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Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics
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To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we
develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field.
This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external
modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling
regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias.
With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing
the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with
bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling
regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes
and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

DOI: 10.1103/PhysRevA.95.023610

I. INTRODUCTION

Efficient realization and smart control of quantum energy
transfer are of fundamental importance in various fields,
ranging from molecular electronics, to quantum heat engine,
to quantum biology [1–5]. In particular, information and
heat flow have been extensively studied in thermal functional
devices, spawning phononics [6,7], where phonons are flexibly
manipulated in analogy with electronic current in modern
electronics [8–13]. In accordance with the second law of
thermodynamics, it is known that heat energy will naturally
transfer from a hot source to a cold drain driven by the
thermodynamic bias (e.g., temperature), without an external
driving field. Considering external modulations, the optimal
mechanism of dynamical control can be unraveled in phononic
thermal systems [14–17], even to pump heat against the
temperature bias.

The prototype for describing nanoscale heat transfer medi-
ated by quantum junctions is the nonequilibrium spin-boson
(NESB) model [8,18], which was originally proposed in the
study of quantum dissipation [19,20]. The NESB model is
composed of a two-level system (i.e., qubit) interacting with
two bosonic thermal baths under temperature bias. Many meth-
ods have been proposed to study the microscopic mechanism
of quantum heat transfer in the NESB model. Particularly, the
Redfield approach has been extensively applied to analyze
the weak qubit-bath coupling regime, mainly due to the
effective expression and clear physical picture [14,15]. The
contribution of two thermal baths to the heat flux is additive,
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which means that only incoherently sequential heat-exchange
processes between the qubit and baths are considered. As
such, the limitation of the Redfield approach is exposed
in the strong qubit-bath coupling regime, where the heat
flux is nonlinearly dependent on the system-bath coupling
strength. In sharp contrast, the nonequilibrium nonteracting-
blip approximation (NIBA) is applicable in the strong coupling
limit to analytically treat multiphonon processes [9,21–23],
where nonadditive and cooperative phonon transfer processes
are included. Particularly, the appearance of turnover behavior
of heat flux as a function of the qubit-bath coupling strength in
the NESB model was confirmed by the NIBA, as well as by the
multilayer multiconfiguration Hartree [24], quantum Monte
Carlo schemes [18], and the nonequilibrium Green’s func-
tion method [25–27]. Recently, the nonequilibrium polaron-
transformed Redfield equation (NE-PTRE) has been proposed
by the authors to analytically unify the steady-state heat flux in
the weak and strong coupling limits, and the parity classified
transfer processes have been unraveled [28].

From the dynamical control perspective, the time-
dependent modulation of heat transfer in the NESB model
has also attracted tremendous attention, enriching the transfer
mechanisms [14–17,29–33]. The typical realization of the
dynamical modulation is the adiabatic quantum pump, which
was originally proposed by D. J. Thouless to study the
effect of Berry-phase-induced quantization on closed-system
transport [34]. In analogy, as the NESB model is adiabat-
ically and periodically driven by control parameters (e.g.,
bath temperatures), a geometric-phase-induced heat flow will
contribute to the heat transfer [15,16]. However, previous
research unraveled the seemingly contradictory results that,
in the weak qubit-bath coupling limit, the geometric-phase-
induced heat flux remains finite, independent of the qubit-bath
coupling strength under the unbiased condition [15], whereas
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the counterpart in the strong coupling limit becomes strictly
0 [16]. The statement of seemingly contradiction or seemingly
contradictory results below has the same meaning as expressed
herein by default. Thus, natural questions are raised: What
happens in the intermediate qubit-bath coupling regime? and
Can we propose a theory to unify the geometric-phase-induced
heat flux in the weak and strong coupling limits?

In the present paper, by including the full counting
statistics, we introduce a generalized NE-PTRE to analyze
the geometric-phase-induced heat flux in the NESB model.
Our NE-PTRE is able to accommodate both the sequential
transfer picture in the weak coupling limit and the multiphonon
involved nonlinear collective transfer picture in the strong
coupling regime. The geometric heat pump is investigated
under both unbiased and biased conditions, and the seemingly
contradictory results in the weak and strong coupling limits
are clearly unified. Moreover, the effect of the qubit energy
bias on the geometric heat pump is analyzed in typical
system-bath coupling regimes. This work is organized as
follows: in Sec. II, we introduce the NESB model and the
NE-PTRE scheme that dissect the phonon transfer details.
Then in Sec. III, by introducing the full counting statistics, we
develop the generalized NE-PTRE and systematically analyze
the counting measurements of NESB transport. In Sec. IV,
first we investigate the steady-state heat flux and noise power
as functions of the coupling strength and qubit energy bias.
Then we focus on the geometric-phase-induced heat flux in
both the unbiased and the biased cases, and comparisons with
Redfield and nonequilibrium NIBA are clearly demonstrated.
The final section (Sec. V) provides a concise summary.

II. NONEQUILIBRIUM SPIN-BOSON SYSTEM

A. Model

Following Ref. [28], the NESB model in Fig. 1, consisting
of a two-level qubit coupled to two phononic thermal baths at
different temperatures [8,15,18–20], is described as

Ĥ0 = ε0

2
σ̂z + �

2
σ̂x +

∑
k;v=L,R

ωkb̂
†
k,vb̂k,v

+
∑

k;v=L,R

σ̂z(λk,vb̂
†
k,v + λ∗

k,vb̂k,v), (1)

FIG. 1. Schematic of the nonequilibrium spin-boson model,
composed of a central two-level qubit (purple circle) coupled to two
individual thermal baths (red and blue regions), with temperatures
TL and TR , respectively. Wavy red (blue) arrowed lines describe the
interaction between the qubit and the Lth (Rth) bath. For the driven
nonequilibrium spin-boson model, the system parameters appear to
be time dependent, e.g., TL(t) and TR(t).

where the qubit is specified by the Pauli operators σ̂z =
|1〉〈1| − |0〉〈0| and σ̂x = |1〉〈0| + |0〉〈1|, with |1(0)〉 the ex-
cited (ground) state. ε0 is the energy bias, and � is the tunneling
strength between two states. b̂

†
k,v (b̂k,v) creates (annihilates)

one phonon with energy ωk and momentum k in the vth bath,
and λk,v describes the coupling strength between the qubit and
the vth bath.

To study the qubit-bath interaction beyond the weak
coupling limit, it is helpful to transform the original Hamil-
tonian Ĥ0 in Eq. (1) under the polaron framework by Ĥ =
Û †Ĥ0Û [9,16,35], where the unitary operator is given by
Û = eiσ̂zB̂/2, with the collective phononic momentum operator

B̂ = 2i
∑

k;v=L,R ( λk,v

ωk
b̂
†
k,v − λ∗

k,v

ωk
b̂k,v). Thus, the transformed

Hamiltonian becomes Ĥ = Ĥs + Ĥb + V̂sb. Specifically, the
reorganized two-level qubit is shown as

Ĥs = ε0

2
σ̂z + η�

2
σ̂x, (2)

where the renormalization factor is given by [9,16]

η = 〈 cos B̂〉

= exp

(
−
∑

v

∫ ∞

0
dω

Jv(ω)

πω2
[nv(ω) + 1/2]

)
, (3)

with the vth bath spectral function Jv(ω) = 4π
∑

k|λk,v|2δ(ω − ωk), the Bose-Einstein distribution nv(ω) =
1/[exp(βvωv) − 1], and the inverse of the vth bath temperature
βv = 1/kBTv . The noninteracting phonon baths are charac-
terized as Ĥb =∑v=L,R Ĥv , with Ĥv =∑k ωkb̂

†
k,vb̂k,v . The

qubit-bath interaction is expressed as

V̂sb = �

2
[(cos B̂ − η)σ̂x + sin B̂σ̂y], (4)

of which the thermal average vanishes, i.e., 〈V̂sb〉 = 0. Hence,
it may be appropriate to perturbatively obtain the equation
of motion for the two-level qubit in the polaron picture. It
should be noted that in many traditional approaches including
many-phonon processes, e.g., the NIBA, the system-bath inter-
action V̂ = �

2 (cos B̂σ̂x + sin B̂σ̂y) is directly perturbed [9,16].
However, actually V̂ should not be treated as a perturbation
due to the nonnegligible contribution of 〈V̂ 〉 �= 0. In contrast,
V̂sb = V̂ − 〈V̂ 〉 in Eq. (4) may be properly perturbed in
accordance with the perturbation theory [28].

In this paper, the spectral function of phonon baths is
characterized as Jv(ω) = παvω

sω1−s
c,v e−ω/ωc,v , which is typi-

cally considered in quantum transfer studies of nanojunction
systems [20,35–39]. αv is the system-bath coupling strength
of the order αv ∼ |λk,v|2, and ωc,v is the cutoff frequency of
the vth phonon bath. Without loss of generality, we consider
the superohmic spectrum s = 3 in this study. Hence, the renor-
malization factor is specified as η = exp{−∑v=L,R αv[−1 +

2
(βvωc,v )2 ψ1(1/βvωc,v)]/2}, with the trigamma function ψ1(x) =∑∞

n=0
1

(n+x)2 . Moreover, in the weak coupling limit αv � 1, the
normalization factor η becomes 1, while in the strong coupling
regime αv 	 1, it vanishes (η = 0).
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B. Nonequilibrium polaron-transformed Redfield equation

We note that the PTRE method was originally developed to
study quantum dissipative dynamics [35–38,40], with a single
bath. Here we handle a system coupled to at least two baths at
nonequilibrium. It is known that the reorganized system-bath
interaction V̂sb can be treated as a perturbation [28]. Based
on the Born-Markov approximation and the second-order
perturbation theory, we obtain the NE-PTRE as

∂ρ̂

∂t
= −i[Ĥs,ρ̂] +

∑
l=e,o

∑
ω,ω′=0,±�

�l(ω)[P̂l(ω)ρ̂,P̂l(ω
′)]

+ H.c., (5)

where ρ̂ is the reduced density matrix of the qubit in the
polaron picture, � =

√
ε2

0 + η2�2 is the energy gap in the
eigenbasis, and P̂e(o)(ω) is the eigenstate transition projector
(see [41]), of which the relation to Pauli matrices is given by
σ̂x(y)(−τ ) =∑ω=0,±� P̂e(o)(ω)eiωτ . The transition rates are

�o(ω) =
(

η�

2

)2 ∫ ∞

0
dτeiωτ

∞∑
n=0

Q(τ )2n+1

(2n + 1)!
, (6)

�e(ω) =
(

η�

2

)2 ∫ ∞

0
dτeiωτ

∞∑
n=1

Q(τ )2n

(2n)!
, (7)

with the collective phonon propagator Q(τ ) =∑v=L,R Qv(τ ),
and

Qv(τ ) =
∫ ∞

0
dω

Jv(ω)

πω2
{nv(ω)eiωτ + [1 + nv(ω)]e−iωτ }.

(8)

From expressions of the correlation functions �e(0)(ω), it is
clearly shown that phonon transfer processes are classified
by the even- and odd-parity contributions. Specifically,
�o(τ ) describes the transfer processes including odd
phonon numbers from two baths. The lowest order term
�(1)

o (ω) contains the terms (η�)2

8 [QL(ω) + QR(ω)], with
the individual bath contribution Qv(ω) = ∫∞

−∞ dτeiωτQv(τ )
at the transition energy ω = ±�, so that the lowest odd
parity exhibits sequential-tunneling behavior depicted
in Figs. 2(a) and 2(b) [8,15] while �e(ω) shows
cooperative heat transfer processes involving even phonon

FIG. 2. Representative processes involving phonons in quantum
heat transfer: (a), (b) single-phonon sequentially incoherent pro-
cesses, QL(ω) and QR(−ω), respectively; (c), (d) two-phonon cotun-
neling processes, QL(ω)QR(−ω) and QR(ω)QL(−ω), respectively.

numbers. The corresponding lowest order even term
�(1)

e (0) describes the cotunneling effect at Figs. 2(c)

and 2(d) [42], which contains (η�)2

8π

∫∞
−∞ dωQL(ω)QR(−ω) =

(η�)2

8π

∫∞
0 dω[QL(ω)QR(−ω) + QR(ω)QL(−ω)]. This

demonstrates the physical picture that as the left bath releases
thermal energy ω, the right bath gains the equivalent quanta
simultaneously, and the two-level system only has the virtual
processes of excitation and relaxation so that it remains intact.
Apparently, these contributions from two baths are involved
nonadditively. Moreover, we can obtain an arbitrary order
contribution to heat transfer processes systematically by
applying the Taylor expansion.

Particularly, without bias (ε0 = 0) the steady-state densities
can be obtained analytically in the local basis, where the
diagonal and off-diagonal terms are [28]

P11 = P00 = 1/2, (9)

P10 = P01 = 1

2

Re[�o(−�)] − Re[�o(�)]

Re[�o(−�)] + Re[�o(�)]
, (10)

with the element Pij = limt→∞ 〈i|ρ̂(t)|j 〉 (|i〉 depicts the qubit
state), energy gap � = η�, and Re[�o(e)(ω)] the real part of
�o(e)(ω).

III. FULL COUNTING STATISTICS OF THE NESB MODEL

We study the statistics of the transported heat �qτ =∑
k ωk�nk,v in the NESB model, from the system to the vth

phonon bath during a time interval τ , with �nk,v the change
in phonon number to the initial one with momentum k. The
specific measurement of �qτ can be conducted as follows:
Initially at time t = 0, we introduce a projector K̂q0 = |q0〉〈q0|
to measure the quantity Ĥv =∑k ωkb̂

†
k,vb̂k,v in the vth bath,

giving q0 =∑k ωknk,v(0). After a finite time τ of evolution
of the system coupled to thermal baths, we again perform the
projection K̂qτ

= |qτ 〉〈qτ | to obtain the measurement outcome
qτ =∑k ωknk,v(τ ). Hence, the number difference is given by
�nk,v = nk,v(τ ) − nk,v(0). Meanwhile, the joint probability of
measuring q0 at t = 0 and qτ at t = τ is defined as [43]

Pr[qτ ,q0] = Trs,b
{
K̂qτ

e−iĤ0τ K̂q0 ρ̂0K̂q0e
iĤ0τ K̂qτ

}
, (11)

with the trace over both the qubit and the thermal baths. Based
on the joint probability Pr[qτ ,q0], we introduce the probability
of measuring �qτ during the time interval τ as

Prτ (�qτ ) =
∑
qτ ,q0

δ(�qτ − (qτ − q0))Pr[qτ ,q0]. (12)

Then the cumulant generating function of the statistics can be
defined as

Gτ (χ ) = ln
∫

d�qτ Prτ (�qτ )eiχ�qτ , (13)

with χ the counting-field parameter.
To quantitatively express the cumulant generating function,

we introduce the NE-PTRE accompanied by the full counting
statistics. Assuming that the quantum system is connected
to two baths (labeled L and R), we measure the transported
heat from the system to the Rth bath, in the context of the
χ -dependent NE-PTRE. Then we add the counting projector
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to the Hamiltonian Ĥ0 in Eq. (1) to generate Ĥ0(χ ) =
eiχĤR/2Ĥ0e

iχĤR/2 [43,44], written as

Ĥ0(χ ) = ε0

2
σ̂z + �

2
σ̂x +

∑
k;v=L,R

ωkb̂
†
k,vb̂k,v

+
∑

k;v=L,R

σ̂z(e
iχωkδv,R/2λk,vb̂

†
k,v + H.c.). (14)

Similarly to the transformation scheme in the NE-PTRE [28],
we perform a generalized polaron transformation result-
ing in Ĥχ = Û †

χ Ĥ0(χ )Ûχ , with the unitary operator Uχ =
eiσ̂zB̂χ /2 and χ -dependent phonon collective momentum B̂χ =
2i
∑

k,v(eiχωkδv,R/2 λk,v

ωk
b̂
†
k,v − H.c.). As such, the transformed

Hamiltonian is expressed as Ĥχ = Ĥs + Ĥb + V̂sb(χ ). Partic-
ularly, the reorganized qubit-bath coupling is modified by the
counting field as

V̂sb(χ ) = �

2
[(cos B̂χ − η)σ̂x + sin B̂χ σ̂y], (15)

which includes both the information on the counting mea-
surement and the multiphonon nonlinear processes. Whereas
Ĥs and Ĥb remain unchanged, it should be noted that the
thermal average of the interaction term vanishes 〈V̂sb(χ )〉 = 0
due to the parity symmetry. Moreover, the magnitude of
the second-order correlated contribution of V̂sb(χ ) is quite
small, compared to Ĥs at Eq. (2). Hence, the perturbation
of V̂sb(χ ) can be properly carried out, like the derivation
of Eq. (5). Considering the Born-Markov approximation, we
perturb V̂sb(χ ) up to second order and obtain the generalized
NE-PTRE in the context of full counting statistics,

∂ρ̂χ

∂t
= −i[Ĥs,ρ̂χ ] +

∑
l=e,0

∑
ω,ω′=0,±�

{[
�

χ

l,−(ω) + �
χ

l,+(ω′)
]

× P̂l(ω
′)ρ̂χ P̂l(ω) − [�l,+(ω)P̂l(ω

′)P̂l(ω)ρ̂χ + H.c.]
}
,

(16)

where ρ̂χ is the reduced two-level system (qubit) density oper-
ator under the counting field, P̂l(ω) is the eigenstate transition
projector [41], and the energy gap is � =

√
ε2

0 + η2�2. The
transition rates are expressed as

�χ
e,σ (ω) =

(
η�

2

)2 ∫ ∞

0
dτeiωτ [coshQ(στ − χ ) − 1], (17)

�χ
o,σ (ω) =

(
η�

2

)2 ∫ ∞

0
dτeiωτ sinhQ(στ − χ ), (18)

where the modified single-phonon propagator becomes Q(τ −
χ ) = QL(τ ) + QR(τ − χ ).

