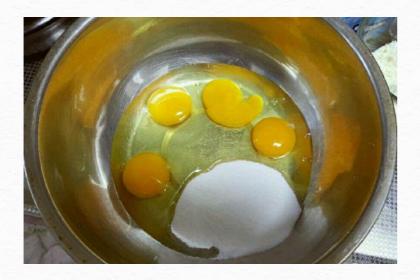


 T, μ, \dots

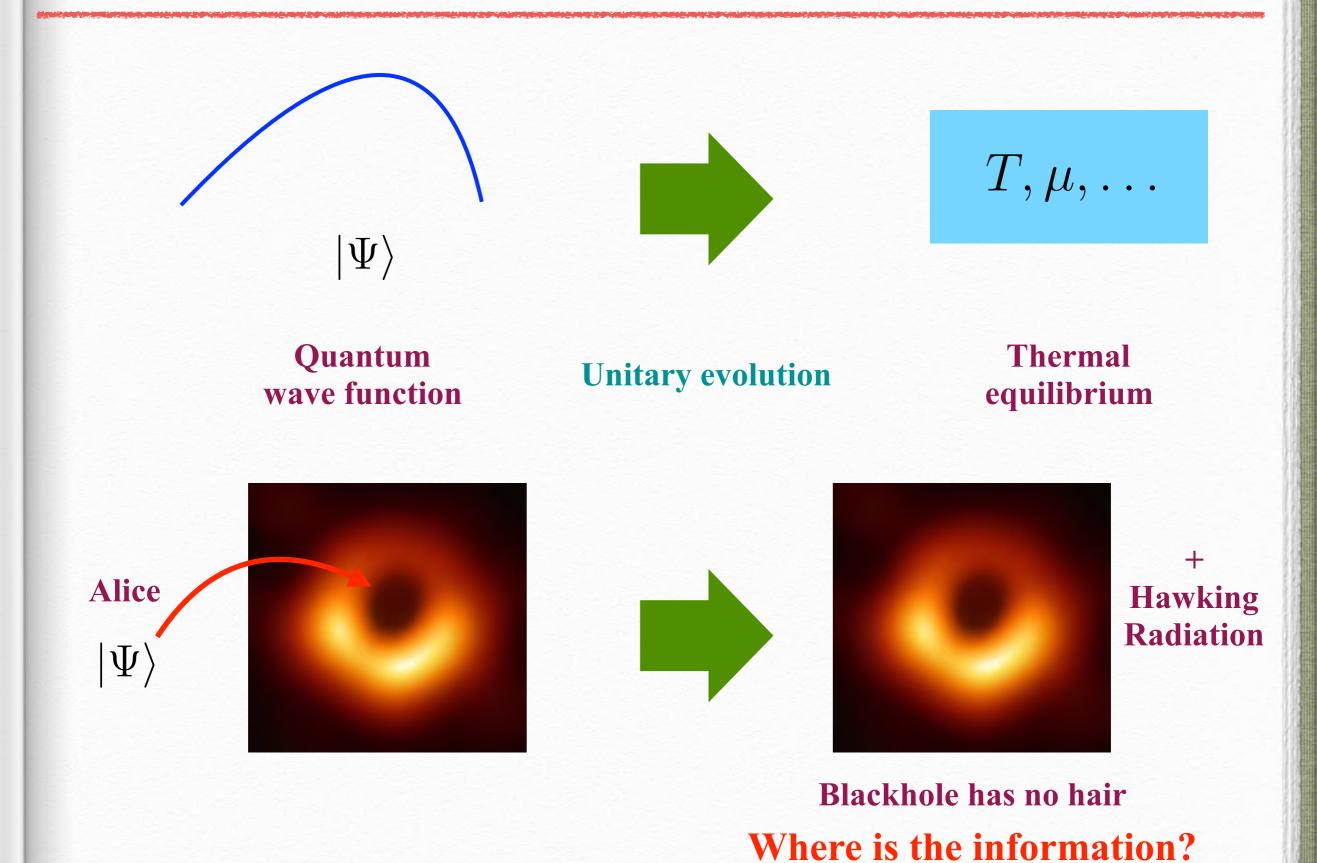
Quantum wave function

Unitary evolution

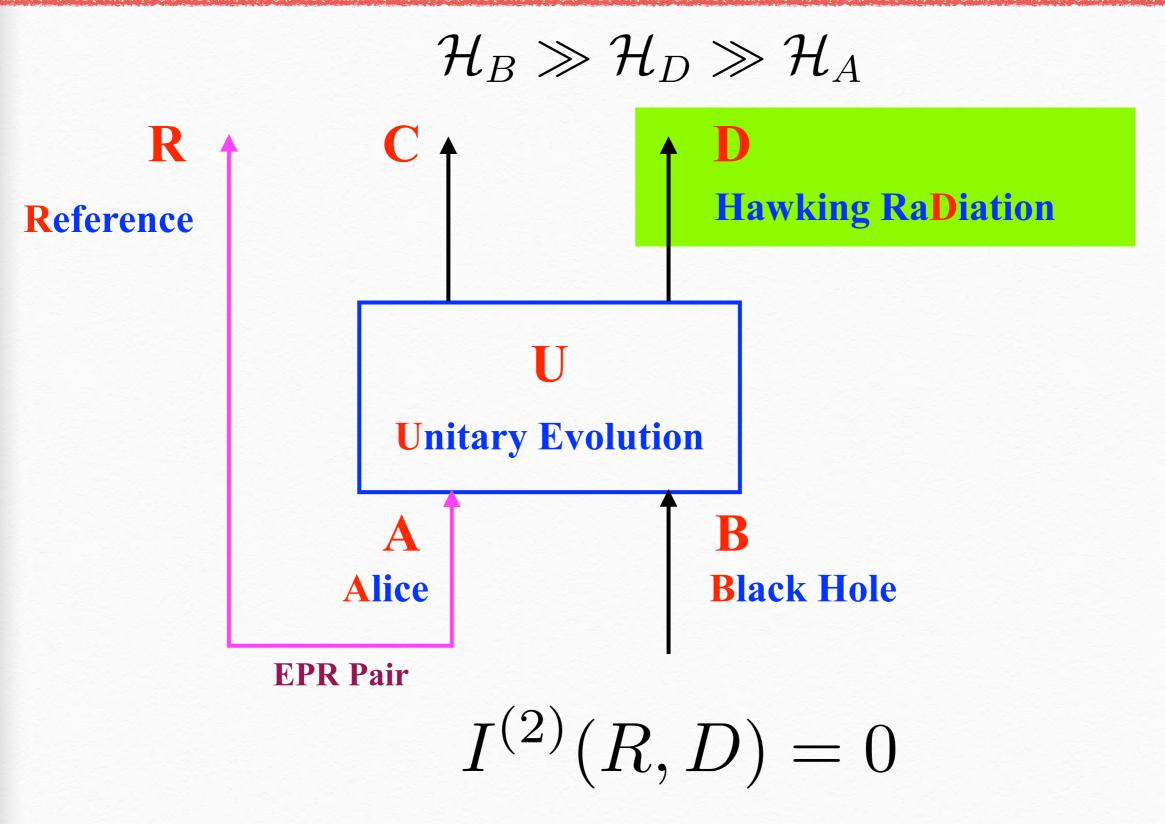
Thermal equilibrium



Black Hole Information Paradox

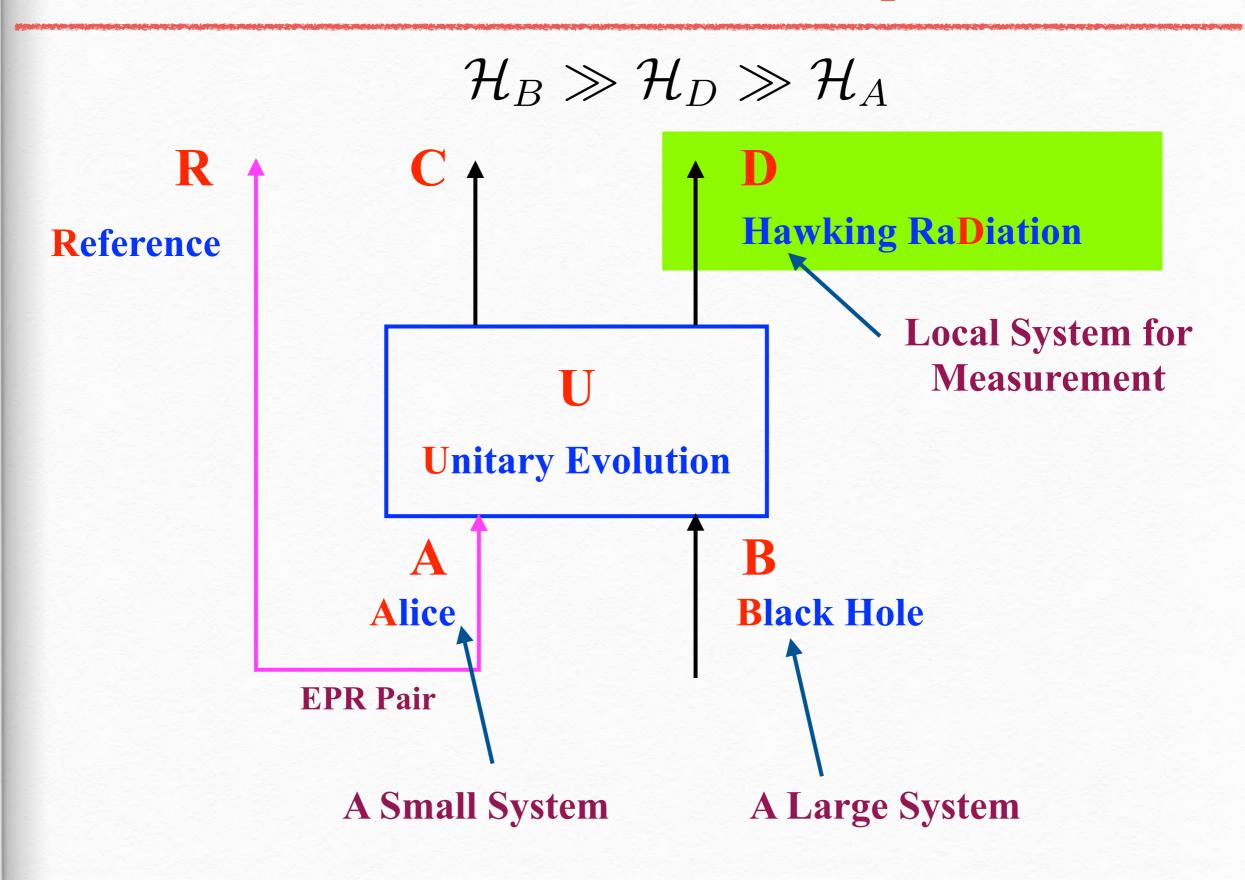


Quantum Information Perspective



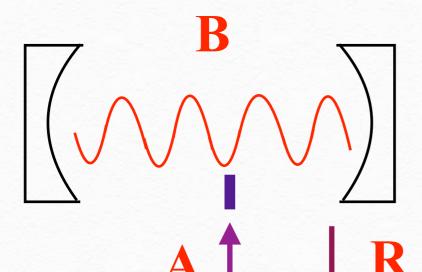
Page 1993, Hayden, Priskill, 2007

Quantum Information Perspective



Dicke Model Realization

$$\hat{H} = \hbar\omega_0 a^{\dagger} a + + \omega_z \sigma_z$$

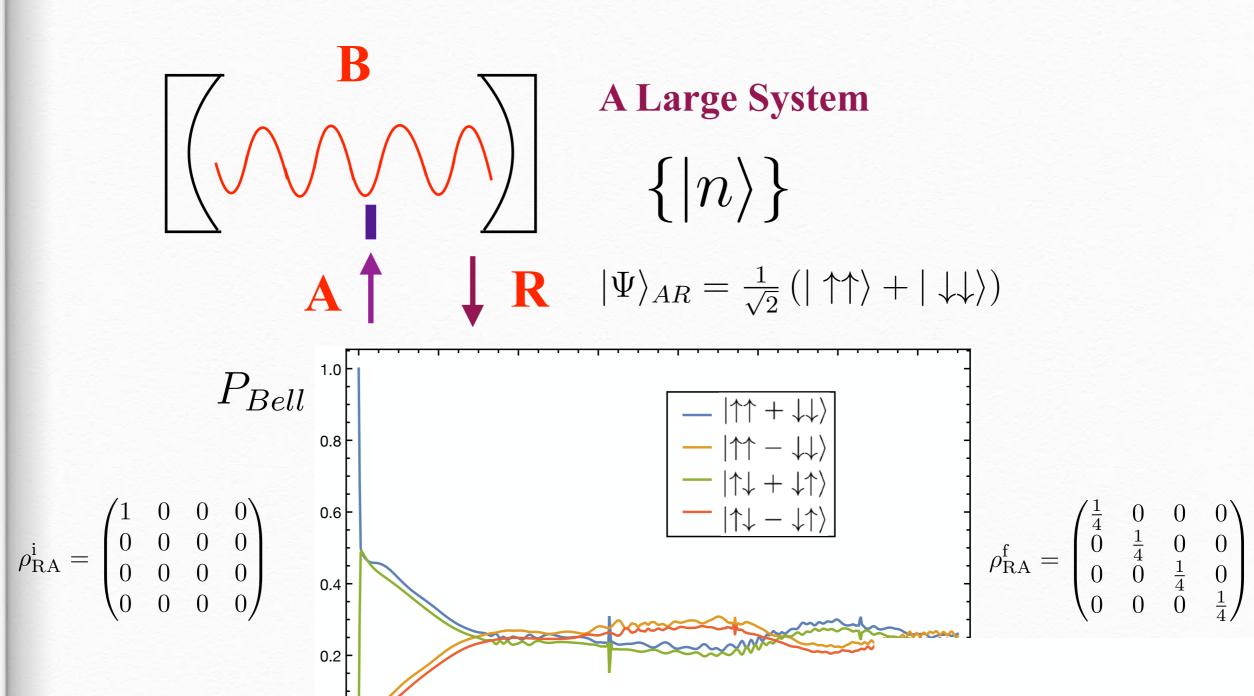


A Large System

$$\{|n\rangle\}$$

Dicke Model Realization

$$\hat{H} = \hbar\omega_0 a^{\dagger} a + g(a^{\dagger} + a)\sigma_x + \omega_z \sigma_z$$



Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation

Thermofield Double State

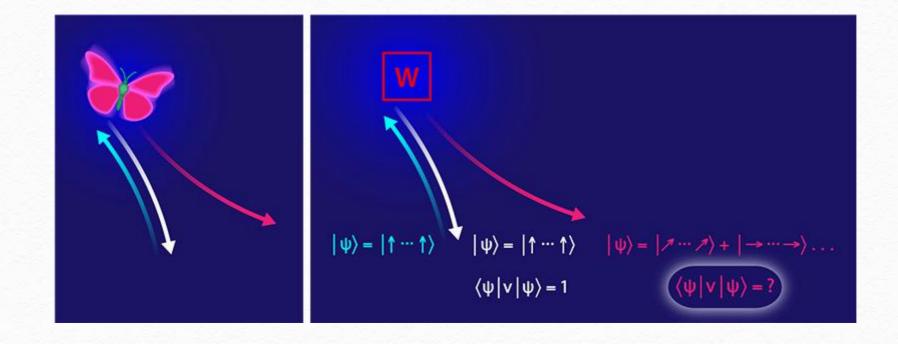
Out-of-time-ordered Correlation and Chaos

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$$

$$\hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

 OTOC measures the difference when exchanging orders of two operations

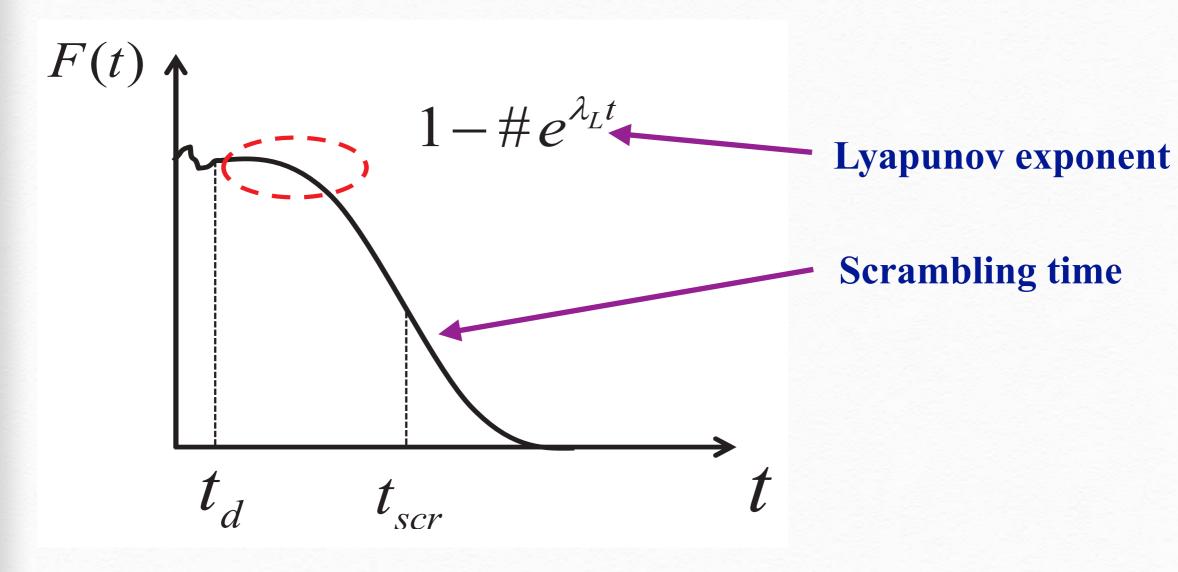
$$|\hat{W}(t)\hat{V}(0)|\rangle$$
 $|\hat{V}(0)\hat{W}(t)|\rangle$