IV. RESULTS AND DISCUSSION

In this section, we apply the generalized nonequilibrium
polaron-transformed Redfield equation with an auxiliary
counting field, to study the steady-state heat transfer, as well
as the geometric-phase-induced heat transfer under adiabatic
time-dependent modulations.

A. Steady-state heat transfer

By rearranging the NE-PTRE in the Liouville space [28],
the equation of motion for the two-level qubit in Eq. (16) is
expressed as

∂

∂t
|ρχ 〉 = −L̂χ |ρχ 〉, (19)

where the vector form of the density matrix is |ρχ 〉 =
[P χ

11,P
χ

00,P
χ

10,P
χ

01]T with P
χ

ij = 〈i|ρ̂χ |j 〉, and L̂χ is the Li-
ouvillion superoperator. In the absence of the counting-field
parameter (χ = 0), the element of the density operator P

χ

ij

reduces to the conventional Pij . Based on the dynamical
equation, (19), the reduced density matrix at time t is given
by |ρχ (t)〉 = exp(−L̂χ t)|ρχ (0)〉, with |ρχ (0)〉 the initial state.
Hence, the cumulant function can be expressed as Zχ (t) =
〈I|ρχ (t)〉 [44], with the unit vector defined as 〈I| = [1,1,0,0].
Consequently, the cumulant generating function after long-
time evolution can be obtained by Gt (χ ) = 1

t
lnZχ (t), and

the corresponding nth cumulant of heat current fluctuations
can be generated as J (n)(t) = 〈Q̂n〉/t = ∂nGt (χ)

∂(iχ)n |χ=0. When
external modulation is absent, i.e., Lχ is time independent, if
we focus on the steady-state solution, the cumulant generating
function is simplified to G(χ ) = −E0(χ ), where E0(χ ) is
the ground-state energy of the superoperator L̂χ . The cor-
responding left and right eigenvectors are denoted 〈�χ | and
|�χ 〉, which fulfill the normalization relation 〈�χ |�χ 〉 = 1.
In particular, the steady-state heat flux is the first cumulant
J = − ∂E0(χ)

∂(iχ) |χ=0, and the noise power is the second cumulant

J (2) = − ∂2E0(χ)
∂(iχ)2 |χ=0.

1. Unbiased condition: ε0 = 0

We first investigate the steady-state heat transfer in Fig. 3,
where the system parameters are time independent. Without
bias (ε0 = 0), the authors have shown in Ref. [28] that the
heat flux can be analytically solved over a wide system-bath
coupling regime by applying the NE-PTRE.

FIG. 3. Behaviors of the steady-state heat flux and noise power:
(a), (b) with varying system-bath coupling strengths and (c), (d) with
tuning of the qubit energy bias, respectively. Other parameters are
� = 5.22 meV, ωc = 26.1 meV, TL = 150 K, and TR = 90 K.

023610-4



UNIFYING QUANTUM HEAT TRANSFER IN A . . . PHYSICAL REVIEW A 95, 023610 (2017)

Here, we show the full counting statistics of heat transfer
at steady state by analytically exhibiting the counting field
based on the cumulant generating function (Gχ ). Since
Gχ corresponds to the ground-state energy (E0(χ ) = −Gχ ),
based on the analysis in Appendix A, we obtain the ground
eigensolution in Liouville space as

E0(χ ) = (Xe − Xχ
e

)+
Y −

√
Y 2

χ − (Xχ
o

)2 + (Xo)2

2
. (20)

The contributing term from the even parity is

Xχ
e = �

χ
e,+(0) + �

χ
e,−(0), (21)

and Xe = X
χ
e |χ=0, with the transition rate �

χ

l,σ (ω) given in
Eq. (16). The terms from the odd parity are given by

Yχ =
∑

σ=±,ω=±�

�χ
o,σ (ω), (22)

Xχ
o =

∑
σ=±,ω=±�

sgn(ω)σ�χ
o,σ (ω), (23)

with sgn(±�) = ±1 and � = η�. Y = Yχ |χ=0 and Xo =
X

χ
o |χ=0. Consequently, the heat flux can be expressed as

J = �2

8π

∫ ∞

−∞

[
Re[�o(�)]Co(−�,ω′)+Re[�o(−�)]Co(�,ω′)

Re[�o(�)]+Re[�o(−�)]

+ Ce(0,ω′)
]
ω′dω′, (24)

where the rate probability densities are specified as

Ce(ω,ω′) =
∫ ∞

−∞
dχe−iχω′

∫ ∞

−∞
dτeiωτ [coshQ(τ − χ ) − 1],

(25)

Co(ω,ω′) =
∫ ∞

−∞
dχe−iχω′

∫ ∞

−∞
dτeiωτ sinhQ(τ − χ ) (26)

at energy ω = 0,±�. This analytical expression, Eq. (24), of
the steady-state heat flux without bias is found to be identical
to the counterpart in Ref. [28]; the turnover behavior of the
coupling strength is exhibited in Fig. 3(a) (dashed blue line).
Physically, Ce(0,ω′) and Co(±�,ω′) describe the even- and
odd-parity components of the transfer process, respectively.
For example, Co(�,ω′) describes the process in which the quit
releases energy � by relaxing from the excited eigenstate to
the ground one, so that the right bath absorbs energy ω′ and
the left one obtains the left � − ω′. As such, the number of the
state change of the qubit is odd, e.g., n times excitation and
n + 1 times relaxation lead to a relaxation as the final action.
And Ce(0,ω′) describes the process where the qubit has an even
number of virtual state changes, i.e., n times relaxation and n

times excitation, so that the central qubit remains intact and
undergoes no energy change. But still, the right bath absorbs
energy ω′ and the left bath gains −ω′ (i.e., releases ω′).

Similarly, the shot noise is obtained as

J (2) = �2

8π

{∫ ∞

−∞
dω

[
Re[�o(−�)]Co(�,ω) + Re[�o(�)]Co(−�,ω)

Re[�o(�)] + Re[�o(−�)]
+ Ce(0,ω)

]
ω2

−
∫∞
−∞ dω[Co(�,ω) − Co(−�,ω)]ω

(Re[�o(�)] + Re[�o(−�)])3
[Re[�o(−�)]2

∫ ∞

−∞

dω

π
Co(�,ω)ω − Re

[
�o(�)]2

∫ ∞

−∞

dω

π
Co(−�,ω)ω

]}
. (27)

We find that the first term on the right-hand side of Eq. (27) is
the main contribution to the shot noise, of which the spectral
distribution is the same as that for the heat flux in Eq. (24).
Hence, the nonmonotonic turnover behavior is quite similar to
the heat flux, as shown in Fig. 3(b).

2. Biased condition: ε0 �= 0

Next, we extend our analysis of steady-state behaviors to
the biased condition (ε0 �= 0). The heat flux shows the same
nonmonotonic turnover behavior as α increases, i.e., the flux
increases in the weak and moderate coupling strength regimes
(α � 1) and decreases in the strong coupling regimes (α � 1),
shown in Fig. 3(a). Interestingly, in the weak coupling regime
(α � 1), the heat flux is enhanced by enlarging the qubit
energy bias ε0, whereas as the coupling strength enters into
the strong regime (α � 1), the heat flux remains constant
for changing energy bias. To confirm these results, we select
typical coupling strengths to clearly demonstrate the influence
of the energy bias on the heat flux, in Fig. 3(c).

Moreover, we look into the second-cumulant heat fluc-
tuation, i.e., the noise power, in Fig. 3(b). Similarly to the
steady-state flux, the shot noise of the heat flux also exhibits the
same turnover behavior. As the system-bath coupling strength
increases, the noise power is enhanced by the energy bias in

the weak coupling regime, whereas the noise power becomes
nearly independent of the bias in the strong coupling regime.
These behaviors are clearly depicted in Fig. 3(d). Therefore,
we conclude that both the steady-state heat flux and the noise
power are tuned in a similar way by either qubit-bath coupling
or qubit energy bias.

B. Geometric-phase-induced heat flux

As the system is periodically driven by external fields, e.g.,
modulated by two bath temperatures TL(R)(t), as schematically
shown in Fig. 1, the Liouville superoperator becomes time
dependent L̂χ (t). The effect of the geometric phase will
additionally contribute to the heat flux [15,16,45–48], demon-
strated in Appendix B. Thus, in the adiabatic modulation limit,
there clearly exist two components making up the generating
function as

lim
t→∞Zχ (t) = eGχ t = exp([Gdyn(χ ) + Ggeom(χ )]t), (28)

Specifically, the average dynamical phase is expressed as
Gdyn(χ ) = − 1

Tp

∫ Tp

0 dtE0(χ,t), where Tp is the driving pe-

riod, and E0(χ,t) is the eigenvalue of L̂χ (t) with the
minimal real part. It results in the dynamical heat flux
Jdyn = ∂

∂(iχ)Gdyn(χ )|χ=0. The geometric phase contribution
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of the generating function is described by Eq. (B9) in
Appendix B,

Ggeom(χ ) = − 1

Tp

∫ Tp

0
dt〈�χ (t)| ∂

∂t
|�χ (t)〉, (29)

where |�χ (t)〉 (〈�χ (t)|) is the corresponding right (left)
eigenvector of E0(χ,t). Assuming that the two system pa-
rameters u1(t) and u2(t) are periodically modulated [which
are two driving bath temperatures TL(R)(t) in this work],
the geometric phase in Eq. (29) is specified as Ggeom(χ ) =
− 1

Tp

∮
[du1〈�χ | ∂

∂u1
|�χ 〉 + du2〈�χ | ∂

∂u2
|�χ 〉]. According to

the Stocks theorem, Ggeom(χ ) can be reexpressed as

Ggeom(χ ) = − 1

Tp

∫∫
u1,u2

du1du2Fχ (u1,u2), (30)

where

Fχ (u1,u2) = 〈∂u1�χ

∣∣∂u2�χ

〉− 〈∂u2�χ

∣∣∂u1�χ

〉
. (31)

It is noteworthy [49] that Fχ (u1,u2) has the meaning of
curvature in the parameter space (u1,u2) of the ground state of
the quantum Liouville superoperator L̂χ . It is of pure geometric
interpretation and independent of the driving speed (in the
adiabatic limit). Mathematically, Ggeom(χ ) is an analog of the
adiabatic Berry phase in quantum mechanics [50], where in
the latter case the wave function obtains an extra phase after
a cyclic evolution. Similarly, in the full counting statistics of
our driven systems, the cumulant generating function Ggeom(χ )
(analog of phase) in the exponent of the characteristic function
Zχ (analog of wave function) also obtains an additional
term. Both extra terms share a similar geometric origin from
the nontrivial curvature in the system’s parameter space.
As such Fχ (u1,u2) is a Berry-like curvature and we term
Ggeom(χ ) the geometric phase contribution, which generates
the nth cumulant of the geometric-phase-induced heat current
fluctuation, as [15,16,45]

J (n)
geom = ∂nGgeom(χ )

∂(iχ )n

∣∣∣∣
χ=0

= − 1

Tp

∫∫
u1,u2

du1du2
∂n

∂(iχ )n
Fχ (u1,u2)|χ=0. (32)

The geometric heat flux is given by the first cumulant Jgeom =
J (1)

geom.

1. Unbiased condition: ε0 = 0

Here, we first investigate the geometric heat flux without
bias (ε0 = 0). It is known that in the weak qubit-bath coupling
regime, the geometric-phase-induced heat flux is finite and
independent of the coupling strength [15]. This mainly results
from the fact that with weak qubit-bath coupling the transition
rates between the two-level qubit and the phononic baths
are linearly dependent on the coupling strength, exhibiting
additive transfer processes. On the contrary, the geometric heat
flux vanishes in the strong qubit-bath coupling regime upon
applying the nonequilibrium NIBA method [16]. The left and
right eigenvectors corresponding to the ground-state energy are
given by |�χ 〉 = 1

2 [1,1,0,0]T and 〈�χ | = [1,1,0,0], which are
clearly independent of the system parameters and result in the
zero geometric heat flux according to Eq. (30). It was proposed

FIG. 4. Adiabatic modulation by two bath temperatures without
bias (ε0 = 0): (a) geometric-phase-induced heat pump Qgeom =
Jgeom ∗ Tp; (b) coherence (P10) in the local basis. The two bath
temperatures are specified as TL(τ ) = (150 + 90 cos �pτ ) K and
TR(τ ) = (150 + 90 sin �pτ ) K, with the period Tp = 1 ns. Other
parameters are � = 5.22 meV and ωc = 26.1 meV.

that these two approaches describe different physical pictures
within the same NESB system and do not conflict with each
other [16,28].

Based on the χ -dependent NE-PTRE, Eq. (16), we try to
explicitly unify these limiting results, as shown in Fig. 4(a). In
the weak system-bath coupling regime, the geometric heat flux
approaches the upper limit within the Redfield scheme. As the
coupling strength increases, the geometric heat flux is strongly
suppressed and asymptotically decreases to 0, which finally
becomes identical to the result in the nonequilibrium NIBA.
The underlying mechanism can be understood by analyzing
the coherence P10(t), since the populations (P00,P11) are
constant. We find in Fig. 4(b) that the coherence is suppressed
monotonically by increasing the qubit-bath coupling strength,
finally resulting in the constant quasi–steady state in the strong
coupling limit [16]. It is proposed that without bias (ε0 = 0),
multiphonon processes degrade the formation of the geometric
phase. Therefore, this seeming contradiction is clearly solved
within the framework of the NE-PTRE accompanied by a
counting field.

Moreover, compared to the dynamical heat flux [28], the
system-bath coupling plays a distinct role in the geometric
heat flux. For the dynamical flux, in the weak and intermediate
coupling regimes, multiphonon processes are helpful in gen-
erating steady-state heat flux, mainly due to the robustness of
the transition rates. However, in the strong coupling limit, the
large system-bath interaction weakens the transition rates due
to the quantum Zeno-like effect and, finally, suppresses the heat
flux. Hence, the nonmonotonic behavior of the dynamical heat
flux is clearly demonstrated. For geometric flux, increasing
the system-bath coupling strength will only monotonically
decrease the geometric heat flux, which implies that the
instantaneous state of the qubit is inclined to remain intact,
which is independent of temperature modulations, as we have
discussed above.

2. Biased condition: ε0 �= 0

Next, we analyze the geometric heat flux under finite energy
bias (ε0 �=0), as shown in Fig. 5(a). In the weak coupling limit,
the geometric heat flux is equal to that from the Redfield
scheme. The existence of coherence P10 is also crucial to
enhance the geometric-phase-induced heat flux, which is
similar to the unbiased case in Fig. 4. As the coupling strength
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FIG. 5. (a) Geometric-phase-induced heat pump Qgeom =
Jgeom × Tp under finite energy bias of the qubit (ε0 = 2.61 meV); (b)
influence of the qubit energy bias on the geometric-phase-induced
heat pump, with modulation of the two bath temperatures; (c) log-log
relation between ε0 and Qgeom in the strong coupling regime (α = 4);
(d) linear relation between Qgeom and α in the strong coupling regime.
Parameters are the same as in Fig. 4.

increases, the geometric heat flux decreases sharply and even
becomes negative. The corresponding coherence is strongly
suppressed, which leaves only the populations to contribute to
the geometric heat flux. Then the behavior of the geometric
heat flux is consistent with the result within the nonequilibrium
NIBA in the strong coupling regime [16]. As a result, we
conclude that the NE-PTRE is also applicable to unify limiting
coupling results beyond the unbiased condition.