Out-of-time-ordered Correlation

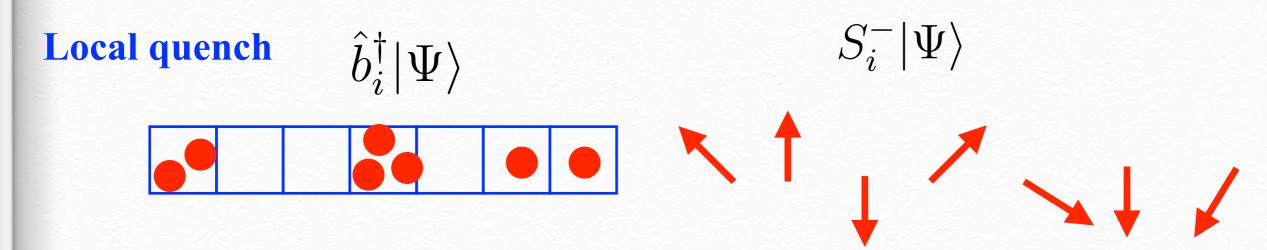
$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta}$$

$$\hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

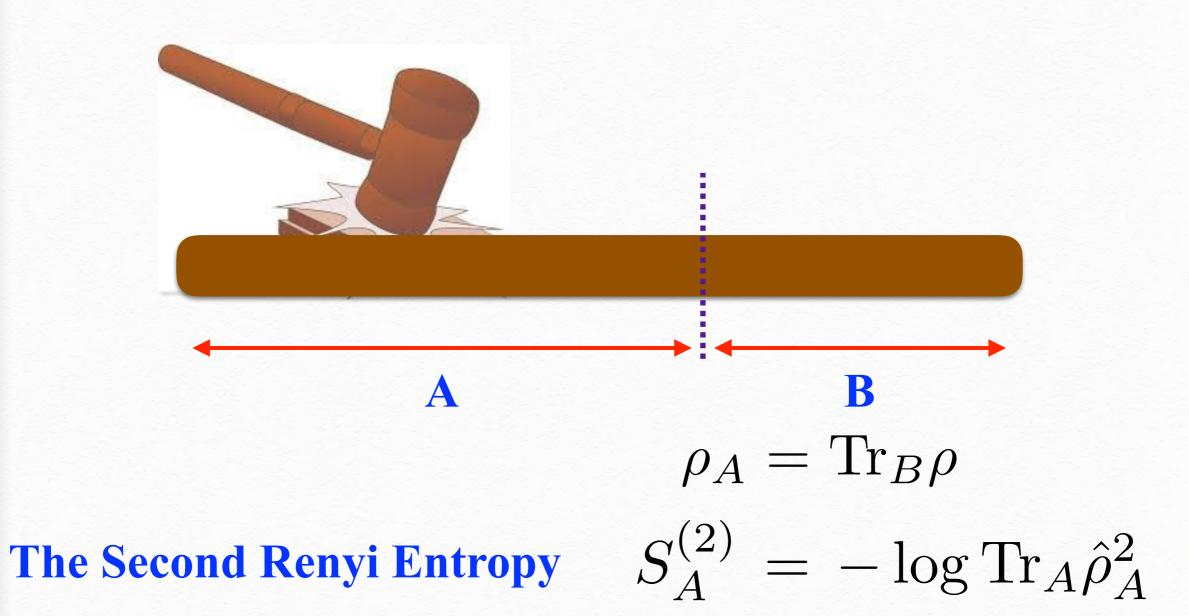


Scrambling time

Quench Experiment

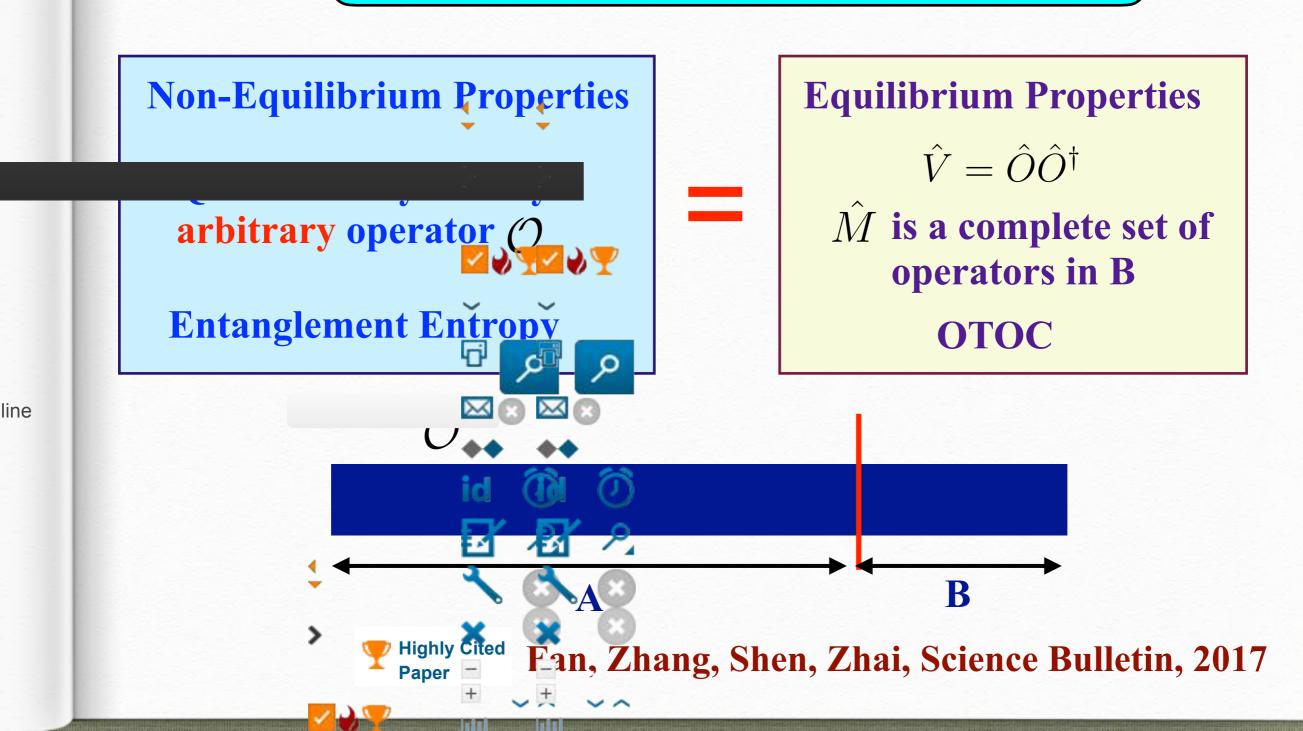


Quench Experiment



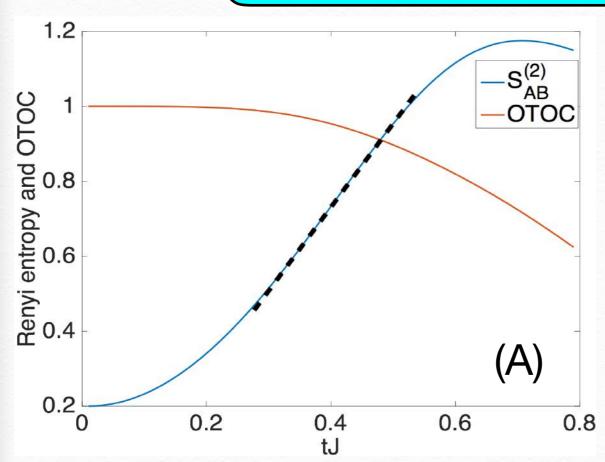
OTOC: Information Scrambling

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

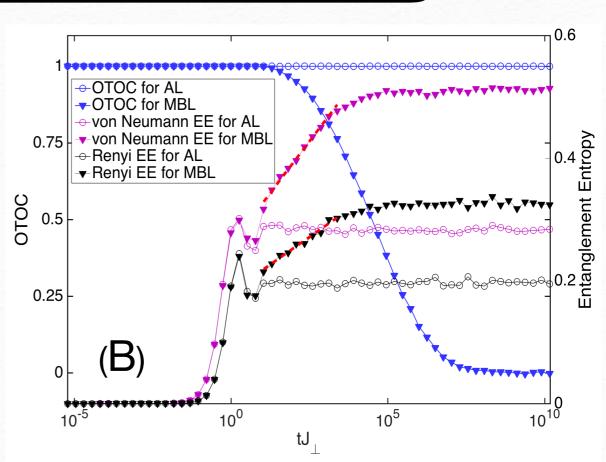


OTOC: Information Scrambling

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$



Thermal Phase (ETH):
Bose-Hubbard Model



Single-Particle Localized and MBL:

XXZ Model + Random field

Shen, Zhang, Fan, Zhai, PRB, 2017
Fan, Zhang, Shen, Zhai, Science Bulletin, 2017

OTOC: Information Scrambling

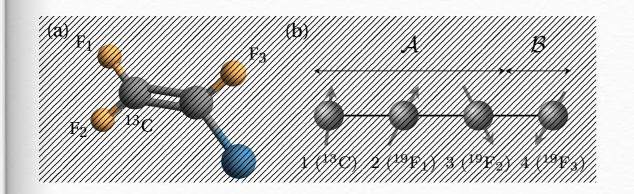
$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

Thermal Phase (ETH)	Single-Particle Localized	Many-Body Localized
Linear increasing of entanglement	No spreading of entanglement	Logarithmic spreading of entanglement
OTOC exponential decay	OTOC remains constant	OTOC power-law decay

Our Results

Fan, Zhang, Shen, Zhai, Science Bulletin, 2017

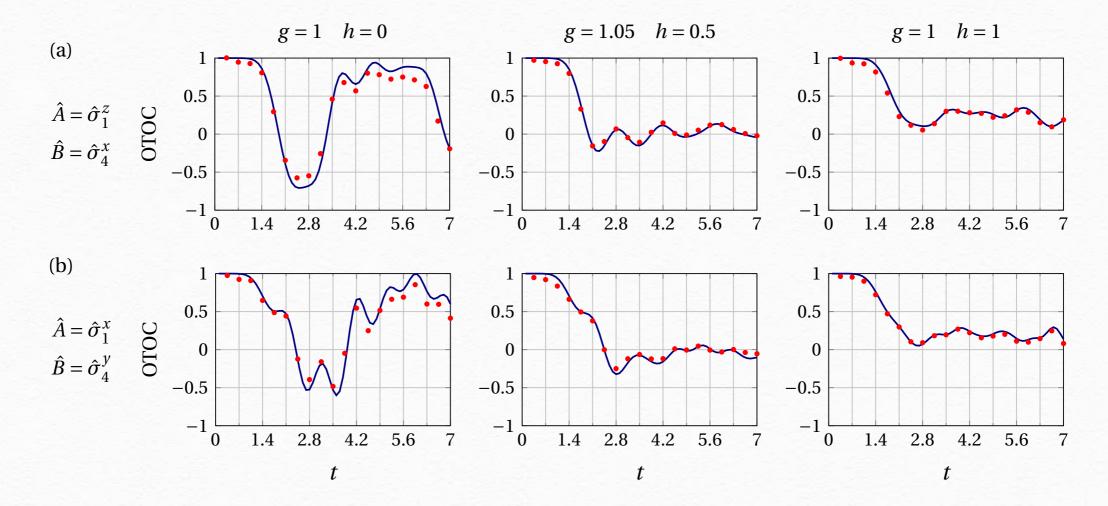
Measurements of OTOC for Ising Chain



$$\hat{H} = \sum_{i} \left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} + h \hat{\sigma}_{i}^{z} \right)$$

Integrable Case

Non-Integrable Cases

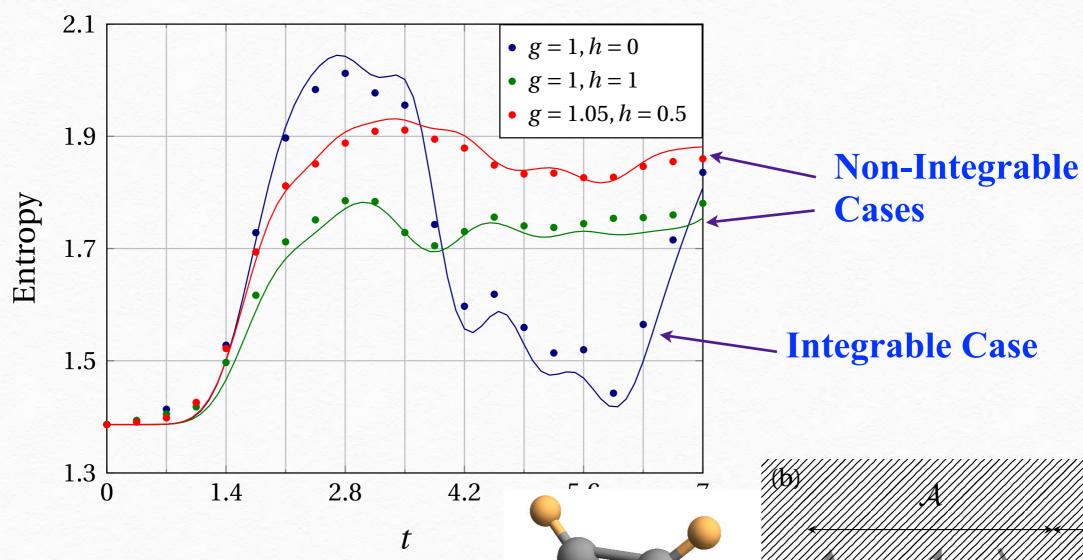


Jun Li et.al. PRX 2017

See also, M. Garttner, et.al. Nat. Phys. 2017

Measurements of OTOC for Ising Chain

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \text{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$



Integrable Case: Information Oscillates

Non-Integrable Case: Information Scrambles

Jun Li et.al. PRX 2017

OTOC: Holographic Duality

Quantum Side

Lyapunov exponent has a upper bound

$$\lambda_L \leqslant \frac{2\pi}{\beta}$$

Gravity Side

OTOC has also emerged,
 and with a black hole

$$\lambda_L = \frac{2\pi}{\beta}$$

A quantum system with holographically dual to a black hole saturates the bound

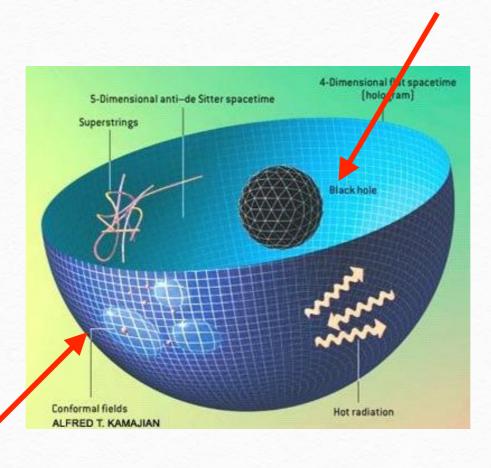
== Black hole is a faster scrambler in nature

An example is the SYK model

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC: Holographic Duality

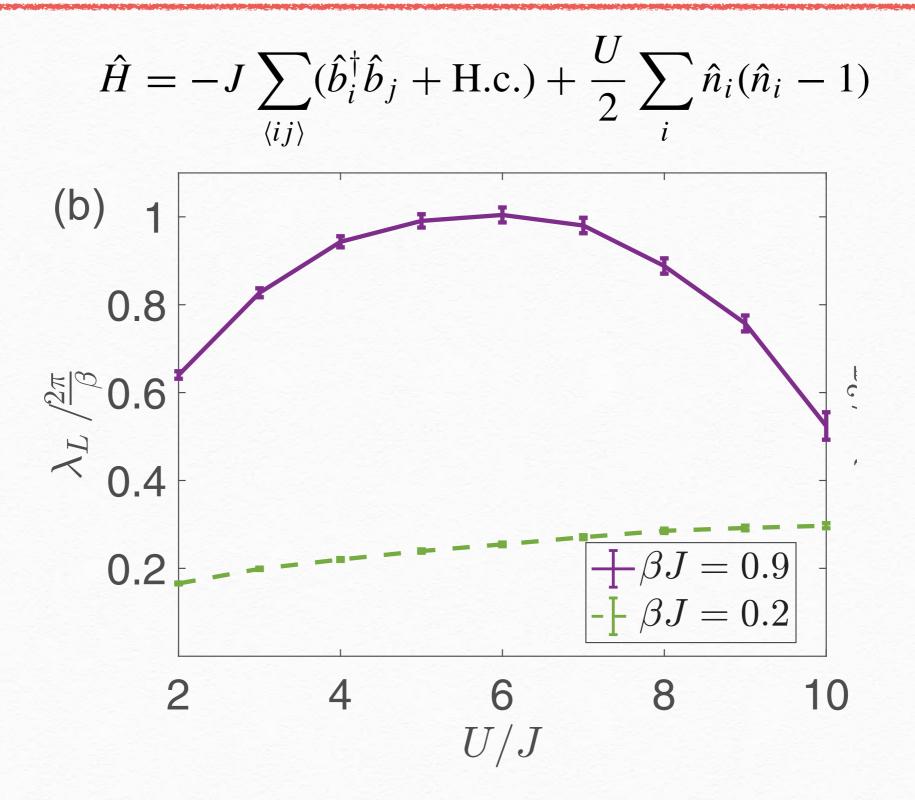
A gravity theory in D+1-dimension



A quantum many-body system in D-dimension (strongly interacting, emergent conformal field symmetry)

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

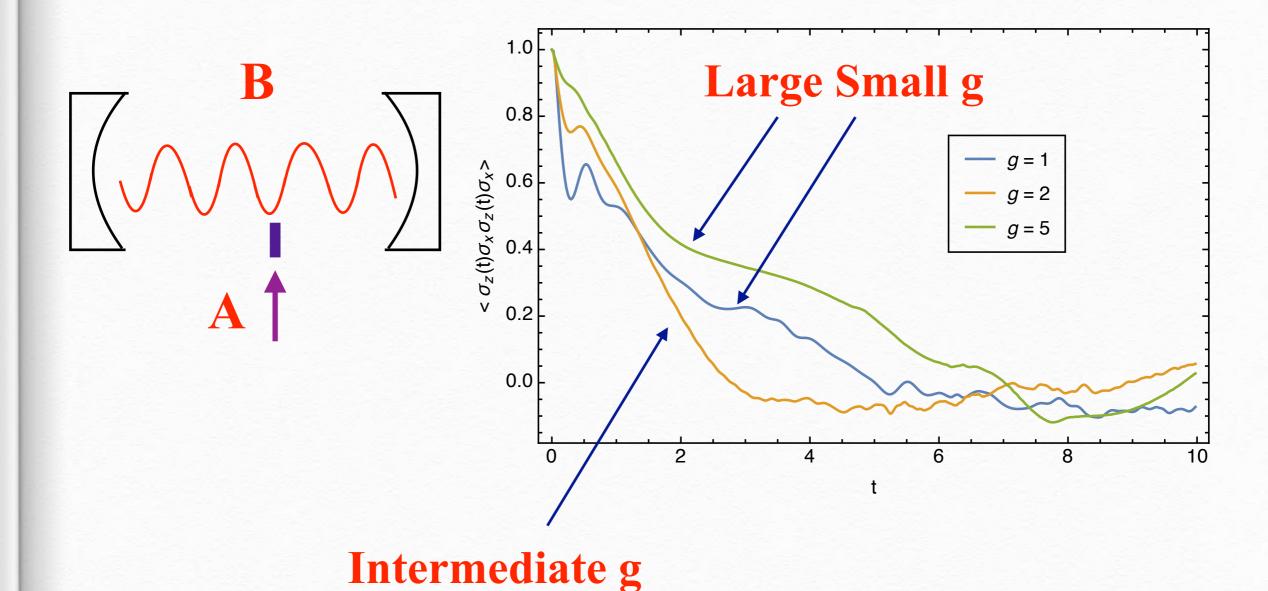
OTOC for Bose-Hubbard Model



Shen, Zhang, Fan, Zhai, PRB, 2017

OTOC for Dicke Model

$$\hat{H} = \hbar\omega_0 a^{\dagger} a + g(a^{\dagger} + a)\sigma_x + \omega_z \sigma_z$$



Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation

Thermofield Double State

Thermofield Double State

Left

Right

$$\{|n\rangle_L\}$$

$$\{|n\rangle_R\}$$

$$|\Psi\rangle_{TFD} = \sum_{n} e^{-\beta E_n/2} |n\rangle_L |n\rangle_R$$

$$\operatorname{Tr}_{R}|\Psi\rangle\langle\Psi|=\sum_{n}e^{-\beta E_{n}}|n\rangle\langle n|$$