Next, we turn to analyze the influence of the qubit energy
bias on the geometric heat pump in Fig. 5(b). In the weak
qubit-bath coupling regime (e.g., α = 0.01), the geometric
heat pump shows monotonic enhancement with an increase in
the energy bias. As the interaction strength is modulated to the
intermediate coupling regime (e.g., α = 0.2), the geometric
heat pump is also positively enhanced by the increasing
energy bias, which is similar to the counterpart in the weak
coupling case. If we further increase the coupling strength
(e.g., α = 4), the geometric heat pump becomes negatively
enhanced, which is quantitatively distinct from that in the
weak coupling regime. This observation clearly demonstrates
different physical pictures in these two limiting interaction
regimes.

We admit that it is beyond our ability to analytically provide
a comprehensive picture in a wide system-bath coupling
regime for the biased case. Here, to understand the geometric
heat flux reversal, we focus on the strong interaction limit,
which is consistent with the nonequilibrium NIBA framework.
Combined with the counting filed, the equation of motion for
the qubit is expressed as

d

dt

(
P

χ

11

P
χ

00

)
= −

(
K(ε0) −K−(χ )

−K+(χ ) K(−ε0)

)(
P

χ

11

P
χ

00

)
, (33)

with the population P
χ

ii = 〈i|ρ̂χ (t)|i〉. The transition rates are
given by

K±(χ ) = (�/2)2
∫ ∞

−∞
dtη2e±iε0t+QL(t)+QR (t−χ ), (34)

with K(±ε0) = K±(χ )|χ=0, η and Qv(t) given in Eq. (3) and
Eq. (8), respectively. Thus, the eigenstate energies are directly
obtained as

E±(χ ) = 1
2 {[K(ε0) + K(−ε0)]

±
√

[K(ε0) − K(−ε0)]2 + 4K+(χ )K−(χ )}. (35)

The corresponding right eigenstates are given by

|�±
χ 〉 = [2K−(χ ),A±(χ )]T , (36)

with the coefficients A±(χ ) = [K(ε0) − K(−ε0)] ∓√
[K(ε0) − K(−ε0)]2 + 4K+(χ )K−(χ ). Accordingly,

the left eigenstates are

〈�±
χ | = [2K+(χ ),A±(χ )]

A2±(χ ) + 4K+(χ )K−(χ )
. (37)

In the strong qubit-bath coupling limit, it is known that the
Marcus approximation becomes applicable [9,51]. Marcus’s
theory was originally proposed for the electron transfer
rate in the donor-acceptor species. And it works at high
temperatures kBT > ε0 and/or the strong qubit-bath coupling
regime [52]. It can be approached by the short-time expansion
of Qv(t) in Eq. (8) as Qv(t) = �vTv

ω2
c,v

− �vTvt
2 − i�vt [54], with

the effective coupling strength �v = ∫ Jv (ω)
πω

dω = 2αvωc,v .
Consequently, the transition rates combined with the counting
parameter are simplified as K±(χ ) = K(±ε0)M±(χ ), with the
standard rates

K(±ε0) = �2

4

√
π

�LTL + �RTR

exp

[
− (ε0∓�L∓�R)2

4(�LTL + �RTR)

]
(38)

and the factor

M±(χ ) = e
±iε0χ− �LTL�RTR

�LTL+�RTR
[iχ( 1

TL
+ ±ε0−�R

�RTR
)+χ2]

. (39)

In the absence of the counting field (χ = 0), the factor
M±(χ = 0) = 1, and the modified transition rates K±(χ )
decrease back to the standard expressions K(±ε0) in Eq. (38),
respectively. Moreover, we consider the weak qubit energy
bias regime, i.e., ε0 � {�v,kBTv}. Then the transition rate in
Eq. (38) can be approximately expanded up to first order of ε0

as

K(±ε0) ≈ K0

[
1± ε0

2(�LTL + �RTR)
(�L + �R)

]
, (40)

with K0 = �2

4

√
π

�LTL+�RTR
exp[− (�L+�R )2

4(�LTL+�RTR ) ]. According to
the definition in Eq. (32), the geometric-phase-induced heat
flux is obtained as

Jgeom = − ε2
0

Tp

∫∫
TL,TR

dTLdTR

�L�R(�L + �R)3

8(�LTL + �RTR)4
. (41)

This expression clearly confirms the reversal (negative) be-
havior of the heat flux in the strong coupling limit, shown in
Fig. 5(a). Moreover, the power-law feature of the energy bias
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is analytically exhibited in Eq. (41), which is in excellent
agreement with the numerical result as Jgeom∼ − ε2.0±0.02

0 ,
shown in Fig. 5(c). If the system-bath couplings are identically
selected as αL = αR = α, the geometric heat flux is expressed
as Jgeom∼ − αε2

0 based on Eq. (41), and numerically confirmed
in Fig. 5(d), which coincides with the numerical results in
Fig. 2 of Ref. [16], that Jgeom is linearly dependent on the
coupling strength α and quadratically dependent on the qubit
energy bias ε0.

V. CONCLUSION

In summary, we have investigated the geometric-phase-
induced heat pump in the nonequilibrium spin-boson model by
periodically modulating the temperatures of two thermal baths,
which is beyond the traditional Redfield and nonequilibrium
NIBA schemes. With the development of the nonequilibrium
polaron-transformed Redfield equation (NE-PTRE) approach
in the context of full counting statistics, the cumulant
generating function is clearly demonstrated; it consists of
both dynamical phase and geometric phase contributions.
In the absence of an external driving field, the influences
of qubit energy bias on the steady-state heat flux and the
corresponding noise power have been analyzed. In the weak
and moderate coupling regimes, the energy bias monotonically
enhances both the steady state heat flux and the noise power,
while in the strong coupling regime, these two observables
become independent of the energy bias. This clearly demon-
strates the same role of the energy bias in affecting the heat
flux and the noise power.

Next, we have analyzed the geometric heat pump without
bias by varying the qubit-bath coupling strength over a
wide regime. In the weak system-bath coupling limit, the
geometric heat flux is positive finite, which is equivalent to the
counterpart within the Redfield scheme [15]. As the coupling
strength increases, the geometric heat flux shows a monotonic
decrease and, finally, approaches strictly 0, which is identical
to the result based on the nonequilibrium NIBA [16]. We
have also studied the geometric heat pump under the biased
condition. We found that the geometric heat pump decreases
quickly as the qubit-bath coupling increases and shows
reversal behavior in the strong coupling regime. Moreover,
the analytical relations of the geometric heat flux with the
system-bath coupling and the energy bias have been obtained.
The results based on the NE-PTRE also show consistency
with the counterparts from the Redfield and nonequilibrium
NIBA schemes, in the weak and strong coupling regimes,
respectively.

Therefore, we conclude that this unified theory is applicable
to obtain the geometric heat flux in the nonequilibrium
spin-boson model, under both unbiased and biased conditions.
Moreover, we have analyzed the influence of the qubit energy
bias on the geometric heat pump. The geometric heat flux is
negatively enhanced in the strong qubit-bath coupling regime,
which is in sharp contrast with its counterpart in the weak
coupling case, exhibiting positive stabilization. We hope that
these results will have broad implications for smart control of
energy transfer in low-dimensional nanodevices.
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APPENDIX A: ANALYTICAL EXPRESSION OF THE
STEADY-STATE CUMULANT GENERATING FUNCTION

WITHOUT BIAS

Without bias (ε0 = 0), the Liouvillian dynamics of the
reduced density matrix in Eq. (19) under the framework of full
counting statistics is expressed as d

dt
|ρχ 〉 = −L̂χ |ρχ 〉, where

the evolution matrix is specified as

L̂χ =

⎛
⎜⎝

a −aχ bχ cχ

−aχ a cχ bχ

dχ eχ a fχ

eχ dχ fχ a

⎞
⎟⎠. (A1)

The matrix elements are written as aχ = X
χ
e + Yχ

2 , bχ =
− 1

2 (Xχ
o,+ + Xo,−), cχ = 1

2 (Xo,+ + X
χ
o,−), dχ = 1

2 (Xχ
o,+ −

Xo,−), eχ = 1
2 (Xo,+ − X

χ
o,−), fχ = −X

χ
e + Yχ

2 , and a =
aχ |χ=0, with the coefficients

Xχ
e = �

χ
e,+(0) + �

χ
e,−(0), (A2)

Yχ = �
χ
o,+(�) + �

χ
o,+(−�) + �

χ
o,−(�) + �

χ
o,−(−�), (A3)

X
χ
o,± = �

χ
o,±(�) − �

χ
o,±(−�), (A4)

and Xo,± = X
χ
o,±|χ=0. The modified transition rates �

χ

e(o)(ω)
are shown in Eq. (16).

To find the eigenvalues of the evolution matrix, we set
det(Lχ − λI) = 0, which results in

(a − λ)2 = (aχfχ + bχdχ + cχeχ )

± [(aχ − fχ )(a − λ) + (cχdχ + bχeχ )]. (A5)

For one branch, the solution is given by

λ
p
± = (Xe − Xχ

e

)+ Y

2

∓
√

Y 2
χ − (Xχ

o,+ − X
χ
o,−
)2 + (Xo,+ − Xo,−)2/2, (A6)

and for the other branch, it is given by

λm
± = (Xe + Xχ

e

)+ Y

2

∓
√

Y 2
χ − (Xχ

o,+ + X
χ
o,−
)2 + (Xo,+ + Xo,−)2/2. (A7)

Hence, the ground-state energy is obtained as E0(χ ) = λ
p
+.

Since the cumulant generating function is given by Gχ =
−E0(χ ), it is specified as

Gχ = (Xχ
e − Xe

)− Y

2
+
√

Y 2
χ − (Xχ

o )2 + (Xo)2/2, (A8)

with X
χ
o = X

χ
o,+ − X

χ
o,− and Xo = X

χ
o |χ=0.
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APPENDIX B: INTRODUCTION OF THE GEOMETRIC
PHASE AND CUMULANT GENERATING FUNCTION

Considering the time-dependent superoperator L̂χ (t) with
the counting parameter, which is not Hermitian, we obtain the
quasi-eigensolution as

L̂χ (t)|ψn(χ,t)〉 = En(χ,t)|ψn(χ,t)〉,
〈φn(χ,t)|L̂χ (t) = 〈φn(χ,t)|En(χ,t), (B1)

where λn(χ,t) is the instantaneous eigenvalue of L̂χ (t),
and |ψn(χ,t)〉 (〈φn(χ,t)|) is the corresponding normal-
ized right (left) eigenvector, which obeys the relation
〈φn(χ,t)|ψn(χ,t)〉 = δn,m. In analogy with the seminal Berry’s
solution, we can express the wave function in the basis
{|ψn(χ,t)} as

|ρχ (t)〉 =
∑

n

an(t) exp

[
−
∫ t

0
En(χ,τ )dτ

]
|ψn(χ,t)〉. (B2)

By substituting Eq. (B2) into the dynamical equation, (19), we
obtain the evolution equation of an(t):∑

n

dan(t)

dt
exp

[
−
∫ t

0
En(χ,τ )dτ

]
|ψn(χ,t)〉

= −
∑

n

an(t) exp

[
−
∫ t

0
En(χ,τ )dτ

]∣∣∣∣ d

dt
ψn(χ,t)

〉
. (B3)

Then, by left-multiplying the eigenvector 〈φm(χ,t)| by
Eq. (B3), we find that

dam(t)

dt
= −am(t)

〈
φm(χ,t)

∣∣∣∣ d

dt
ψm(χ,t)

〉

−
∑
n�=m

an(t) exp

(
−
∫ t

0
[En(χ,τ ) − Em(χ,τ )]dτ

)

×
〈
φm(χ,t)

∣∣∣∣ d

dt
ψn(χ,t)

〉
. (B4)

It should be noted that the eigenvalue En(χ,t) generally is a
complex value. Hence, the long-time behavior of the reduced
qubit system is mastered by only the eigenmode m = 0, of
which the eigenvalue E0(χ,t) owns the smallest real part.

In the adiabatic limit, the second term on the right-hand
side of Eq. (B4) can be approximately ignored due to the de-
cay factor exp(− ∫ t

0 [En(χ,τ ) − E0(χ,τ )]dτ ) (Re[En(χ,τ ) −
E0(χ,τ )] > 0 for n�=0). We obtain the expression of an(t) after
long-time evolution (t→∞) as

a0(t) = exp

(
−
∫ t

0

〈
φ0(χ,τ )

∣∣∣∣ d

dτ
ψ0(χ,τ )

〉
dτ

)
a0(0), (B5)

with a0(0) the initial-state coefficient. Then, if we consider the
adiabatic cyclic evolution over a long time period Tp, the wave
function can be specified as

|ρχ (t)〉 = exp

(
− t

Tp

∫ Tp

0
dτ

[
E0(χ,τ )

+
〈
φ0(χ,τ )

∣∣∣∣ d

dτ
ψ0(χ,τ )

〉])
a0(0)|ρχ (0)〉. (B6)

Consequently, the generating function can be obtained as

Zχ (t) = 〈I|ρχ (t)〉

≈ exp

(
− t

Tp

∫ Tp

0
dτ

[
E0(χ,τ )

+
〈
φ0(χ,τ )| d

dτ
ψ0(χ,τ )

〉])
a0(0)〈I|ρχ (0)〉. (B7)

Finally, the cumulant generating function in the long-time limit
can be described by two contributing terms as

G(χ ) = lim
t→∞

lnZχ (t)

t
= Gdyn(χ ) + Ggeom(χ ), (B8)

and the factor limt→∞ 1
t

ln(a0(0)〈I|ρχ (0)〉) becomes neg-
ligible. Here, Gdyn(χ ) is the dynamical phase factor,

written as Gdyn(χ ) = − 1
Tp

∫ Tp

0 E0(χ,τ )dτ , while Gdyn(χ )
originates from the geometric phase contribution, writ-
ten as Ggeom(χ ) = − 1

Tp

∫ Tp

0 〈φ0(χ,τ )| d
dτ

ψ0(χ,τ )〉dτ . In the
text, we use |�χ (t)〉(〈�χ (t)|) in Eq. (29) to replace
|ψ0(χ,t)〉(〈φ0(χ,t)|). The geometric-phase-induced cumulant
generating function is reexpressed as

Ggeom(χ ) = − 1

Tp

∫ Tp

0

〈
�χ (τ )

∣∣∣∣ d

dτ
�χ (τ )

〉
dτ. (B9)
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The concept of polaron, emerged from condense matter physics, describes the dynamical interac-
tion of moving particle with its surrounding bosonic modes. This concept has been developed into
a useful method to treat open quantum systems with a complete range of system-bath coupling
strength. Especially, the polaron transformation approach shows its validity in the intermediate
coupling regime, in which the Redfield equation or Fermi’s golden rule will fail. In the polaron
frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from
the canonical distribution, which is beyond the usual weak coupling assumption in thermodynam-
ics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum
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and light-harvesting energy transfer are presented.

Keywords polaron transformation, strong coupling, quantum transport, non-equilibrium steady
state

PACS numbers 71.38.-k, 66.10.C-, 05.60.Gg, 05.70.Ln

Contents

1 Introduction 1
2 Polaron transformation of the spin-boson model 3
3 Equilibrium distribution of the SBM via the

polaron approach 4
3.1 Accuracy of the perturbation theory in the

polaron frame 4
3.2 Non-canonical equilibrium distribution 6

4 Polaron transformed Redfield equation 7
4.1 Steady states and equilibrium distribution 7
4.2 Validity of the PTRE 8
4.3 Weak and strong coupling limits 8

5 Applications of PTRE to exciton diffusion, heat
transport and energy transfer 9
5.1 Coherent exciton transport in disordered

systems 9
5.2 Non-equilibrium heat transfer through

quantum dot 10

∗Special Topic: Progress in Open Quantum Systems: Fundamen-

tals and Applications.