Generalized EPR State

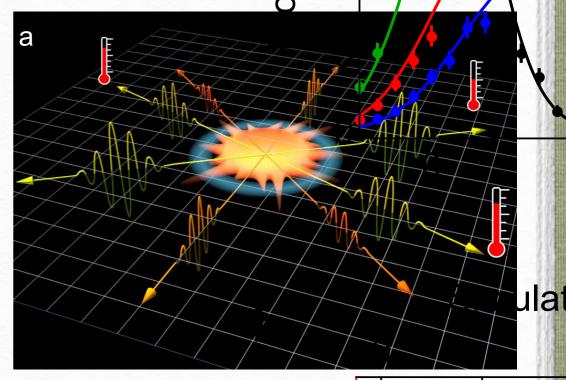
$$\beta \to 0$$
 $|\Psi\rangle_{TFD} \to \sum_{n} |n\rangle_{L} |n\rangle_{R}$

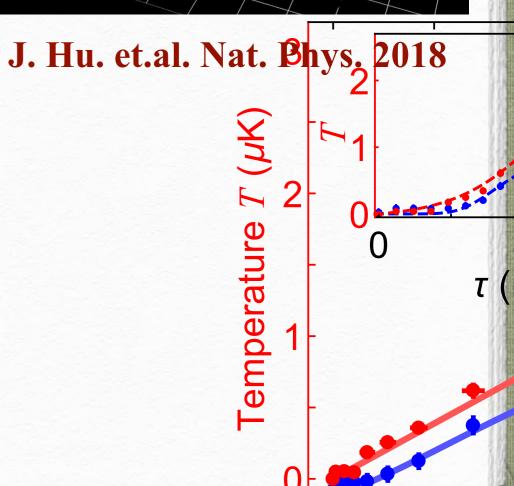
Thermofield Double State: Examulate 10

$$H = i\hbar g \sum_{|\vec{k}| = k_f} (a_k^{\dagger} a_{-k}^{\dagger} - a_k a_{-k})$$

$$|\psi(\tau)\rangle = e^{-ih\tau/\hbar}|0\rangle = \frac{1}{\cosh(g\tau)} \sum_{n=0}^{\infty} \tanh^n(g\tau)|n,n\rangle$$

Long time limit



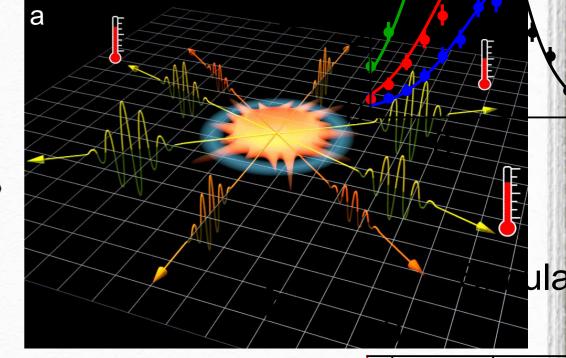


Thermofield Double State: Examele 10

$$H = i\hbar g \sum_{|\vec{k}|=k_f} (a_k^{\dagger} a_{-k}^{\dagger} - a_k a_{-k})$$

$$|\psi(\tau)\rangle = e^{-ih\tau/\hbar}|0\rangle = \frac{1}{\cosh(g\tau)} \sum_{n=0}^{\infty} \tanh^n(g\tau)|n,n\rangle$$

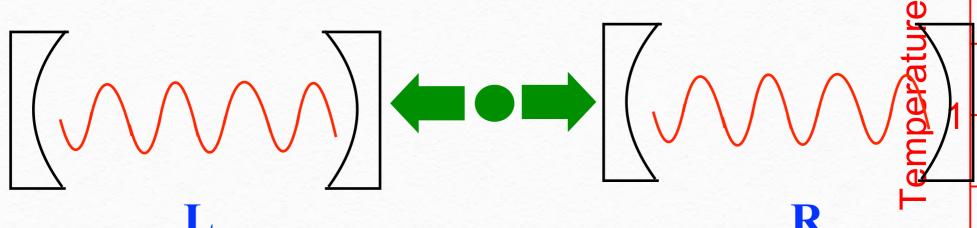
Long time limit



J. Hu. et.al. Nat. Bhys. 2018

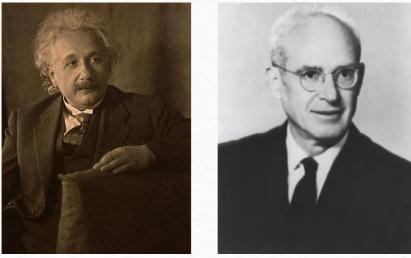
Two-Mode Squeezed State:

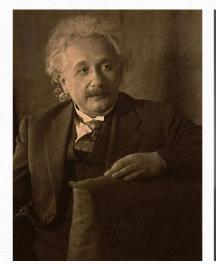
$$\hat{H} = \hat{a}_L^{\dagger} \hat{a}_R^{\dagger} + \hat{a}_L \hat{a}_R$$



ER=EPR Conjecture







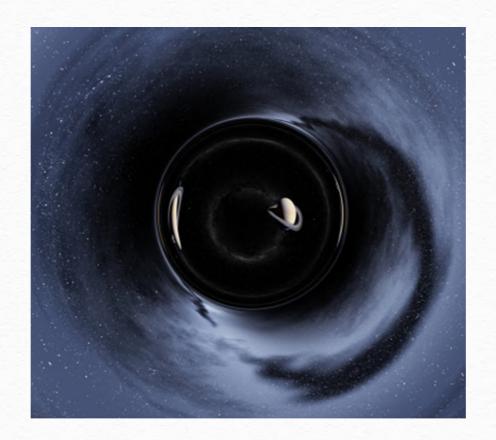
Einstein Podolsky Rosen
Thermofield Double State
Quantum Entanglement

best understood in term of holographic duality

Maldacena and Susskind, 2013

Wormhole

The movie "Interstellar" 星际穿越



Visualizing *Interstellar*'s Wormhole

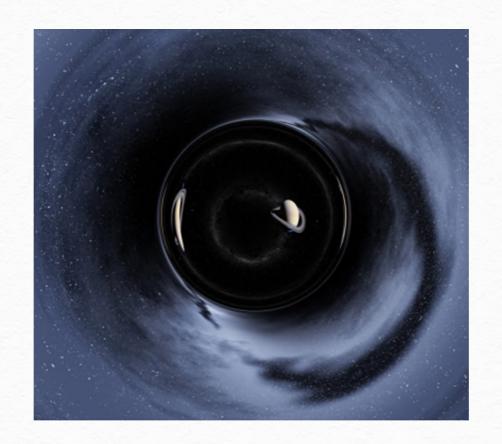
Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip S. Thorne

Citation: American Journal of Physics 83, 486 (2015); doi: 10.1119/1.4916949

arXiv: 1502.03809

Wormhole

The movie "Interstellar" 星际穿越



- The Wormhole in "Interstellar" is traversable
- The Einstein-Rosen Bridge is NOT traversable

What this is all about?

Hayden and Preskill ask:

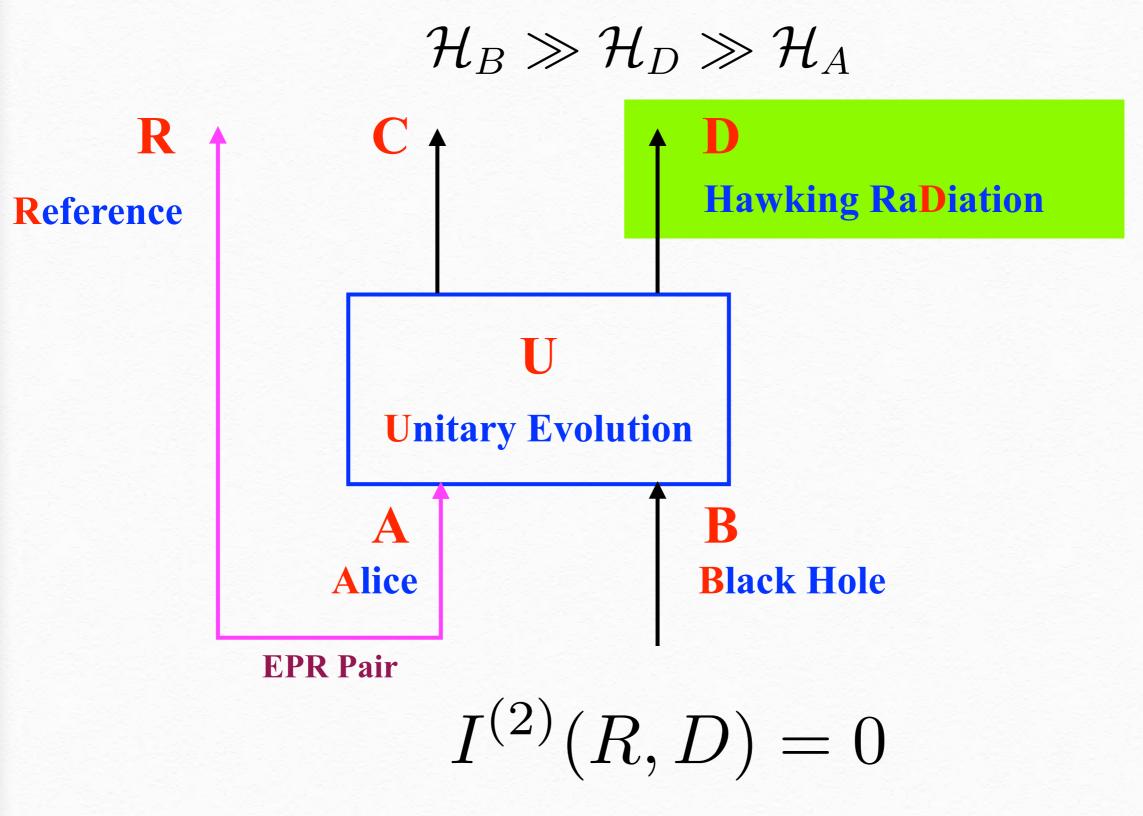
Can one retrieval information from a black hole?

=

Can one retrieval initial state information when a quantum system thermalizes

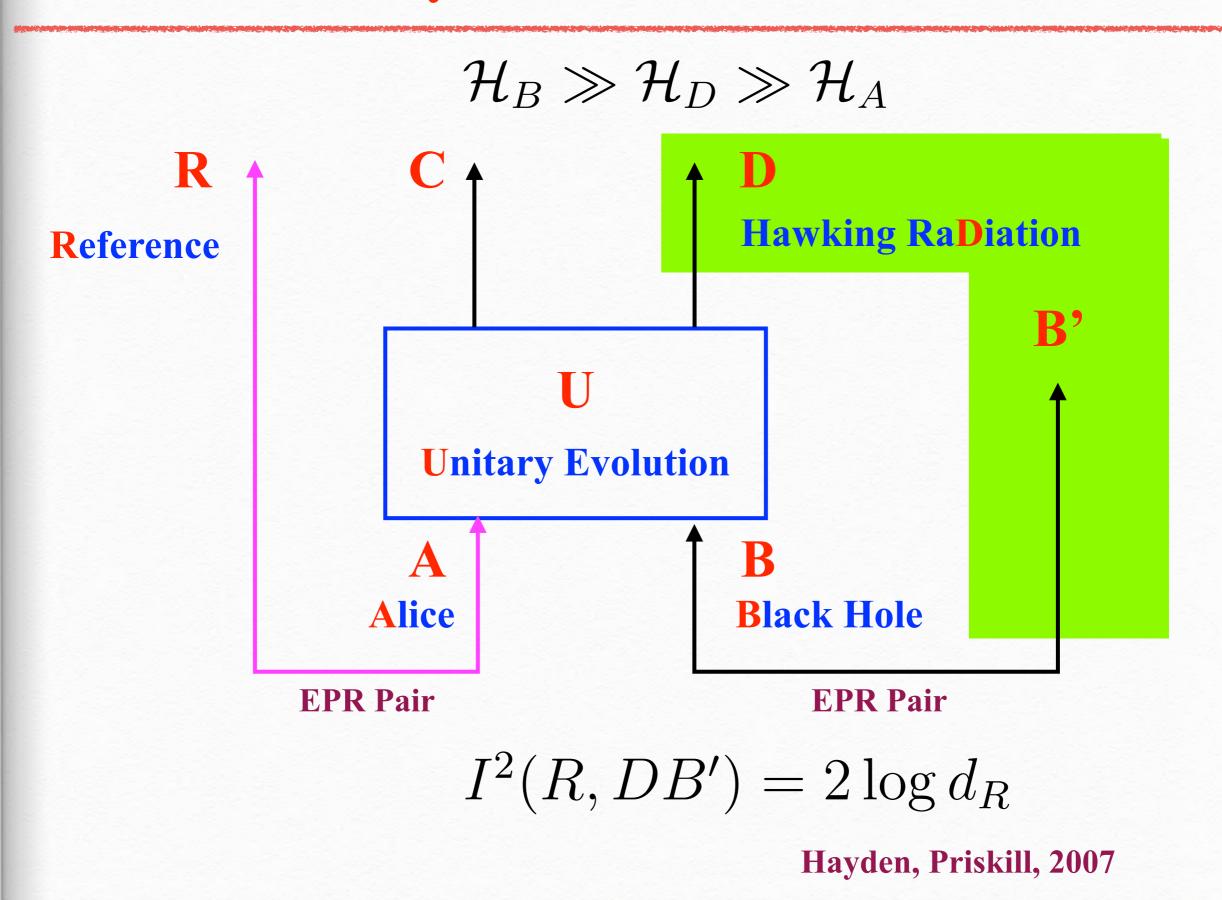
- Information scrambling in quantum thermalization prevents this
- The more complicated a quantum system, the faster information scrambles
- Thermofield Double State can help!

Hayden-Preskill Protocol

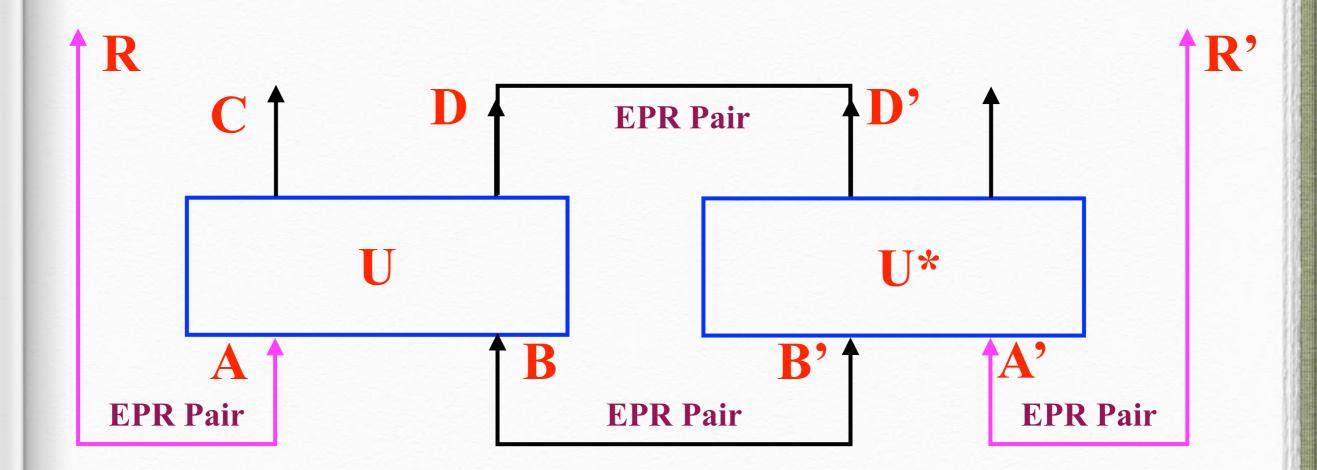


Hayden, Priskill, 2007

Hayden-Preskill Protocol

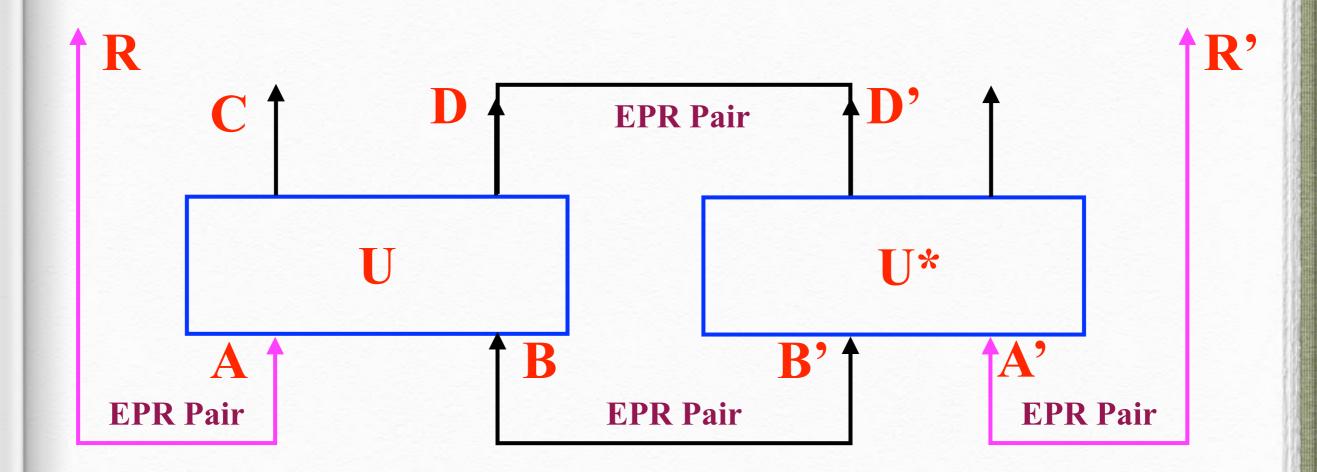


Hayden-Preskill Protocol: Measurement-Based



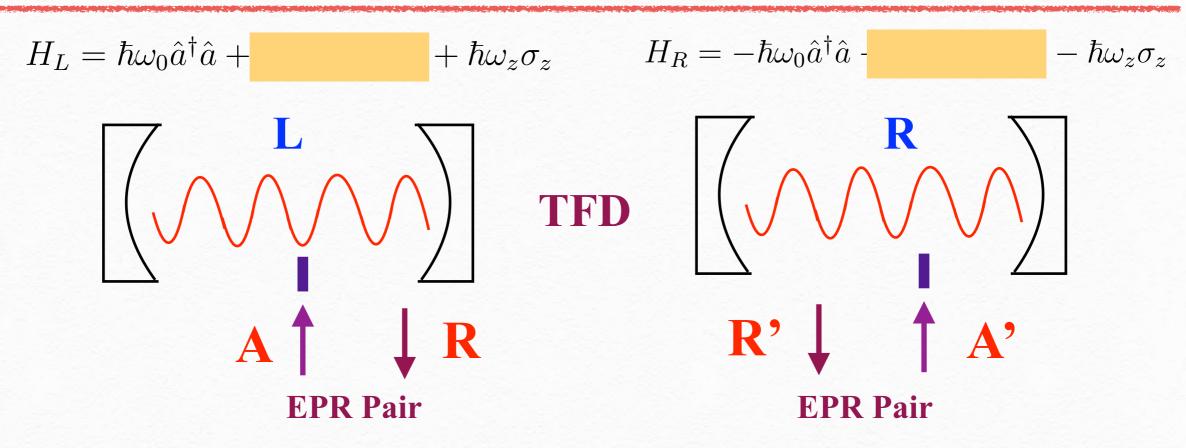
- Fully scrambled (black hole type dynamics)
- Two identical copy of the Hamiltonian (up to a minus sign)

$$P(RR'|DD') = 1$$



- Fully scrambled (black hole type dynamics)
- Two identical copy of the Hamiltonian (up to a minus sign) ?