5.3 Energy transfer via three-level heat engine
model 12

6 Summary 13
Acknowledgements 14
Appendix A Correlation functions in Eq. (18) 14
Appendix B Redfield tensor in Eqs. (42) and (43)

14
Appendix C Details in non-equilibrium energy

flux of Eq. (48) 14
References 15

1 Introduction

Understanding the behavior of open quantum systems,
has become increasingly important in physics and chem-
istry as well as in technological developments. Often,
the coupling between the system and the bath is con-
sidered as a small parameter compared to the character-
istic energy scale of the system. This consideration leads
to many natural physical results such as the canonical

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016
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property of equilibrium states and the negligible back
action from the system to the bath. In this case, the
second-order perturbation theory leads to a master equa-
tion of the Redfield or the Lindblad type [1–4], which is
convenient for analytical investigation and not computa-
tionally expensive for numerical implementation. How-
ever, in many physical systems of current interest, the
system-bath coupling (SBC) is comparable to the sys-
tem internal couplings, hence the weak coupling approx-
imation is not justified. The typical examples are the
excitation energy transfer process in solid quantum dots
[5, 6] and photosynthetic complexes [7–10]. There are
a number of non-perturbative techniques to obtain the
numerically exact dynamics; examples include the hier-
archy master equation [11, 12], the quasi-adiabatic prop-
agator path integral (QUAPI) [13], the density matrix
renormalization group [14], the numerical renormaliza-
tion group [15], the multi-configuration time-dependent
Hartree approach [16, 17] and the stochastic path inte-
grals [18, 19]. However, these methods are computation-
ally demanding and non-trivial to implement for large
systems. In addition, much of the recent efforts focus on
the short-time non-Markovian dynamics (i.e., dynamical
coherence), which is relevant for laser-induced coherence
but not for the long-time behavior.

Therefore, we need a method which is formally simple
and physically transparent, meanwhile goes beyond weak
SBC regime without loosing accuracy. Polaron, a basic
concept in condense matter physics, which describes the
quantum (quasi-) particle interacting with the deformed
lattices through electromagnetic interaction [20, 21] (as
illustrated in Fig. 1), is exploited to achieve this goal.
Initiated by Silbey and coworkers, a variational polaron
transformation method was applied to study the bath
renormalisation effects on the tunneling matrix elements
in the spin-boson model (SBM) [22, 23]. Further, this
approach is used to investigate the excitation migra-
tion in molecular crystals, covering both the coherent
and incoherent transport preterites [24]. Recently, a
polaron transformed second-order master equation has
been derived to study the dynamics of open quantum

Fig. 1 Illustration of polaron formed with a charged particle sur-
rounded by a polarized crystal medium.

systems at strong coupling [25–28]. This approach ex-
tends the regime of validity of the master equation to
stronger system-bath couplings, provided that the inter-
nal couplings (or tunneling matrix elements) are small
compared to the typical bath frequency (i.e., the bath re-
sponse is fast on the system time-scale). The main idea
of the polaron transformation approach is to describe
the system in the polaron frame such that the system
is dressed by the environment. The dressed system (or
polaron) takes the major effects of the system-bath in-
teraction into consideration, hence the reduced SBC is
weakened to the regime that the second-order perturba-
tion theory is applicable.

In this review, we mainly focus on the polaron effects
on the equilibrium and non-equilibrium steady states of
multiple-level open quantum systems. The transient dy-
namics of an open quantum system reveals its dissipative
and dephasing properties, as well as the short-time be-
havior in the presence of control or driving against the
noise. However, many systems such as the natural pho-
tosynthetic complexes and the artificial quantum nano-
devices, the open systems continuously operate at their
equilibrium or non-equilibrium steady states. In these
cases, we are only interested in the long-time states of
the open quantum system whose properties are constant,
two aspects of which will be addressed in this paper:

(i) To investigate properties of the equilibrium steady
state beyond the weak SBC regime, the polaron transfor-
mation can be directly applied to the canonical density
of matrix of the total system. Then a perturbative ex-
pansion with respect to the normalized SBC reveals the
polaron effects on the reduced density of matrix (RDM)
of the open system [29, 30], which results in the non-
canonical state of the reduced system [30–32].

(ii) Another interesting issue arises when the quantum
system is surrounded by the non-equilibrium environ-
ment. The characteristics of the non-equilibrium steady
state are closely related with the transport quantities,
such as the diffusion constant [28], the energy transfer
flux [33] and the transfer efficiency [34]. The polaron
transformed Redfield equation (PTRE) is suitable for
these non-equilibrium problems. The SBC effectively ob-
tained from the polaron transformation is weak enough
to introduce the perturbative approach, then the result-
ing Redfield equation is easily manipulated to yield both
the dynamics and the steady states in a broad SBC
regime.

In Section 2, we present the general expression for the
variational polaron transformation using the SBM as ex-
ample. The full polaron transformation which is accu-
rate for the fast bath case is straightforwardly obtained
by setting the variational parameter equals to the SBC

110308-2 Dazhi Xu and Jianshu Cao, Front. Phys. 11(4), 110308 (2016)
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strength. In Section 3, we obtain the equilibrium steady
state by the perturbative expansion in the variational
polaron frame. The comparisons with other perturbative
methods and the exact numerical calculation are also
presented to clarify the valid parameter regimes. The
PTRE is introduced in Section 4, by which both the
dynamics and the non-equilibrium steady states can be
studied beyond weak coupling regime. In Section 5, three
specific topics on the excitation transport and energy
transfer are studied via the PTRE: the coherent quan-
tum transport in disordered systems, non-equilibrium
energy transfer via a two-level quantum dot, and non-
equilibrium properties of a three-level heat engine model.
We summarize the polaron approach and its application
in Section 6.

2 Polaron transformation of the spin-boson
model

We introduce the polaron transformation via the SBM,
which is the simplest dissipative model used to inves-
tigate the energy transfer in light harvesting systems
[35, 36], decoherence in atom-photon interaction systems
[37], tunneling phenomena in condensed media [38, 39],
charge transfer [40], and quantum phase transitions [41,
42]. The SBM describes a two-level system (TLS) cou-
pled with a multi-mode harmonic bath. The SBM Hamil-
tonian is written as (we set � = 1 in the following)

Htot =
ε

2
σz +

Δ
2

σx +
∑

k

ωkb†kbk + σz

∑

k

gk(b†k + bk),

(1)

where σi (i = x, y, z) are the Pauli matrices, ε is the en-
ergy splitting between the two local energy levels, and Δ
is the tunneling matrix element. The bath is modeled as
a set of harmonic oscillators labeled by their frequencies
ωk, and their coupling strength to the TLS are denoted
by gk.

Though the SBM model is formally simple, it displays
the competition between coherent (tunneling dominates)
and incoherent (bath dominates) effects. Despite its sim-
plicity, the SBM has not been solved exactly so far. Com-
paring with the non-trivial analytical investigation base
on path integrals [38, 39] and the numerically exact but
computationally demanding methods (such as the hier-
archy master equation [11] and the QUAPI [13]), the
polaron transformation method is clear in physical pic-
tures, accurate in a broad range of SBC strength, and
can be easily extended to multilevel systems.

For generality, the variational approach of polaron
transformation is adopted here, which extends the valid-

ity of the original full polaron method to the slow bath
regime [22, 23, 43]. The variational polaron transforma-
tion is generated by

U = exp(−iσzB/2) (2)

with the bath operator B = 2i
∑

k
fk

ωk
(b†k − bk), which

displaces the bath oscillators in the positive or negative
direction depending on the state of the TLS. The vari-
ational parameter fk determines the magnitude of the
displacement of each mode, when fk = 0 the displace-
ment is zero. If we set fk = gk, the variational polaron
transformation reduces to the full polaron transforma-
tion. The variational method allows us to determine an
optimal value of fk between 0 and gk, making the trans-
formation valid over a wide range of parameters. The ef-
fects of the polaron transformation act on the SBM can
be illustrated by a double-well in the coordinate space
(see Fig. 2). The polaron transformation displaces the
effective potential for each local state, and further renor-
malizes the tunneling rate and the SBC strength. By
choosing fk properly (see below), the high-order SBC
are involved in these renormalized parameters, thus the
second-order perturbative calculation with the effective
SBC is able to give the accurate result.

Applying the transformation to the total Hamiltonian
in Eq. (1), we have

H̃tot = UHtotU
† = H̃0 + H̃I , (3)

where the free Hamiltonian is H̃0 = H̃S +H̃B. The trans-
formed system Hamiltonian is given by

H̃S =
ε

2
σz +

Δκ

2
σx +

∑

k

fk

ωk
(fk − 2gk) (4)

and the bath Hamiltonian remains unaffected, H̃B =∑
k ωkb†kbk. The last term in Eq. (4) is a constant hence

can be removed. The tunneling rate is renormalized by
the expectation value of the bath displacement operator,

Fig. 2 Polaron effects in the SBM in the coordinate space. The
dashed line illustrates the effective potentials for the local states,
which are induced by the boson bath and presented as harmonic
wells. The polaron transformation U displaces the potential wells
(solid line) and renormalizes both the tunneling rate and the SBC
strength.
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Δκ = κΔ, where

κ = 〈cosB〉H̃B

= exp

[
−2

∑

k

f2
k

ω2
k

coth
(

βωk

2

)]
(5)

and 〈·〉H̃B
represents the average over the bath canonical

density matrix ρB = e−βH̃B /TrB[e−βH̃B ]. The trans-
formed interaction Hamiltonian becomes

H̃I = σxVx + σyVy + σzVz (6)

where

Vx =
Δ
2

(cosB − κ) , (7)

Vy =
Δ
2

sin B, (8)

Vz =
∑

k

(gk − fk) (b†k + bk). (9)

The interaction Hamiltonian is constructed such that its
thermal average is zero, TrB[H̃I exp(−βH̃B)] = 0.

Following Silbey and Harris [22, 23], we determine the
optimal values for the set {fk} by minimizing the Gibbs-
Bogoliubov–Feynman upper bound on the free energy
[44–46]

AB = − 1
β

ln TrS+B[e−βH̃0 ] + 〈H̃I〉H̃0
, (10)

where 〈 〉H̃0
denotes the average over the canonical state

with respect to H̃0. Since 〈H̃I〉H̃0
= 0, the upper bound is

solely determined by the free Hamiltonian H̃0. The vari-
ational theorem states that AB � AF where AF is the
true free energy of H̃tot. Therefore, we seek for the min-
imal of AB with respect to fk by solving dAB/dfk = 0.
The minimization condition leads to

fk = gkF (ωk) , (11)

F (ωk) =
[
1 +

Δ2
κ

ωkΛ
coth

(
βωk

2

)
tanh

(
βΛ
2

)]−1

, (12)

where Λ =
√

ε2 + Δ2
κ. In the continuum limit, the renor-

malization constant can be written as

κ = exp
[
−2

∫ ∞

0

dω

π

J (ω)
ω2

F (ω)2 coth
(

βω

2

)]
, (13)

where the bath spectral density J (ω) =
π

∑
k g2

kδ (ω − ωk). Throughout the paper, we use a
super-ohmic spectral density with an exponential cut-
off,

J(ω) ∝ γω3ω−2
c e−ω/ωc , (14)

where γ is the dimensionless SBC strength. The cut-off

frequency is denoted by ωc, which governs the bath re-
laxation time τB ∝ ω−1

c .
Since F (ω) is also a function of κ, the set of {fk} must

be solved self-consistently via Eqs. (11) and (12). Never-
theless, without numerical calculation, the expressions of
F (ω) and κ have already shown insightful physics in two
limits: (i) When the bath is slow (Δ � ωc) or the SBC is
weak (γ � 1), we find F (ω) ≈ 0 and fk ≈ 0, the polaron
picture is obviously not applicative in this limit since
the bath modes cannot follow the fast coherent oscilla-
tion of the system, thus the bath oscillators are barely
displaced. (ii) When the bath is fast (Δ � ωc) or the
SBC is strong (γ � 1), we find F (ω) ≈ 1 and fk ≈ gk,
i.e., the full polaron transformation is recovered. There-
fore, when dealing with the open system with fast bath,
we can apply the full polaron transformation by setting
fk = gk for simplicity without loosing much accuracy
(see Section 3.1).

3 Equilibrium distribution of the SBM via the
polaron approach

This section is dedicated to study the equilibrium state
of the SBM in the polaron frame, which is motivated
mainly for two reasons: (i) The calculation of the equi-
librium state of the SBM provides a benchmark to as-
sess the accuracy of only the second-order perturbation
theory (2nd-PT) in the polaron frames, without involv-
ing additional approximations, such as factorized initial
conditions and the Born-Markov approximation which
are generally invoked in the quantum master equation.
This investigation can clearly demonstrate how accurate
does the polaron approach depend on the bath proper-
ties, namely, the bath relaxation time and the coupling
strength. (ii) Equilibrium canonical distribution in sta-
tistical mechanics assumes weak SBC, while under real
physical conditions this assumption is usually invalid,
thus the equilibrium statistics is generally non-canonical.
By exploiting the polaron transformation with pertur-
bation theory, an analytical treatment is advocated to
study non-canonical statistics of the SBM at arbitrary
temperature and for arbitrary SBC strength.

3.1 Accuracy of the perturbation theory in the polaron
frame

First, we briefly introduce the second-order correction to
the equilibrium state of the system in the polaron frame.
The exact equilibrium RDM can be formally defined as

ρ̃S =
TrB [e−βH̃tot ]

TrS+B[e−βH̃tot ]
. (15)
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In this review, the operator with a tilde denotes it is de-
fined in the polaron frame, for example ρ̃ = U †ρU , where
ρ is the density matrix in the untransformed frame. Us-
ing the Kubo identity [47, 48], the operator exp[−βH̃tot]
is expanded up to the second order in H̃I as

e−βH̃tot ≈ e−βH̃0
[
1 −

∫ β

0

dβ′eβ′H̃0H̃Ie−β′H̃0

+
∫ β

0

∫ β′

0

dβ′dβ′′eβ′H̃0H̃Ie−(β′−β′′)H̃0H̃Ie−β′′H̃0
]
.

(16)

The above expansion is similar to the Dyson expansion,
with β treated as imaginary time. Since 〈H̃I〉H̃0

= 0,
the leading order correction to ρ̃S is of the second or-
der in H̃I . Inserting the above expression into Eq. (15)
and keeping terms up to the second order, the system
equilibrium state is approximated as

ρ̃S = ρ̃
(0)
S + ρ̃

(2)
S + . . . ,

ρ̃
(0)
S = e−βH̃S/Z

(0)
S ,

ρ̃
(2)
S =

A

Z
(0)
S

− Z
(2)
S

[Z(0)
S ]2

e−βH̃S , (17)

where

A =
∑

n,m=x,y,z

∫ β

0

∫ β′

0

dβ′dβ′′Cnm(β′ − β′′)

×e−βH̃Sσn(β′)σm(β′′),

Z
(0)
S = TrS [e−βH̃S ],

Z
(2)
S = TrS [A], (18)

and Cnm (τ) = 〈Vn (τ) Vm〉H̃B
is the imaginary-time

bath correlation function. The operators in imaginary
time are defined as O (β) ≡ eβH̃0Oe−βH̃0 . The expres-
sions for the non-vanishing bath correlation functions
are shown in Appendix A. The full polaron result can
be conveniently obtained by setting F (ω) = 1, then
the only non-vanishing correlation functions are Cxx and
Cyy. Furthermore, in this extremely strong coupling limit
γ → ∞, it can be seen from Eq. (13) that κ → 0 and
the system becomes incoherent since the coherent tun-
neling element vanishes. As a result, all of the correlation
functions and the second-order corrections to ρ̃S vanish;
hence the equilibrium density matrix is only determined
by the energy splitting of the two local energy levels,
ρ̃S ∝ exp(−εβσz/2). In the opposite limit, F (ω) = 0
which corresponds to no transformation is performed and
Czz is the only non-zero correlation function.