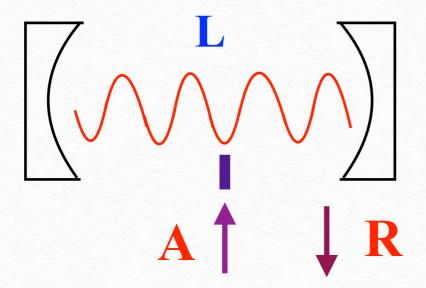
$$P(RR'|DD') = 1$$
?

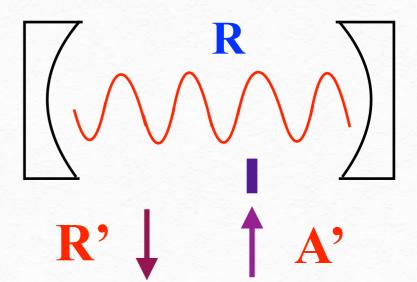


Initial State Preparation

$$H_L = \hbar \omega_0 \hat{a}^{\dagger} \hat{a} + g(\hat{a}^{\dagger} + \hat{a}) \sigma_x + \hbar \omega_z \sigma_z$$

$$H_R = -\hbar\omega_0 \hat{a}^{\dagger} \hat{a} - g(\hat{a}^{\dagger} + \hat{a})\sigma_x - \hbar\omega_z \sigma_z$$





- Initial State Preparation
- Turn on coupling and let the system evolve until scrambling

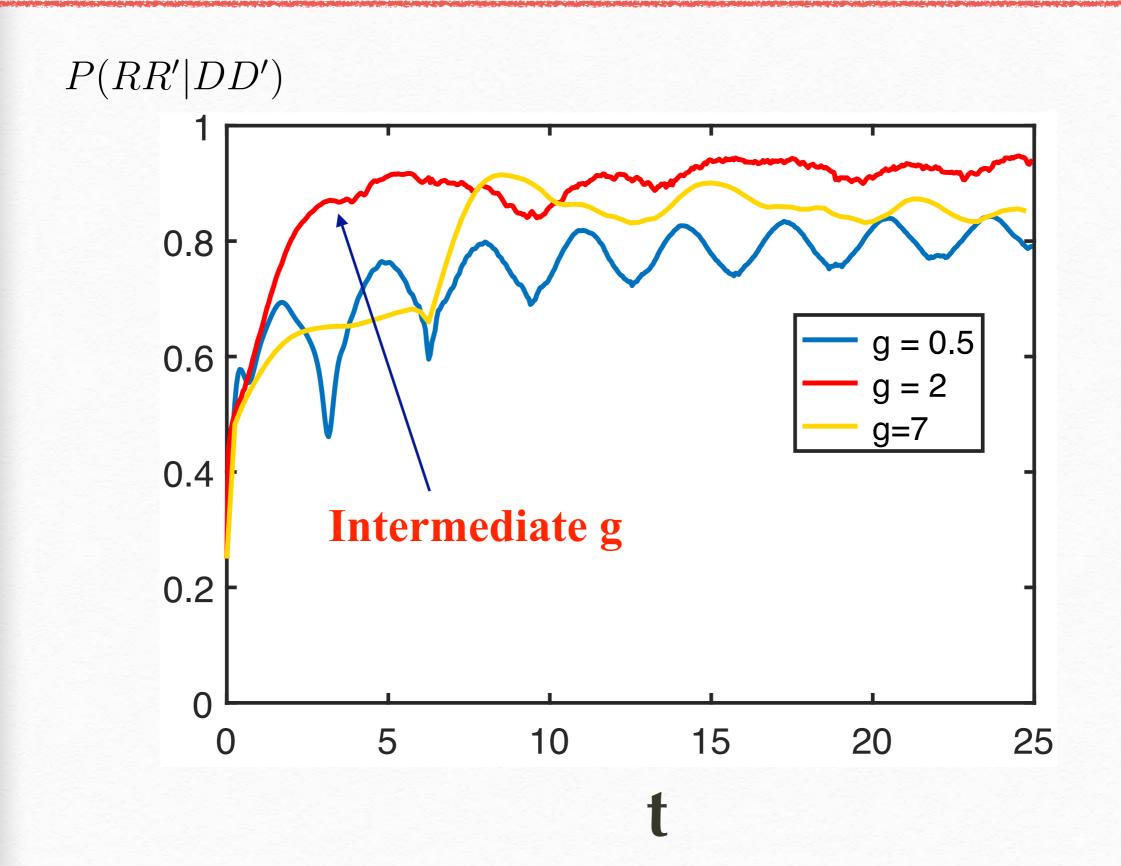
EPR Pair

- Initial State Preparation
- Turn on coupling and let the system evolve until scrambling
- Projected into EPR state of D and D'

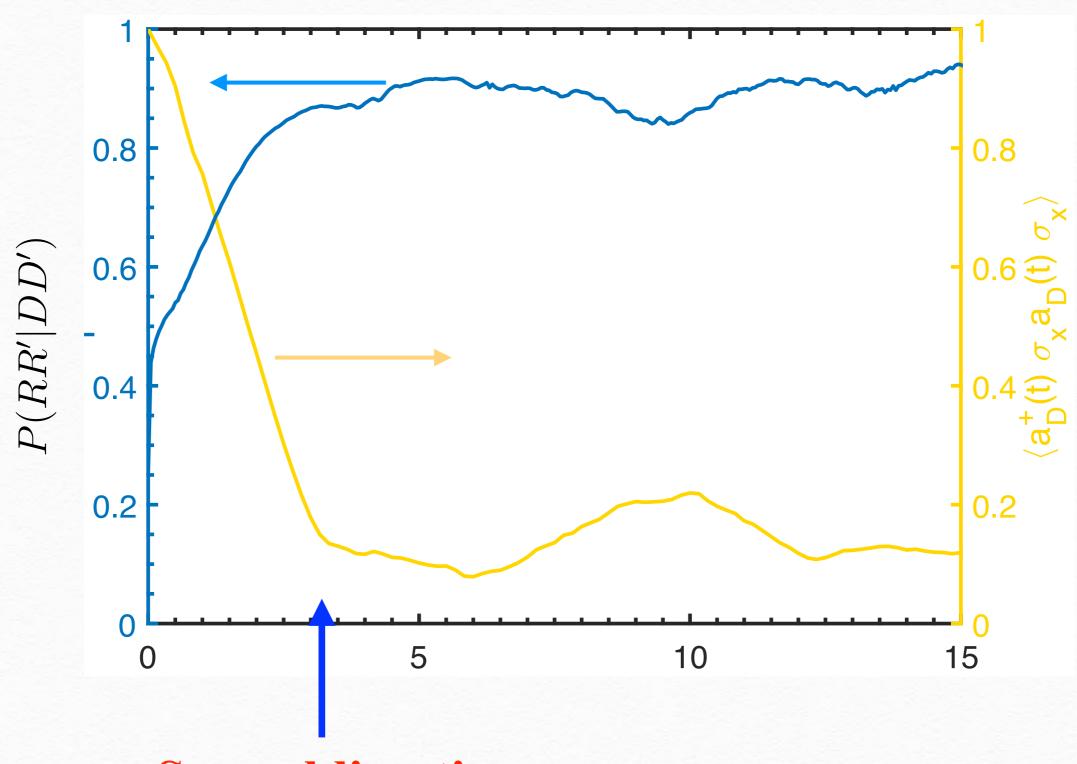
$$|DD'\rangle_{EPR} = \sum_{n=1}^{n_D} |n_L n_R\rangle$$

$$\mathcal{P}_{DD'} = |DD'\rangle\langle DD'|$$

Decoding Efficiency v.s. Coupling Constant



Decoding v.s. Scrambling



Scrambling time

$$H_{L} = \hbar \omega_{0} \hat{a}^{\dagger} \hat{a} + g(\hat{a}^{\dagger} + \hat{a}) \sigma_{x} + \hbar \omega_{z} \sigma_{z} \qquad H_{R} = -\hbar \omega_{0}' \hat{a}^{\dagger} \hat{a} - g'(\hat{a}^{\dagger} + \hat{a}) \sigma_{x} - \hbar \omega_{z}' \sigma_{z}$$

$$R$$

$$R' \downarrow \qquad A'$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.8$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

$$0.9$$

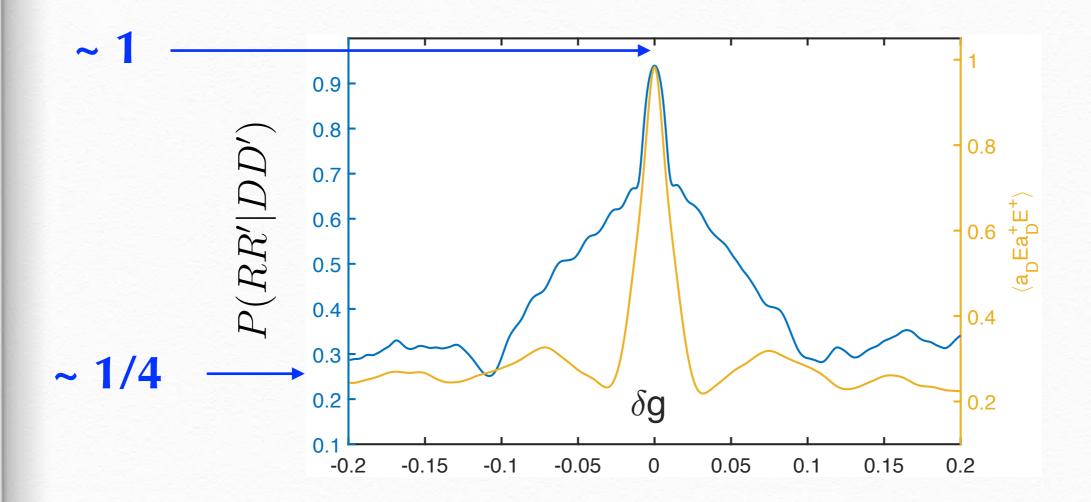
$$0.9$$

$$0.$$

Exact Relation:

$$P(RR'|DD') = \frac{\sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle}{d_A^2 - 1 + \sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle}$$