Since the populations of the TLS are not affected by
the transformation, TrS [σzρS ] = TrS [σz ρ̃S ] ≡ 〈σz〉, we
can directly compare the expectation value 〈σz〉 from

2nd-PT in the original frame [F (ω) = 0], the full po-
laron frame [F (ω) = 1], and the variational polaron
frame [F (ω) in Eq. (12)] with those obtained from the
numerically exact imaginary-time path integral calcula-
tions. Results of the transformed zeroth-order density
matrix, ρ̃

(0)
S , which depend only on the renormalized sys-

tem Hamiltonian H̃S , are also included.
In order to get a good perspective on the accuracy of

2nd-PT in different frames depends on the properties of
the bath, we calculate the relative errors over the en-
tire range of the bath parameters. The relative error is
defined as

∣∣∣∣
〈σz〉Pert − 〈σz〉PI

〈σz〉PI

∣∣∣∣ , (19)

where the subscripts “Pert” and “PI” denote the pertur-
bative calculation and path integral calculation, respec-
tively. Figure 1 displays the respective errors of second-
order perturbation in the three different frames as a func-
tion of the cut-off frequency ωc and the coupling strength
γ. As seen in Fig. 3(a), the usual 2nd-PT without trans-
formation breaks down at large γ. It is also less accurate
when the cut-off frequency is small, which corresponds
to a highly non-Markovian bath. On the other hand, the
2nd-PT in the full polaron frame fails at small γ and
ωc [see Fig. 3(b)]. These two approaches provide comple-
mentary behavior as a function of the coupling strength;
the full polaron method is essentially exact for large γ,
while the usual 2nd-PT is exact for small γ. The varia-
tional calculation is valid over a much broader range of
parameters [see Fig. 3(c)], and combines the regimes of
validity of the full polaron result and the 2nd-PT in the
original frame. It becomes only slightly less accurate in
the slow bath regime around a narrow region of coupling
strength.

Fig. 3 At Δ = 3, the relative errors of the second-order pertur-
bation theory, compared with the exact stochastic path integral
result as defined in Eq. (19), in (a) the original frame, (b) the full
polaron frame, and (c) the variational polaron frame. Obviously,
the variational polaron method is of high accuracy in the fast bath
regime over the entire range of coupling strength. Reproduced from
Ref. [29].
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The exact numerical method we applied here as bench-
mark is based on imaginary-time path integrals [18].
For the SBM, following the well-known Feynman-Vernon
influence functional [49]with the Hubbard-Stratonovich
transformation [39], it was shown that the influence func-
tional is unraveled by an auxiliary stochastic field. The
ensuing imaginary-time evolution of the density matrix
may then be interpreted as one governed by a time-
dependent Hamiltonian with a stochastic field. A pri-
mary benefit of this approach is that it generates the
entire RDM from one Monte Carlo simulation. Addition-
ally, any form for the bath spectral density J (ω) can be
used. The details of the numerical algorithm can be found
in Ref. [18].

In the following of this paper, we will only consider
the bath with large cut-off frequency such that the full
polaron transformation can be safely applied. Without
making ambiguity, from now on when we use the word
“polaron transformation”, it actually implies the “full
polaron transformation” for brevity.

3.2 Non-canonical equilibrium distribution

To investigate the non-canonical statistics of the TLS
at arbitrary temperature and arbitrary SBC strength,
both the population and coherence of the RDM should be
compared with the canonical density matrix. In particu-
lar, we use the RDM in the system eigenbasis to quantify
the non-canonical statistics as well as the quantumness of
the open system. The agreement of the analytical treat-
ment based on the polaron transformation with the exact
stochastic path integral result is also verified.

Different from the diagonal elements ρ11
S and ρ22

S ,
which are given above by (1 ± 〈σz〉)/2, the off-diagonal
element ρ12

S in the polaron picture is more involved be-
cause the σz operator does not commute with the polaron
transformation operator U . Nevertheless, we find

ρ12
S = Tr[σ−ρtot] = Tr[σ̃−ρ̃tot] = Tr[σ− cosBρ̃tot] (20)

indicating that ρ12
S can still be obtained from ρ̃tot, but

not from ρ̃S . Because of the correlation between the sys-
tem and the bath, the first-order contribution of H̃I to
exp[−βH̃tot] and hence to ρ̃tot is already nonzero (upon
thermal averaging). As such, it suffices to consider a first-
order perturbation theory in imaginary time for the total
density matrix in the polaron frame. With details elab-
orated in Ref. [30], we obtain ρ12

S ≈ ρ12
S,(0) + ρ12

S,(1), with

ρ12
S,(0) = −κΔκ

2Λ
tanh(βΛ/2), (21)

ρ12
S,(1) = −

∑

n=x,y

∫ β

0

dτSn(τ)Kn(τ). (22)

Here Sn(τ)= 〈σn(τ)σ−〉H̃S
and Kn(τ)= 〈Vn(τ) cos B〉H̃B

are the correlation functions of the system and the bath,
respectively, which are given in Appendix A.

Instead of examining all the RDM elements, a single
quantity is used to characterize non-canonical statistics:
the smallest possible angle θ. It is the angle rotated (in
radians) on the Bloch sphere to reach the eigenstates of
HS from the diagonal representation of the RDM. As a
function of the SBC strength γ for a fixed temperature,
the theoretical results (solid line) are plotted in Fig. 4(a).
For small values of γ, θ is small, so the RDM’s diagonal
representation is relatively close to that of HS . This is
expected, because for weak SBC strength, the equilib-
rium statistics should be canonical. As γ increases, θ

increases, indicating that the RDM diagonal representa-
tion continuously and monotonously rotates away from
the eigenstates of HS . To further elucidate the continu-
ous change in θ, an analogous angle, namely, the angle
that the RDM diagonal representation should be rotated
to reach the eigenstates of HI , is also plotted with dashed
line in Fig. 4(a). For large values of γ, we find κ → 0,
the SBM reduces to a pure dephasing model. Therefore,
the RDM diagonal representation is seen to approach
that of HI (or σz), and the system equilibrium state
approaches exp(−εβσz/2). For a varying SBC strength,
either weak or strong, the 2nd-PT polaron approach
and the numerically exact results agree, which confirms
that our analytical treatment for the RDM off-diagonal
elements performs equally well in the regime valid

Fig. 4 (a) Coupling strength dependence of the angle to be ro-
tated on the Bloch sphere to reach eigenstates of H̃S (solid line) or
H̃I (dashed line) from eigenstates of equilibrium RDM, for β = 1,
ε = 0.5, and ωc = 5 (in units of Δ). (b) Temperature dependence
of the angle to be rotated on the Bloch sphere to reach eigen-
states of H̃S (solid line) or H̃I (dashed line) from eigenstates of
equilibrium RDM, for γ = 0.1, ε = 0.5, and ωc = 5. Solid dots
are numerically exact stochastic path integral results. Reproduced
from Ref. [30].
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for treating the RDM diagonal elements.
The equilibrium RDM considered here reminds us the

preferred basis discussed in decoherence dynamics [50]:
An equilibrium RDM is an asymptotic result of quan-
tum dissipation. Due to this interesting connection, the
particular diagonal representations of RDM as a result
of the non-canonical statistics can also be understood as
a remarkable outcome of nature’s superselection in open
quantum systems [51–54].

The temperature dependence of non-canonical statis-
tics at a fixed intermediate SBC strength γ is depicted
in Fig. 4(b). For temperature lower than kBT = 1, the
RDM diagonal representation is further rotated from
that of HS (solid line) but becomes closer to that of
HI (dashed line). Therefore, the non-canonical statistics
becomes more pronounced when temperature decreases.
When temperature increases, the deviation angle con-
tinuously changes in opposite directions, showing that
the RDM diagonal representation gradually moves away
from the eigen-representation of HI but smoothly ap-
proaches that of HS . Numerically exact Monte Carlo
simulation results (solid dots) are also presented in Fig.
4(b), further supporting our theory.

4 Polaron transformed Redfield equation

Besides solving the equilibrium states, the polaron trans-
formation is also a powerful tool to study the dynamics of
open quantum systems at strong coupling via the second-
order master equation. Applying the polaron method to
study the dynamics of open quantum systems was first
proposed by Grover and Silbey [24], and it has gained
a renewed attention due to the recent interest in coher-
ent energy transfer in light harvesting systems [25–27]
and has been extended to study non-equilibrium quan-
tum system [33, 34], which we will introduce in Sec.V.
For non-equilibrium steady state, the non-Markovian ef-
fect is less significant so we will adopt the secular and
Markov approximation.

After the transformation, the system is dressed by po-
laron, then the master equation is obtained by applying
perturbation theory to the transformed system-bath in-
teraction. This approach extends the regime of validity of
the quantum master equation to stronger SBC, provided
that the tunneling matrix elements are small compared
to the bath cut-off frequency (Δ < ωc).

In this subsection, we use the SBM as example to intro-
duce the PTRE approach. For a multi-level system, the
PTRE can be generalized straightforwardly following the
same procedure [28]. The Hamiltonian of the SBM after
the full polaron transformation is given in Eq. (3) with

fk = gk. The strength of the SBC is effectively weakened
by the polaron transformation. Specifically, H̃I is of the
order of bath fluctuation and its thermal average is zero,
hence H̃I is a reliable perturbative parameter. Based on
this consideration, the Born–Markov approximation is
applied to derive the PTRE for SBM in the Schrodinger
picture:

dρ̃S(t)
dt

= −i[H̃S , ρ̃S(t)]

−
∫ ∞

0

dsTrB{[H̃I , [H̃I(−s), ρ̃S(t) ⊗ ρB]]}, (23)

which can be further written as
dρ̃S

dt
= −i[H̃S, ρ̃S ]

−
∑

α,β=z,±
[Γ+

αβτατβ ρ̃S + Γ−
βαρ̃Sτβτα

−Γ−
βαταρ̃Sτβ − Γ+

αβτβ ρ̃Sτα]. (24)

Here we use a new set of Pauli operators τα with respect
to the eigenbasis of the Hamiltonian H̃S = Λτz :

τz = |+〉 〈+| − |−〉 〈−| , (25)

τ+ = |+〉 〈−| , τ− = |−〉 〈+| . (26)

The eigenbasis are defined with the local basis |1〉 and
|2〉 as

|+〉 = cos
θ

2
|1〉 + sin

θ

2
|2〉 , (27)

|−〉 = sin
θ

2
|1〉 − cos

θ

2
|2〉 , (28)

where tan θ = Δκ/ε. The dissipation rates Γ±
αβ are re-

lated to the half-side Fourier transformation of the bath
correlation functions

Γ±
αβ =

Δ2

4

∫ ∞

0

dt 〈ξα (±t) ξβ (0)〉 , (29)

with

ξz (t) = sin θ[cos B(t) − κ], (30)

ξ± (t) = −e±iΛt{cos θ[cosB(t) − κ] ∓ i sin B(t)}. (31)

Therefore, the steady state of the system can be easily
obtained from Eq. (24) by solving dρ̃S/dt = 0.

4.1 Steady states and equilibrium distribution

The expectations of the operators τα in the steady state,
which contain all the information of the TLS in SBM
are displayed in Fig. 5. The dependence of the popula-
tion difference 〈τz〉 on the coupling strength γ is plot-
ted with the blue solid line. It is found that the steady
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Fig. 5 The steady state of TLS as a function of the SBC strength
γ. The steady states of the PTRE follow the canonical distribution
in the polaron transformed basis, which rotates with the coupling
strength γ. In the weak coupling limit, the system steady state
is the canonical distribution in the eigen basis (black dash line);
while in the strong coupling limit, the steady state is the canonical
distribution in the localized basis (red dot-dash line). The inset
shows the coherent term of the steady state, which is small in the
polaron transformed basis. We choose the parameters in units of
Δ: ε = 0.5, ωc = 5 and β = 1. Reproduced from Ref. [34].

state RDM obtained from the PTRE coincides with the
zeroth-order perturbation result of the equilibrium state
in Eq. (17). The steady state distribution of the TLS
follows the Boltzmann distribution with respect to the
eigenbasis in the polaron frame

〈τz〉 = − tanh(
1
2
βΛ). (32)

It is reduced to the canonical distribution with re-
spect to the eigenbasis of HS as limγ→0 〈τz〉 =
− tanh[β

√
ε2 + Δ2/2], and is reduced to limγ→∞ 〈τz〉 =

− tanh[βε/2] in the strong coupling limit, which is the
Boltzmann distribution in the local basis |1〉 and |2〉.

4.2 Validity of the PTRE

For an unbiased two-level system, we compare the result

Fig. 6 Time evolution of the population dynamics of the state
|1〉 calculated from the PTRE Eq. (24) (symbols) and the time-
convolutionless second-order polaron master equation used in Ref.
[55] (solid lines). The parameters used are ε1 − ε2 = 0, Δ = 2 and
ωc = 3. Reproduced from Ref. [28].

obtained from the above PTRE Eq. (24) with that
from the time-convolutionless second-order polaron mas-
ter equation without the secular and Markov approxima-
tions [55]. The results are plotted in Fig. 6, they show re-
markably good agreements for different temperature and
coupling strength. Moreover, as shown below, the PTRE
recovers the Redfield equation in the weak coupling limit
and the Fermi’s golden rule (or Förster theory) in the
strong coupling limit.

4.3 Weak and strong coupling limits

In the weak coupling limit, we have κ ≈ 1, thus the
eigenbasis |±〉 of the polaron transformed Hamiltonian
H̃S become the eigenbasis of HS = ε

2σz + Δ
2 σx. In this

case the master equation in Eq. (24) with secular ap-
proximation is reduced to the Redfield equation

dρ++
S

dt
= −Γ [1 + N (Λ0)] ρ++

S + ΓN (Λ0) ρ−−
S , (33)

dρ+−
S

dt
= −iΛ0ρ

+−
S − Γ [

1
2

+ N (Λ0)]ρ+−
S , (34)

where Γ = 1
2J (Λ0) sin2 θ, Λ0 =

√
ε2 + Δ2 and N (ω) =

1/ [exp (βω) − 1]. In the strong coupling limit, the co-
herence is quickly destroyed by dissipation, thus we only
need to consider the equations of the population. Ad-
ditionally, κ ≈ 0 for large γ, i.e., the eigenbasis of H̃S

coincide with the local basis |1〉 and |2〉. As a result, Eq.
(24) becomes a kinetic equation governing the popula-
tion dynamics, which can be written as

dρ11
S

dt
= −Γ11ρ

11
S + Γ12ρ

22
S , (35)

where

Γ11 =
1
2
κ2Δ2

∫ ∞

0

dτ�
[
eiετ

(
eQ(τ) − 1

)]
, (36)

Γ12 =
1
2
κ2Δ2

∫ ∞

0

dτ�
[
e−iετ

(
eQ(τ) − 1

)]
, (37)

and

Q (τ) =
∫ ∞

0

dω
J (ω)
πω2

[cos (ωτ) coth (βω/2)

−i sin (ωτ)]. (38)

The above transition rates Γ11 and Γ12 are the same
as predicted from the Fermi’s golden rule. In summary,
the PTRE smoothly connects the weak and strong lim-
its, and provides a useful tool to study the intermediate
coupling region where there is usually no reliable approx-
imation method.
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5 Applications of PTRE to exciton diffusion,
heat transport and energy transfer

The PTRE cannot only be used in calculating the steady
state and the dynamics of equilibrium systems, but also
apply to non-equilibrium problems such as exciton diffu-
sion in disordered system, heat transport through quan-
tum dot and energy transfer in heat engine model. The
steady states of these non-equilibrium processes are usu-
ally of special interests as they are closely related to
the measurable quantities in experiments. The PTRE
is a proper tool to study these problems in order to
bridge the gap between the standard Redfield equation
in weak coupling regime and the Fermi’s golden rule or
the noninteracting-blip approximation (NIBA) in strong
coupling regime.

5.1 Coherent exciton transport in disordered systems

Quantum transport in disordered systems governs a host
of fundamental physical processes including the efficiency
of light harvesting systems, organic photovoltaics, con-
ducting polymers, and J-aggregate thin films [56–65].
The PTRE approach to quantum transport allows us
to bridge coherent band-like transport governed by the
Redfield equation to incoherent classical hopping trans-
port described by the Fermi’s golden rule. The results
reveal that a non-monotonic dependence of the diffusion
coefficient can be observed as a function of temperature
and system-phonon coupling strength.

The system is extended from single TLS to a tight
binding model, described by the Anderson Hamiltonian
(see Fig. 7)

HS =
∑

n

εn |n〉 〈n| +
∑

m �=n

Jmn |m〉 〈n| , (39)

where |n〉 denotes the site basis and Jmn is the electronic
coupling between site m and site n. Here, we consider one
dimensional system with nearest-neighbor coupling such
that Jmn = J(δm,n+1 + δm+1,n). The static disorder is

Fig. 7 Illustration of the diffusion of a single excitation in one
dimensional system with static disorder and local bosonic noise.

introduced by taking the site energies εn to be indepen-
dent, identically distributed Gaussian random variables
characterized by their variance σ2

n = εnεn. The overline
is used throughout to denote the average over static dis-
order. We assume that each site is independently coupled
to its own phonon bath in the local basis. Thus,

HB =
∑

nk

ωnkb†nkbnk, (40)

HI =
∑

nk

gnk |n〉 〈n| (b†nk + bnk), (41)

where ωnk and b†nk(bnk) are the frequency and the cre-
ation (annihilation) operator of the kth mode of the bath
attached to site n with coupling strength gnk, respec-
tively.

Applying the full polaron transformation and following
the same procedure in Section 4, a second-order PTRE in
terms of the transformed SBC with Markov and secular
approximations is given by

dρ̃νν(t)
dt

=
∑

ν′
Rνν,ν′ν′ ρ̃ν′ν′(t), (42)

dρ̃μν(t)
dt

= (−iωνμ + Rμν,μν)ρ̃μν(t), ν �= μ. (43)

The Greek indices denote the eigenstates of the polaron
transformed system Hamiltonian, i.e., H̃S |μ〉 = Ẽμ |μ〉
and ωμν = Ẽμ − Ẽν . The Redfield tensor Rμν,μ′ν′ de-
scribes the phonon-induced relaxation, the detailed ex-
pressions are given in Appendix B. For the transport
properties studied here, only the population dynamics is
needed which is invariant under the polaron transforma-
tion since ρ̃nn(t) = ρnn(t). In the presence of both disor-
der and dissipation, we find empirically that after an ini-
tial transient time approximately proportional to J3β/γ,
the mean square displacement 〈R2(t)〉 =

∑
n n2ρnn(t)

grows linearly with time, where the origin is defined such
that 〈R2(0)〉 = 0. Within the timescale of the simula-
tions, the number of sites is sufficient such that no sig-
nificant boundary effect is observed. Then the diffusion
constant D can be defined as limt→∞ 〈R2(t)〉 = 2Dt.

The effect of the dissipation strength on the diffusion
constant is revealed as a non-monotonic dependence on
D as a function of γ in Fig. 8, which is consistent with
the studies using the Haken–Strobl model [66, 67]. The
dissipation destroys the phase coherence that gives rise
to Anderson localization in one-dimensional disordered
system, allowing for transport to occur. Therefore, in
the weak coupling regime, the transport coefficient D in-
creases linearly with γ, which is apparent from the Red-
field tensor Rμν,μ′ν′ . In the opposite regime of strong
coupling, the dissipation strength effectively acts as
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Fig. 8 The diffusion constant as a function of the dissipation
strength γ. The dashed lines display the corresponding results from
the secular Redfield equation, while diamond symbols depict the
results of the Fermi’s golden rule rates. (a) Results for different
temperatures and a fast bath ωc = 3. (b) Results for different cut-
off frequencies and T = 10. The electronic coupling J = 1 sets the
energy scale. Reproduced from Ref. [28].

classical friction that impedes the transport leading D

to behave as a decreasing function of γ. Thus the co-
herence generated between sites is quickly destroyed and
the quantum transport reduces to a classical hopping dy-
namics between neighboring sites. The interplay between
static disorder and dissipation thus gives rise to an opti-
mal dissipation strength for transport. In Fig. 8(a), it is
seen that the maximal diffusive rate both increases and
shifts to smaller coupling strengths as the temperature
increases, since thermal fluctuations also assist the quan-
tum system to overcome the localization barriers in the
weak coupling regime. For comparison, we also include
the results from the standard secular Redfield equation
in the weak coupling regime. For small γ and T , the sec-
ular Redfield equation provides a reliable description of
the transport properties but starts to breakdown as γ

(or T ) increases leading to an unphysical D ∝ γ.
Figure 8(b) depicts D as a function of γ for different

bath cut-off frequencies. It is found that the large γ scal-
ing of D is highly dependent on the relaxation time of the
bath. For a fast bath, the rates decrease approximately
as 1/γ. However, as the bath frequency decreases, a tran-
sition from the 1/γ dependence to 1/

√
γ dependence is

observed. This can be rationalized by noting that in the
high temperature and strong damping regime, the dy-
namics is incoherent and can be described by classical
hopping between nearest neighbors. Then, the hopping
rate between sites m and n is accurately determined from
Fermi’s golden rule,

kF (Δmn) = J2
mnκ2

mn�
∫ ∞

−∞
dteiΔmnt[eg(t) − 1], (44)

and

g(t) = 2
∫ ∞

0

dω
J(ω)
πω

[cos (ωt) coth (βω/2) − i sin (ωt)] ,

(45)

where Δmn = εm−εn is the activation barrier. In the slow
bath limit, the above expression reduces to the Marcus
rate

kM (Δ) ≈ π

2
J2

√
β

γω3
c

exp
[
−β(πΔ − 4γω3

c)2

16πγω3
c

]
, (46)

which captures the correct 1/
√

γT dependence of the
rate. Defining the energy transfer time as the inverse of
the rate, τF (Δ) = 1/kF (Δ), static disorder can be intro-
duced by averaging τF (Δ) over the Gaussian distribution
of static disorder: τF =

∫
dΔP (Δ)τF (Δ) where P (Δ) =

(σ′√2π)−1 exp(−Δ2/2σ′2) and σ′2 = Δ2
mn = 2σ2. The

disorder-averaged golden rule rate can then be obtained
using kF = 1/τF and is plotted in Fig. 8(b). While it
is seen to capture the correct scaling of D in the over-
damped regime, it significantly underestimates the trans-
port in the small and intermediate damping regimes. As
the dynamics becomes more coherent, the classical hop-
ping rate between sites provides a qualitatively incorrect
description of the transport.

5.2 Non-equilibrium heat transfer through quantum
dot

In presence of multiple baths with different tempera-
tures, non-equilibrium transport phenomena can also be
studied using the PTRE. For typical energy transport
far from equilibrium, two baths should be included with
a temperature bias, as shown in Fig. 9. The TLS with
Hamiltonian HS in Eq. (1) couples to the two baths by

HI = σz

∑

k;v=L,R

gk,v(b†k,v + bk,v), (47)

where b†k,v (bk,v) creates (annihilates) one boson of mode
k in the vth bath. The Hamiltonian of the left (L) and
right (R) baths is given by HB =

∑
k;v=L,R ωk,vb

†
k,vbk,v.

This non-equilibrium spin-boson model (NESB) has been
used to describe the electromagnetic transport through
superconducting circuits [68], photonic waveguides with

Fig. 9 Schematic illustration of the non-equilibrium spin-boson
model composed by central two-level nano-device connecting to two
separate bosonic baths with temperature TL and TR respectively.
Reproduced from Ref. [33].
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a local impurity [69], phononic energy transfer [70–
74] and Caldeira–Leggett model [75] in phononics [76],
Kondo physics and non-equilibrium phase transitions
[77, 78] in the field of condense matter physics, and even
exciton transfer embedded in the photosynthetic com-
plexes [10, 60, 79–81]. Moreover, as a minimal prototype,
it provides crucial insights into the optimal design and
potential applications of low-dimensional nano-devices.

The PTRE approach provides a unified interpretation
of several observations, including coherence-enhanced
heat flux and negative differential thermal conductance
(NDTC). Despite many approaches have been proposed
to explore energy transfer in NESB, each approach has
limitations. Typically, the Redfield equation only applies
in the weak spin-boson coupling regime [72, 74], whereas
the non-equilibrium version of the noninteracting-blip
approximation (NIBA) equation applies in the strong
spin-boson coupling regime.

Combining the polaron transformation and the count-
ing field [74, 82], we obtain the energy flux as

J =
Δ2

κ

8π

∫ ∞

−∞
dωω[Ce(0, ω)

+
φo(Δκ)Co(−Δκ, ω) + φo(−Δκ)Co(Δκ, ω)

φo(Δκ) + φo(−Δκ)
], (48)

where Ce(o)(ω, ω′) describes that when the TLS releases
energy ω by relaxing from the excited state to the ground
one, the right bath absorbs energy ω′ and the left one ob-
tains the left ω−ω′ if ω > ω′ or supply the compensation
if ω < ω′. And Ce(o)(−ω, ω′) describes similar dynami-
cal processes for the TLS jumping from the ground state
to the exciting one. While φe(0)(ω) is the summation be-
havior of these corresponding microscopic processes. The
details of the functions φo(e) and Co(e) can be found in
Appendix C. Different from the single bath SBM case,
here the renormalization κ is actually a product of the
ones from each bath: κ = κLκR.

In the weak coupling limit, the renormalization fac-
tor is simplified to κ ≈ 1, then the unified energy flux
reduces to the resonant energy transfer expression

Jw =
Δ
2

JL(Δ)JR(Δ)(nL − nR)
JL(Δ)(1 + 2nL) + JR(Δ)(1 + 2nR)

, (49)

with the average phonon number nv = nv(Δ) of the vth
bath, which is consistent with previous results of the
Redfield approach [72, 74]. In the strong coupling limit,
multiple bosons are excited from baths, and both the
renormalization factor κ and the eigen-energy gap of the
TLS Δκ become zero. Hence, the energy flux can be fi-
nally expressed as

Jw =
Δ2

8π

∫ ∞

−∞
dωωCL(−ω)CR(ω), (50)

Fig. 10 The energy flux and quantum coherence represented by
〈σx〉, as functions of the coupling strength. The solid black line
is from the PTRE, which unifies the Redfield result at the weak
coupling (the red dashed line) and the NIBA result at the strong
coupling (the dot-dashed blue line). The deviation of the unified
energy flux from the NIBA result at small γ is characterized by
the quantum coherence σx (inset). Parameters are given by ε = 0,
Δ = 5.22 meV, ωc = 26.1 meV, TL = 150 K and TR = 90 K.
Reproduced from Ref. [33].

with the probability density of the vth bath Cv(ω) cor-
rectly recovering the non-equilibrium NIBA result.

The energy flux of Eq. (48) is plotted in Fig. 10,
which first shows linear increase with the SBC in the
weak regime, consistent with the Redfield. After reach-
ing a maximum, the energy flux decreases monotoni-
cally in the strong coupling regime, and coincides with
the NIBA result. The discrepancy of the NIBA and our
PTRE is due to the improper ignorance of quantum co-
herence σx of the TLS in NIBA. This coherence term
describes the effective tunneling within TLS so that it
enhances the energy transfer compared to the NIBA that
ignores it. Therefore, we conclude that the unified energy
flux expression of Eq. (48) provides a comprehensive in-
terpretation for energy transfer in NESB, because the
fluctuation-decoupling scheme not only describes the co-
herent SBC from the weak to strong coupling regime, but
also correctly captures the coherence within the TLS.

For the NDTC, the non-equilibrium NIBA scheme pre-
dicts its appearance in the strong coupling for NESB,
whereas the Redfield scheme predicts its absence in the
weak coupling. The NDTC can also be investigated by
the PTRE to identify its absence over the wide range of
temperature bias, even in the intermediate and strong
coupling regimes, which correct the previous observation
of NDTC under the NIBA in the classical limit. By tun-
ing one bath temperature, NDTC is absent across a wide
range of the temperature bias in the NESB model even
in the strong SBC limit. It should also be noted, if we
change two temperatures simultaneously, NDTC can still
occur in NESB. The detail discussion about the NDTC
via PTRE can be found in reference [33].
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5.3 Energy transfer via three-level heat engine model

Taking a three-level system as a generic theoretical
model, many interesting mechanisms can be well demon-
strated and understood. Recently, the sunlight-induced
exciton coherence is studied in a V-configuration three-
level model [83, 84]. An interesting idea is to consider
the energy transfer process from the perspective of heat
engine [85]. For example, the coherence introduced by an
auxiliary energy level can enhance the heat engine power
[86, 87]. The early work considering a three-level maser
model as a Carnot engine was carried out by Scovil and
Schulz-DuBois [88, 89], yielding the heat engine efficiency
η0 and its relation with the Carnot efficiency. Later pa-
pers elaborately reexamined the dynamics of this model
by the Lindblad master equation and showed that the
thermodynamic efficiency η0 is achieved when the output
light-field is strongly coupled with the system [90–92].

We consider the energy transfer process in the three-
level system illustrated in Fig. 11. The site energy of
the ground state |0〉 is set to zero. The two excited en-
ergy levels |1〉 and |2〉 form a TLS, the Hamiltonian of
which is the same as HS in Eq. (1). The energy trans-
fer takes place in the single excitation subspace: The
three-level system is firstly excited to state |1〉 by a pho-
ton field, then the excitation is transferred to state |2〉
through Δ (mediated by phonon modes), and finally the
excitation decays to the ground state |0〉 via spontaneous
radiation. The pumping and trapping processes are mod-
eled by the interaction with the two independent photon
baths, which are coupled separately with two transitions
|0〉 ↔ |1〉 and |0〉 ↔ |2〉. The Hamiltonian of the photon
baths and their interactions with the three-level system
are given by

Fig. 11 The system is modeled by a three-level system: its
ground state |0〉 and the excited state |1〉 (|2〉) is coupled with
the pumping (trapping) bath; the excited states |1〉 and |2〉 are
diagonal-coupled with the phonon bath; the internal transition
strength between |1〉 and |2〉 is characterized by Δ. The energy
fluxes Jp, Jv and Jt describe the energy exchange rate of the
system with the pumping, the phonon and the trapping baths,
respectively. The flux into the system is defined as the positive
direction. Reproduced from Ref. [34].

Hp =
∑

k

ωpka†
pkapk + (gpka†

pk |0〉 〈1| + h.c.), (51)

Ht =
∑

k

ωtka†
tkatk + (gtka†

tk |0〉 〈2| + h.c.), (52)

where ωik (i = p, t) is the eigen frequency of the bath
mode described by the creation (annihilation) operator
a†

ik (aik), and its coupling strength to the excited state
is gik. We note that the rotating wave approximation is
applied in the system-bath interaction term. A phonon
bath with creation and annihilation operators b†k and bk

of the bath mode ωvk is coupled to the TLS via diagonal
interaction with the coupling strength of fk. Thus, the
phonon part is described by

Hv =
∑

k

ωvkb†kbk + (|1〉 〈1| − |2〉 〈2|)
∑

k

(fkb†k + h.c.).

(53)

The steady state of the three-level system can be easily
obtained from PTRE and the steady state energy fluxes
defined are straightforwardly given as

Jp = ε1γp[npρ00 − (np + 1)ρ11]−
Δγp

2
(np + 1)� [ρ12] ,

(54)

Jt = ε2γt [ntρ00 − (nt + 1)ρ22] −
Δγt

2
(nt + 1)� [ρ12] ,

(55)

where the steady state elements of RDM is denoted by
ρij = 〈i|ρS(∞)|j〉 for brevity, γi and ni are the corre-
sponding decay rate and average photon number for the
ith bath. In Fig. 12 we present the dependence of energy
fluxes on the coupling strength γ. In the extreme case
that the system bath coupling is switched off (γ = 0),
there is no loss of excitation energy, which results in
|Jp| = |Jt|, suggesting the input energy flux from the
pump completely flows into the trap through the three-
level system. When the coupling turns on, a portion of
energy flux leaks into the phonon bath thus |Jp| > |Jt|.
Both the pumping and trapping energy fluxes reach their
optimal values in the intermediate coupling region and
decrease to zero when the coupling strength is strong.

The energy transfer efficiency is defined as η ≡
|Jt/Jp|. When the coupling strength γ = 0, the en-
ergy transfer efficiency η = 1 because there is no loss of
energy flux. When the coupling strength gradually in-
creases, the efficiency decreases. However, after reaching
its minimum value, the efficiency starts to rise with γ,
which is shown in Fig. 12(a). The increase of efficiency
assisted by noise was studied extensively in the context
of energy transfer in light-harvesting systems [93, 94].
As we further increase γ, the efficiency grows beyond the
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Fig. 12 (a) The steady state pumping (red solid line) and trap-
ping (blue dashed line) energy fluxes versus γ. Both fluxes show
a maximal value in the weak coupling case and then quickly de-
creases to zero when γ increases. (b) The steady states efficiency
η is plotted with blue solid line as a function of γ. The dashed line
indicates the strong coupling limit η0. The results given by the
Redfield equation and the Fermi’s golden rule are shown with the
dashed-dot lines. The strong coupling regions are plotted in the
insets. We choose the parameters in units of Δ: ε = 0.5, ωc = 5,
βv = 1, βp = 0.02, βt = 1, and γp = γt = 0.01. Reproduced from
Ref. [34].

strong coupling limit η0 and then gradually approaches
this limit from above. The strong coupling region is plot-
ted in the inset of Fig. 12(a).