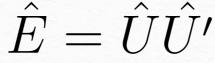
$$\hat{E} = \hat{U}\hat{U'}$$

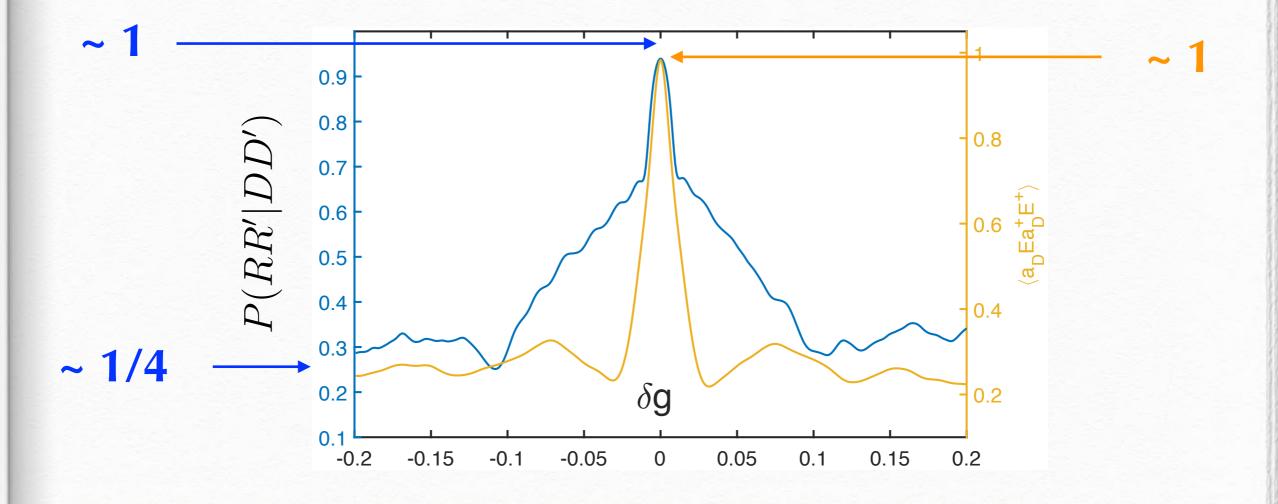


Exact Relation:

$$\delta g \to 0 \quad \hat{E} \to \hat{I}$$

$$P(RR'|DD') = \frac{\sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle}{d_A^2 - 1 + \sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle} \xrightarrow{d_D^2} \frac{d_D^2}{d_A^2 + d_D^2 - 1} \sim 1$$



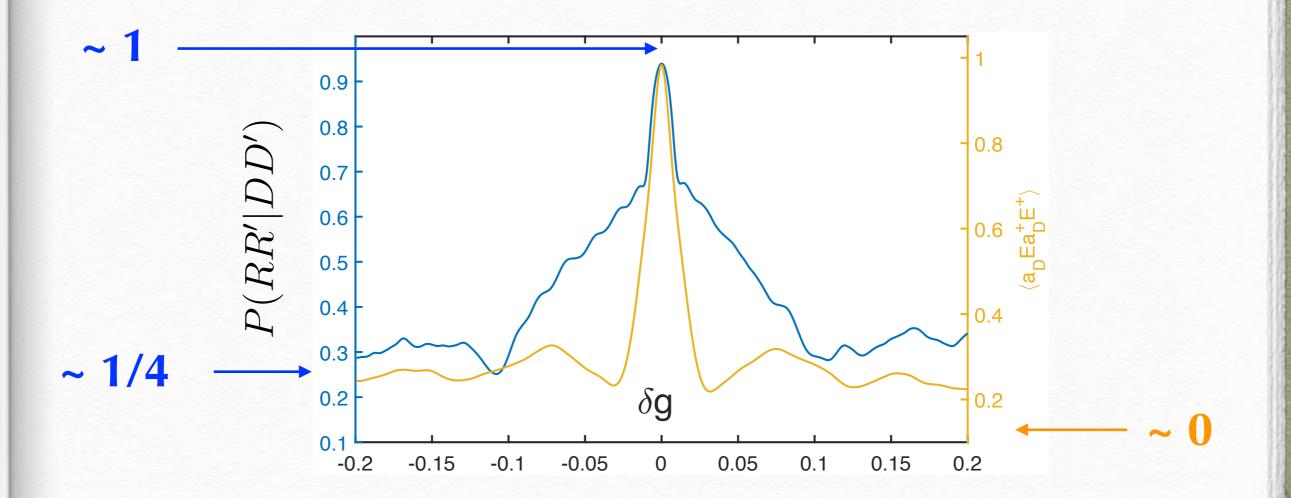


Exact Relation:

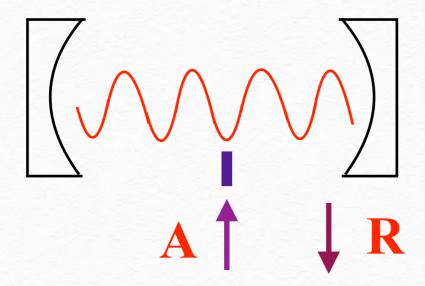
 δg large; $\hat{E} \rightarrow {\bf random}$

$$P(RR'|DD') = \frac{\sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle \longrightarrow \mathbf{1}}{d_A^2 - 1 + \sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle} \longrightarrow \frac{1}{d_A^2}$$

$$\hat{E} = \hat{U}\hat{U}'$$



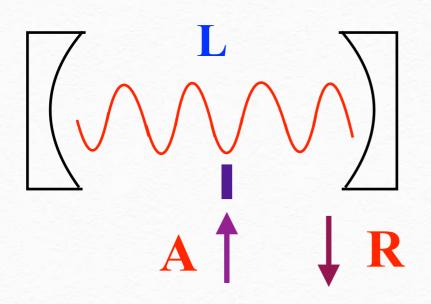
Summary

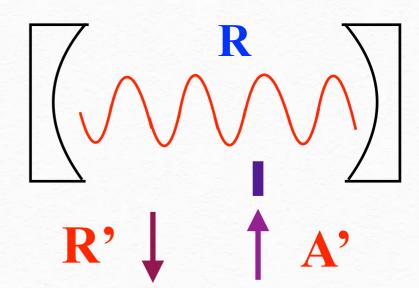


败也萧何

Because of *information scrambling*, we can not decode the initial state information for a single system

Take Home Message





败也萧何

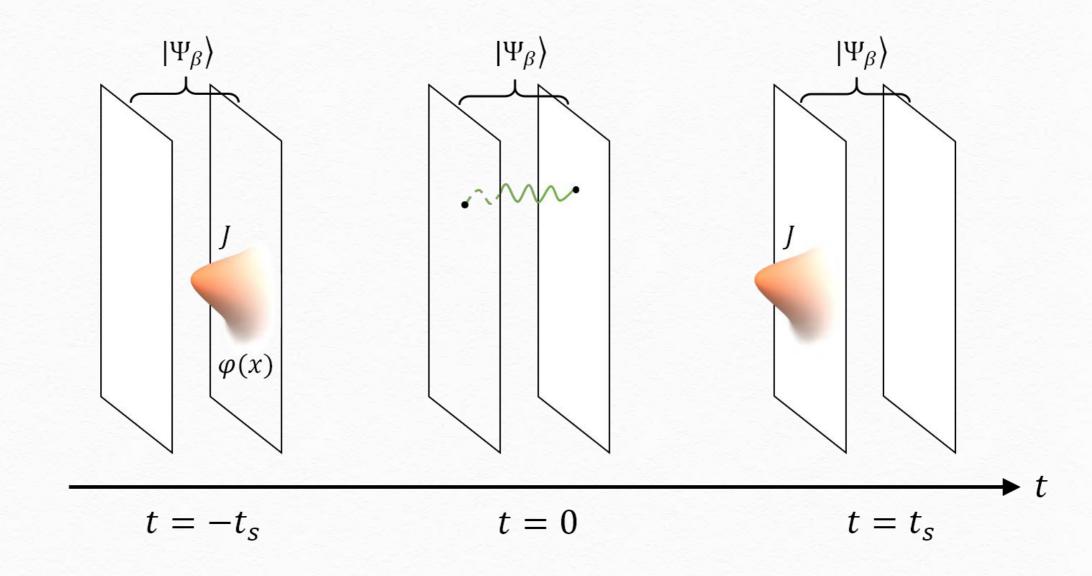
Because of *information scrambling*, we can not decode the initial state information for a single system

成也萧何

Thank to information scrambling, we can decode the initial state information for a thermofield double system

Outlook: Traversable Wormhole

How to make a wormhole traversable?



To be continued ...

Gao, Jafferies and Wall, 2017; Maldacena, Stanford and Yang, 2017 Ping Gao and Hong Liu, 2018

Yanting Cheng 程艳婷

Chang Liu

Jinkang Guo 郭金康

Yu Chen 陈宇

Pengfei Zhang 张鹏飞

Thank You Very Much!