It is interesting to notice that the first term on the
right side of Eqs. (54) and (55) depends only on the pop-
ulations of the three-level system, and the second term
represents the contribution of the off-diagonal terms (co-
herence in the local basis). In the strong coupling limit,
the steady state coherence in the local bases ρ12 vanishes,
then the efficiency is completely determined by the pop-
ulations:

η ≈ − ε2γt[(nt + 1)ρ22 − ntρ00]
ε1γp[(np + 1)ρ11 − npρ00]

=
ε2
ε1

. (56)

This result indicates that when the coherence is negligi-
ble due to the strong system-phonon coupling, the energy
transfer efficiency η approaches η0, which is consistent
with the key result of Ref. [91]. We notice that Eq. (56)
shows that the net rate of pumping one excitation to |1〉
equals to the net rate of trapping one excitation from
|2〉 to |0〉. When the coupling strength decreases, the ef-
ficiency is generally related to the phonon bath induced
coherence of the excited states [95]. If we require the sys-

tem outputs positive energy, i.e., γt(nt+1)ρ22 > γtntρ00,
then � [ρ12] > 0 leads to the result η > η0 and vise versa.

In the local basis, the population and coherence are
coupled with each other due to the polaron effects: The
population inversion happens when �[ρ12] < 0 [Fig.
12(b)], hence η < η0. We plot the population difference
between states |1〉 and |2〉 in Fig. 12(b). In the inter-
mediate coupling region indicated between the two red
dots, the steady state population satisfies ρ11 < ρ22 (the
effective temperature associates with these two states is
positive), the corresponding efficiency η is less then η0

as shown in Fig. 12(a). On the contrary, outside this
intermediate region, i.e., when the coupling is either
very weak or very strong, the populations are inverted
ρ11 > ρ22 (the effective temperature is negative); mean-
while η increases beyond η0.

As we discussed in Section 3, the non-negligible SBC
strength can induce the non-canonical equilibrium states,
which will further affects the heat engine performance.
In this section we show the PTRE is also powerful tool
to evaluate the performance of a three-level heat en-
gine model beyond the weak coupling limit. In partic-
ular, the non-negligible system-bath entanglement not
only modifies the steady state, resulting in population
inversion, but also introduces a finite steady state co-
herence that optimizes the energy transfer flux and effi-
ciency. Remarkably, there exists a quantitative relation-
ship between the efficiency and the steady-state coher-
ence, which in turn is proportional to the degree of pop-
ulation inversion. Taking into account of the behavior
of both the flux and efficiency, we are able to optimize
coupling and temperature in designing optimal artificial
energy transfer systems.

6 Summary

In this review article, we systematically introduce
the polaron transformation approach to describe non-
canonical equilibrium distribution and non-equilibrium
steady states in the open quantum system. By apply-
ing the polaron transformation, the open system of in-
terest is dressed by the surrounded environment which
is described by a set of displaced harmonic modes. The
residue coupling between the polaron transformed sys-
tem and the bath is thus suppressed to the weak cou-
pling regime, even though the SBC in the original frame
of reference is strong. Such advantages give rise to the
possibility of introducing the usual methods used in the
weak coupling open system in the polaron frame.

We studied the non-canonical equilibrium state of the
SBM. The second-order perturbation theory in the po-
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laron frame is used to obtain the equilibrium density
matrix. The second-order results in the original frame
are accurate only for weak SBC, whereas the full po-
laron results are accurate in the entire range of SBC for
fast bath but only in the strong coupling regime for slow
bath. The variational method is capable of interpolat-
ing between these two methods and is valid over a much
broader range of parameters. Further, the non-canonical
properties of the equilibrium states is revealed and the
eigenbasis in the polaron frame are considered as the
preferred basis for decoherence.

We then applied the polaron transformed Redfield
equation to solve the steady states of non-equilibrium
open systems. (i) In a one-dimensional disordered chain,
the diffusion coefficient is shown to be linearly pro-
portional to the exciton-phonon coupling strength in
the weak coupling limit, while in the strong coupling
limit, the diffusion coefficient depends on the phonon
bath relaxation time which is the character of the hop-
ping transport behavior. (ii) The heat transfer through a
two-level quantum dot which connects with two separate
baths was also investigated. The non-monotonic energy
flux and differential thermal conductance were calcu-
lated following a similar polaron approach. (iii) When
the three-level system is connected with three different
heat baths, a heat engine model is thus constructed to
study the steady state energy transfer flux and energy
conversion efficiency. The steady state coherence and
population inversion affect the efficiency obviously. In
both the weak and strong coupling limits, the PTRE is
coincidence with the Redfield equation and the Fermi’s
golden rule, which further verifies the validity of the po-
laron approach.

Acknowledgements D. Xu and J. Cao acknowledge the Na-
tional Science Foundation (NSF) of the US (Grant No. CHE-
1112825).

Appendix A Correlation functions in Eq. (18)

The non-vanishing bath correlation functions in Eq. (18)
are

Cxx (τ) =
Δ2

κ

8

(
eφ(τ) + e−φ(τ) − 2

)
, (A1)

Cyy (τ) =
Δ2

κ

8

(
eφ(τ) − e−φ(τ)

)
, (A2)

Czz (τ) =
∫ ∞

0

dω

π
J(ω)[1 − F (ω)]2

cosh((β − 2τ)ω/2)
sinh(βω/2)

,

(A3)

Czy (τ) = −Cyz (τ)

= iΔκ

∫ ∞

0

dω

π

J(ω)
ω

F (ω)[1 − F (ω)]

· sinh((β − 2τ)ω/2)
sinh(βω/2)

,

(A4)

where

φ (τ) = 4
∫ ∞

0

dω

π

J(ω)
ω2

F (ω)2
cosh((β − 2τ)ω/2)

sinh(βω/2)
. (A5)

The correlation functions in the off-diagonal parts of
the RDM are given by

Sx(τ) =
Δ2

κ

2Λ2
+

εsech(βΛ/2)
2Λ2

{ε cosh[
Λ
2

(β − 2τ)]

+Λ sinh[
Λ
2

(β − 2τ)]}, (A6)

Sy(τ) = − i
2
sech(βΛ/2){cosh[

Λ
2

(β − 2τ)]

+
ε

Λ
sinh[

Λ
2

(β − 2τ)]}. (A7)

The bath correlation functions are Kx(τ) = 2Cx(τ)/Δ
and Ky(τ) = 2iCy(τ)/Δ. Note that the first-order correc-
tion here is again linked with the above-defined bath cor-
relation function Cnn(τ). So, by construction, our per-
turbation theory for off-diagonal elements of RDM works
even better for stronger SBC coupling.

Appendix B Redfield tensor in Eqs. (42) and
(43)

The Redfield tensor in Eqs. (42) and (43) are given as

Rμν,μ′ν′ = Γν′ν,μμ′ + Γ ∗
μ′μ,νν′

−δνν′
∑

κ

Γμκ,κμ′ − δμμ′
∑

κ

Γ ∗
νκ,κν′ , (B1)

Γμν,μ′ν′ =
∑

mnm′n′
JmnJm′n′ 〈μ|m〉 〈n|ν〉 〈μ′|m′〉 〈n′|ν′〉

×Kmn,m′n′(ων′μ′), (B2)

where Kmn,m′n′(ω) is the half-Fourier transform of the
bath correlation function

Kmn,m′n′(ω) =
∫ ∞

0

eiωt 〈Vmn(t)Vm′n′(0)〉H̃B
dt. (B3)

Appendix C Details in non-equilibrium
energy flux of Eq. (48)

The relaxation rate in Eq. (48) can be rewritten as
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φe(o)(ω) = (2π)−1

∫ ∞

−∞
dω′Ce(o)(ω, ω′). (C1)

The corresponding kernel functions are given by

Ce(ω, ω′) =
1
2

∑

σ=±
Cσ

L(ω − ω′)Cσ
R(ω′) − δ(ω′), (C2)

Co(ω, ω′) =
1
2

∑

σ=±
σCσ

L(ω − ω′)Cσ
R(ω′), (C3)

where

C±
v (ω′) =

∫ ∞

−∞
dτeiω′τ±Qv(τ) (C4)

describes the rate density of the vth bath absorbing
(emitting) energy ω(−ω), obeying the detailed balance
relation as C±

v (ω′)/C±
v (−ω′) = eβvω′

. And

Qv(τ) =
∫ ∞

0

dω
Jν(ω)
πω2

[cos (ωτ) coth (βνω/2)

−i sin (ωτ)]. (C5)
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Abstract
Weexplore energy transfer in a generic three-level system,which is coupled to three non-equilibrium
baths. Built on the concept of quantumheat engine, our three-levelmodel describes non-equilibrium
quantumprocesses including light-harvesting energy transfer, nano-scale heat transfer, photo-
induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting,
the excitation energy isfirst pumped up by sunlight, then is transferred via two excited states which are
coupled to a phonon bath, andfinally decays to the reaction center. The efficiency of this process is
evaluated by steady state analysis via a polaron-transformedmaster equation; thus the entire range of
the system-phonon coupling strength can be covered.We show that the couplingwith the phonon
bath not onlymodifies the steady state, resulting in population inversion, but also introduces afinite
steady state coherencewhich optimizes the energy transfer flux and efficiency. In the strong coupling
limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by
Scovil and Schultz-Dubois (1959Phys. Rev. Lett. 2 262).

1. Introduction

With the rapid developments inmeasurement andmanipulation ofmicroscopic systems, quantum effects such
as coherence and entanglement are often utilized to enhance the performance ofmicroscopic devices. Even in
biological systems, both experiments [1] and theoreticalmodels [2, 3] reveal that the long-lived quantum
coherencemay play an important role in highly efficient energy and electron transfer processes. Howbiological
systems, such as light-harvesting complex, preserve such long-lived coherence and hownature benefits from the
coherence are two key questions that define the emerging field of quantumbiology.

Taking a three-level system as a generic theoreticalmodel,many interestingmechanisms can bewell
demonstrated and understood. Recently, the sunlight-induced exciton coherence is studied in aV-configuration
three-levelmodel [4, 5]. An interesting idea is to consider the energy transfer process from the perspective of heat
engine [6]. For example, the coherence introduced by an auxiliary energy level can enhance the heat engine
power [7, 8]. The early work considering a three-levelmasermodel as a Carnot engine was carried out by Scovil
and Schulz-DuBois [9, 10], yielding the heat engine efficiency 0h and its relationwith theCarnot efficiency. Later
papers elaborately reexamined the dynamics of thismodel by the Lindbladmaster equation and showed that the
thermodynamic efficiency 0h is achievedwhen the output light-field is strongly coupledwith the three-level
system [11–13]. The quantumheat engine provides us a heuristic perspective to better understand the basic
physical processes in energy transfer and presents useful insight to enhance the efficiency and output power in
small systems [14–17].

In this paper, we study the polaron effects of a phonon bath on the energy transferflux and efficiency in a
generic three-levelmodel. The energy transfer efficiency is defined as the ratio between the trapping and
pumping fluxes. The canonical distribution of a thermal equilibrium system requires a negligible coupling
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between the system and its environment. As the coupling strength grows, the steady state of the systemwill no
longer be canonical [18–22]. This non-canonical state actually introduces the steady state coherence into the
systemwithout refereeing to specific forms of light–matter interaction or designing exotic system
configurations. The bath-induced coherent effect is investigated by the polaron-transformed Redfield equation
(PTRE) [23, 24], which bridges both theweak and strong system–bath coupling regions. The difference between
the steady state efficiency and strong coupling limit 0h depends strongly on the phonon-induced coherence.
Taking into account of the behavior of both the flux and efficiency, we are able to optimize coupling and
temperature in designing optimal artificial energy transfer systems.

In this paper, we first introduce the three-levelmodel and its non-equilibrium environment in section 2, and
then formulate the PTRE in section 3. In section 4, the polaron effects of phonon-bath on the energy transferflux
and efficiency are studied in detail.We summarize our results in the last section.We leave the detailed derivation
and properties of the PTRE in the appendix.

2. Three-level systemmodel

2.1.Model system
Weconsider the energy transfer process in the three-level system illustrated infigure 1. The site energy of the
ground state 0∣ ñ is set to zero. The two excited energy levels 1∣ ñand 2∣ ñ form a two-level system (TLS, in the
following the TLS is referred to the two excited states), with the corresponding site energy 1 and 2 . The
transition due to the dipole–dipole interaction is characterized by J. Then the three-level system ismodeled by
theHamiltonianH0 as:

H i i
J

2
1 2 2 1 . 1

i
i0

1,2

∣ ∣ (∣ ∣ ∣ ∣) ( )å= ñá + ñá + ñá
=

Weare interested in the transfer process in the single excitation subspace: the three-level system isfirstly excited
to state 1∣ ñby a photon field, then the excitation is transferred to state 2∣ ñ through J (mediated by phonon
modes), andfinally the excitation decays to the ground state 0∣ ñvia spontaneous radiation. The pumping and
trapping processes aremodeled by the interactionwith the two independent photon baths, which are coupled
separately with two transitions 0 1∣ ∣ñ « ñand 0 2∣ ∣ñ « ñ. TheHamiltonian of the photon baths and their
interactionswith the three-level system are given by

H a a g a 0 1 h.c. , 2
k

k k k k kp p p p p p( ∣ ∣ ) ( )† †åw= + ñá +

H a a g a 0 2 h.c. , 3
k

k k k k kt t t t t t( ∣ ∣ ) ( )† †åw= + ñá +

Figure 1.The light-harvesting energy transfer process is described by a three-level system: its ground state 0∣ ñ and the excited state 1∣ ñ
( 2∣ ñ) is coupledwith the pumping (trapping) bath; the excited states 1∣ ñ and 2∣ ñare diagonal-coupledwith the phonon bath; the
internal transition strength between 1∣ ñ and 2∣ ñ is characterized by J. The energyfluxes p , v and t describe the energy exchange
rate of the systemwith the pumping, the phonon and the trapping baths, respectively. Theflux into the system is defined as the positive
direction.

2
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where i p, tik ( )w = is the eigen frequency of the bathmode described by the creation (annihilation) operator
aik

† (aik), and its coupling strength to the excited state is gik.We note that the rotatingwave approximation is
applied in the system–bath interaction term. A phonon bathwith creation and annihilation operators bk

† and bk
of the bathmode kvw is coupled to the TLS via diagonal interactionwith the coupling strength of fk. Thus, the
phonon part is described by

H b b f b1 1 2 2 h.c. . 4
k

k k k
k

k kv v (∣ ∣ ∣ ∣) ( ) ( )† †å åw= + ñá - ñá +

Thismicroscopic three-level system immersed in the non-equilibrium environment was studied as a
quantumheat pumpphenomenologically without considering the details of the system–bath coupling [10]. In
the case that the phonon bath is replaced by a single drivingmode strongly coupled to the system, the dynamic
steady states have been solved and the efficiency is given by 0 2 1 h = [12, 13]. In reality, the three-levelmodel
can be realized in both nature and laboratory. Taking the energy transfer process in photosynthetic pigment for
example (figure 2(a)), different baths could arise fromdifferent sources: the pumping lightfield (such as the sun-
light photons) is considered as a high temperature boson bath; the trapping bath is formed by the surrounding
electromagnetic environment whichmodels the energy transfer to the reaction center; and the phonon bath
with inverse temperature vb describes the phononmodes coupledwith the excited states. In addition, such a
three-level (ormore intermediate energy levels) system is used to describe photoisomerization (figure 2(b)),
nanoscale heat transfer [25] (figure 2(c)) or photovoltaic current in double quantumdots [26] (figure 2(d)).

In this paper, we focus on the effects of the phononmodes on energyflux and efficiency. Usually when the
system–phonon bath coupling strength is not weak, the Bloch–Redfield equation approach cannot be applied.
Therefore, wewill introduce the PTRE [23, 24], which gives reliable results from theweak to strong coupling
region using superOhmic bath spectrumwith large cut-off frequency cw , to study the bath-induced coherent
effects of this quantum system. The validity of the PTRE has been verified by comparingwith the numerical path
integralmethod [21] and time-convolutionless polaronmaster equation [27, 28].

2.2.Definitions of energyflux and transfer efficiency
Weare interested in the energy transfer flux and efficiency of the three-level system at its non-equilibrium steady
state. The steady state solution can be obtained by themaster equation formally written as

t

t
t

d

d
, 50 p v t

( ) ( ) ( ) ( )   
r

r= + + +

Figure 2.Realistic examples which can be studied by the three-levelmodel with different heat baths. (a) In the photosynthesis process,
the three-level systemworks as an antenna that captures the energy from sunlight and then transfers to the reaction center. (b)Three
eigenstatesmanifolds in photoisomerization. The bright states are pumped by the lightfield, then the populations relax to the
intermedium and product states in the phonon environment. (c)The heat transfer in nanoscale can also use the three-level system as a
bridge connecting the high temperature and low temperature heat baths. (d) In the electron transport problem, electrons tunnel
through double quantumdots which can be described by a three-level system. The quantumdot connects with a source and a drain.
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which describes the dynamics of the reduced densitymatrix (RDM) t( )r of the three-level system. The Liouville
operator 0 denotes the non-dissipative term, p , v and t denote the dissipation effects associatedwith the
pumping, phonon coupling, and trapping, respectively.

To quantitatively investigate the energy transfer process, we define the steady state energyfluxes by
calculating the energy change of the three-level system

E
t

t
H HTr

d

d
Tr

. 6

s t
i

s i0
p,v,t
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p v t

˙ ( ) ( ) ∣ [ [ ( )] ]
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It can be shown that HTr 0s 0 0[ ] = . The three energyfluxes i , i p, v, t= are definedwith respect to their
corresponding dissipation operator i . These energyfluxes have clear physicalmeanings of the energy exchange
ratewith the pumping field, phonon environment, and trapping field, respectively. In this work, we are
interested in the steady state, in equation (6) thefluxes are calculatedwith ( )r ¥ , which is obtained by solving

t 0˙ ( )r = . Straightforwardly, we define the energy transfer efficiency by

, 7t

p

( )
( )

( )


h =

¥
¥

which is the ratio between the output and the input energyfluxes.
Without losing generality, we assume the pumping (trapping) bath is weakly coupledwith the system and

can be described phenomenologically by the local Liouville operator of the Lindblad form

n O O O O
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where i p, t= refers to the two photon baths, ig and ni are the corresponding decay rate and average photon
number, and the systemoperators are defined as O 1 0p ∣ ∣= ñá+ , O 2 0t ∣ ∣= ñá+ . The system–phonon bath
couplingwill be treatedmore rigorously aswe are interested in how this coupling affects the energy transfer over
a broad range. To achieve this goal, we apply the PTRE equation, whichwill be introduced in the following
section.

3. PTRE

TheRedfieldmaster equation is valid up to the second-order perturbation of the system–bath interaction. In
order to go beyond this weak coupling limit, polaron transformation is introduced to incorporate the high-order
system–bath interaction into the dynamics of the system.Herewe focus on the coupling strength between the
system and phonon bath, and the polaron transformation is only related to the two excited states. Therefore it is
convenient to consider the TLSfirst, then the resulting Liouville operator describing the TLS dissipative process
can be incorporated into the dynamics of the three-level system.

We employ the Paulimatrix 1 2 2 1x ∣ ∣ ∣ ∣s = ñá + ñá and 1 1 2 2z ∣ ∣ ∣ ∣s = ñá - ñá , and define the polaron
transformation

H H H H Ve e , 9B B
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where H H H0 v¢ = + is theHamiltonian of the TLSwith the phonon bath, the collective bath operator is
B i f b f b2

k k k k k kv( )† *å w= - and

H
J

2 2
, 10z x0˜ ( )

s ks= +

H b b
f

, 11b
k

k k k
k

k

k
v

2

v

˜ ∣ ∣
( )†å åw

w
= -

V
J

B B
2

cos sin . 12x y˜ [ ( ) ] ( )s k s= - +

The transformed system–bath interaction is Ṽ and 1 2  = - . The expectation value of the bath operator
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is subtracted from Ṽ as a renormalization factor, with H Hexp Tr expb b b bv v( ˜ ) [ ( ˜ )]r b b¢ = - - the thermal state
of the phonon bath and n exp 1v v

1( ) [ ( ) ]w b w= - - the average phonon number. The spectrum function is
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chosen to be super-Ohmic as

J f4 e , 14
k

k k c
2 3 2 c( ) ∣ ∣ ( ) ( )åw p d w w apw w= - = w w- -

where cw is the cut-off frequency andα is a dimensionless parameter characterizing the system–bath coupling
which is proportional to cl w (λ is the reorganization energy). It can be verified that the thermal average of Ṽ is
zero, i.e., Ṽ is of the order of bath fluctuations and thus is a reliable perturbation parameter. Based on this
consideration, the Born–Markov approximation is applied to derive the PTRE in the Schrodinger picture as
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Here, ijG is defined by the bath correlation function.We denote sr¢ ( sr ) as the RDMof the TLS in the polaron
(local) frame, and define a new set of Pauli operator

, 16z ∣ ∣ ∣ ∣ ( )t = +ñá+ - -ñá-

, , 17∣ ∣ ∣ ∣ ( )t t= +ñá- = -ñá++ -

where H0˜ ∣ ∣ñ =  ñ . The detailed derivation of the PTRE can be found in appendix A.
The PTREwasfirstly introduced by Silbey and coworkers [23, 24], and has beenwidely used in solving the

strong system–bath coupling problems. The validity of the PTRE in thewhole range of coupling strength
requires the bath cut-off frequency should bemuch larger than the internal coupling strength, J ;cw  if

Jc w , the PTREonlyworkswell in the strong coupling regime [21]. To extend the valid regime of the polaron
approach even for small cw , a variational polaron transformation can be applied, where fk in the bath operatorB
is substitutedwith a variational parameter [21, 24, 29].Moreover, it will be shown in B that the results given by
PTRE are consistent with those given by the Redfield equation in theweak coupling limit and the Fermi’s golden
rule (or Frster theory) in the strong coupling limit [21, 25, 26]. Therefore, the PTRE smoothly connects the two
limits, and provides a useful tool to study the intermediate coupling regionwhere there are usually no reliable
approximationmethods.

For further discussion on the property of the entire three-level systemwith the other twoweakly coupled
photon baths, equation (15) for the two excited states is transformed back into the local basis and rewritten as

t ts ij mn ij mn s mnv ,[ ˙ ( )] [ ] [ ( )]( )år r= . Then the expressions for the Liouville operator v are obtained

accordingly. The relations between the elements of ts ( )r¢ and ts ( )r are also given in appendix A.
The Bloch-form equation of the three-level system is derived following from equation (5). One thing should

be noted, the population conservation of the TLS gives t t 1;s s11 22[ ( )] [ ( )]r r+ = while for the three-level
system, the ground state population should be included and population conservation becomes

t t t 100 11 22( ) ( ) ( )r r r+ + = , wherewe denote t i t jij ( ) ∣ ( )∣r r= á ñ. The Liouville operator v which
considers the polaron effects has been obtained from the PTREof the TLS. The effects of the pumping and
trapping baths are described by the Lindblad operator p and t defined in equation (8). Therefore, the PTRE
for the three-level system is given as
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where thematrix M̄ is shown in appendix B. The equations for the off-diagonal terms t01( )r and t02 ( )r are
decoupled from equation (18) and not relatedwith the energy flux and transfer efficiency, thuswill not involve in
the following discussion.

4. Energy transferflux and efficiency

4.1. Steady stateflux
The steady state of the three-level system can be easily obtained from equation (18), which incorporates the
polaron effects of the phonon bath. Then the steady state energy fluxes defined in equation (6) are
straightforwardly given as

n n
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1 , 19p 1 p p 00 p 11
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1 , 20t 2 t t 00 t 22
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r= - + - + R

wherewe denote the steady state elements of RDMby i jij s∣ ( )∣r r= á ¥ ñ for brevity. Figure 3 presents energy
fluxeswith respect toα. In the extreme case that the systembath coupling is switched off ( 0a = ), there is no loss
of excitation energy, which results in p t = - , suggesting the input energy flux from the pump completely
flows into the trap through the three-level system (note thatwe chose the positive direction as that the fluxflows
into the system).When the coupling turns on, a portion of energyflux leaks into the phonon bath thus

p t > - . Both the pumping and trapping energyfluxes reach their optimal values in the intermediate coupling
region and decrease to zerowhen the coupling strength is strong.

In the context of heat engine, the trapping energy flux t in ourmodel corresponds to the output power and

p corresponds to the input power. Usually, the power of a heat engine is small when the efficiency is high.
Particularly, at themaximal efficiency, all the processes are required to be quasi-static and take infinite time, and
thus the powerwill be zero. To balance the conflict between the efficiency and power,muchwork has been done
to study the efficiency atmaximumpower [30–32]. In the following, wewill calculate the energy transfer
efficiency of our system and show its competitive relationwith the trapping flux, in analogy to the efficiency and
power in the heat engine.

4.2. Steady state efficiency
Before presenting the result of efficiency defined in equation (7), we beginwith the analysis of the limiting cases.
Thefirst termon the right side of equations (19) and (20)depends only on the populations of the three-level
system, and the second term represents the contribution of the off-diagonal terms (coherence in the local basis).
Aswe show in figureC1 of appendix C, the steady state coherence in the local bases 12r vanishes in the strong
coupling limit, then the efficiency is completely determined by the populations. According to the steady state
solution of the second equation in equation (18), we obtain the relation

n n n n1 1 . 21p p 00 p 11 t t 22 t 00[ ( ) ] [( ) ] ( )g r r g r r- + = + -

With this relation, the efficiency in the strong coupling limit reads

n n

n n

1

1
. 222 t t 22 t 00

1 p p 11 p 00

2

1

[( ) ]
[( ) ]

( )







h

g r r
g r r

» -
+ -
+ -

=

This result indicates that when the coherence is negligible due to the strong system-phonon coupling, the energy
transfer efficiency η approaches 0h , which is consistent with the key result of [12].We notice that equation (21)
shows that the net rate of pumping one excitation to 1∣ ñequals to the net rate of trapping one excitation from 2∣ ñ
to 0∣ ñ. In general, the efficiency is closely related to the phonon bath induced coherence [33] of the excited states.
Ifwe require the systemoutputs positive energy, i.e., n n1t t 22 t t 00( )g r g r+ > , then according to equations (19)–
(21), 012[ ]r >R leads to 0h h> and vise versa.

According to our discussion of theflux in the last subsection, when the coupling strength 0a = , the energy
transfer efficiency 1h = because there is no loss of energyflux.When the coupling strength gradually increases,
the efficiency decreases. However, after reaching itsminimumvalue, the efficiency starts to rise withα, which is
shown infigure 4(a). The increase of efficiency assisted by noise was studied extensively in the context of energy
transfer in light-harvesting systems [34–36]. Aswe further increaseα, the efficiency grows beyond the strong

Figure 3.The steady state pumping (red solid line) and trapping (blue dashed line) energy fluxes versusα. Theminus sign in front of
the trappingflux suggests the energy flows into the trapping bath. Both fluxes show amaximal value in theweak coupling case and
then quickly decreases to zerowhenα increases. The inset shows the strong coupling case.We choose the parameters in units of
J: J 51 = , J 4.52 = , J 5cw = , J 0.02pb = , J J 1t vb b= = , and J J 0.01p tg g= = .
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coupling limit 0h and then gradually approaches this limit from above. The strong coupling region is plotted in
the inset offigure 4(a).

Interestingly, wefind population inversion of the two excited states in the regimes of 0h h> .We plot the
population difference between states 1∣ ñand 2∣ ñ infigure 4(b). In the intermediate coupling region indicated
between the two red dots, the steady state population satisfies 11 22r r< (the effective temperature associates
with these two states is positive), the corresponding efficiency η is less then 0h as shown infigure 4(a). On the
contrary, outside this intermediate region, i.e., when the coupling is either veryweak or very strong, the
populations are inverted 11 22r r> (the effective temperature is negative); meanwhile η increase beyond 0h . In
the local basis, the population and coherence are coupledwith each other due to the polaron effects: the
population inversion happenswhen 012[ ]r <R (figure 4(b)). The fact that the population and coherence in the
local basis have similar behavior can be explained from equation (A9) and equation (A10). Here, the coherence

tx ( )tá ñ in the polaron basis is negligibly small (see the inset offigure C1 in appendix C) to have significant effects,
then the terms z 11 22s r rá ñ = - and 2x 12[ ]s rá ñ = R are both determined by ztá ñ.

Infigure 4(a), we also compare the efficiency η calculated by the PTREmethodwith those predicted by the
Redfield equation and the Fermi’s golden rule approaches. Aswementioned before, in theweak and strong
coupling limits, the PTREmethod agrees with the Redfield equation and the Fermi’s golden rule, respectively,
and it connects these two limits with a non-trivialminimumwhich is related to the coherence in the local basis.

4.3. Further discussions
4.3.1. Kineticmodels
In the strong coupling regime, we canmap this energy transfer process into a simple excitation kineticmodel as
shown infigure 5(a). Each step of energy transfer is described by an effective flux ( p

eff , v
eff and t

eff ). The
relaxation of the two excited states is characterized by the rate zg , which is defined in equation (C2) of
appendix C. As shown infigure 5(b), the effective transferflux v

eff between the two excited states is

approximately proportional to the relaxation rate zg .When v
eff (or zg ) is smaller than the trapping flux t

eff (or

tg ), the excitation in excited states will be quickly captured by the trapping fieldwithout enough time tofirst get

Figure 4. (a)The steady states efficiency η, (b) the excited states population 11 22r r- and coherence 12[ ]rR versus the system-
phonon bath coupling strength characterized by dimensionless parameterα. The dashed line indicates the strong coupling limit 0h in
(a).When the populations are inverted, η is less then 0h , the red dots indicate the corresponding range ofα. The results given by the
Redfield equation and the Fermi’s golden rule are shownwith the dashed–dotted lines. The strong coupling regions are plotted in the
insets. All the parameters are chosen as the same as infigure 3.
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equilibratedwith the phonon bath. Consequently, the populations of the two excited states are inverted and the
real part of the coherence becomes negative. This phenomenologicalmechanism explains why the efficiency η is
higher than 0h in the strong coupling limit.

When the system–bath coupling strength becomesweaker, the local basis frame is no longer a good option
for the kinetic picture. The two excited states couple with each other and can be together considered as an excited
statemanifold, as shown infigure 6(a). The single excitation carrying certain amount of energy passes through
the excited states 1∣ ñ and 2∣ ñ, and its average residence time tá ñ in the excited states is negatively correlatedwith
the transfer efficiency (in analogy to the light-harvesting efficiency in [36, 37]): i.e., the longer the excitation stays
in the excited states, themore energywill be lost to the phonon bath, and the lower energy transfer efficiencywill
be. During a cycle that the single excitation starts from 0∣ ñandfinally returns to 0∣ ñ, the average residence time
tá ñ is proportional to the excited states population 11 22r r+ at the steady states, as shown infigure 6(b). Though
not quantitively exact, this kineticmodel qualitatively explains the localminimal of the efficiency η via the
average residence time t 11 22r rá ñ ~ + .

4.3.2. Temperature dependence
Besides the system–phonon bath coupling strength, the temperature of the phonon bath also affects the energy
transfer process, as shown in the two-dimensional contours of energy transfer efficiency (figure 7(a)) and
trapping energyflux (figure 7(b)). The efficiency behaves the same at the high phonon bath temperature as in the
strong coupling. In the high temperature limit, evenwhen the coupling strength is weak, the efficiency is still
close to 0h . As seen from equation (13), in either limit a  ¥ or 0vb  , the renormalization factor 0;k 
therefore, except for theweak coupling and low temperature case, the efficiency η does not change obviously.

Figure 5. (a)The kineticmodel of a single excitation transfer cycle. In the strong coupling regime, the energy transfer processes
between different local states can be described by the effective fluxes. (b)The relaxation rate zg versus system–bath coupling strength
α. The red line indicates the trapping rate tg . The parameters here are the samewithfigure 3.

Figure 6. (a)The two excited states form a black box for the input and output excitation due to the internal coupling. (b)The average
residence time tá ñ is proportional to the total population of the excited states. The parameters here are also the same as those in
figure 3.
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The trapping energy flux has a different temperature dependences for weak and strong system–bath
couplings. Theflux t- grows (goes down)with descending vb whenα is large (small).Moreover, t- does not
sensitively depend on vb with smallα in contrast with the efficiency.When the couplingα is around 1, theflux

t- changes nomore than 20% in amplitude comparingwith itsmaximum. The optimization of the efficiency
and the trapping flux can be achieved in two different regimes: (1)The coupling strength is weak and the
temperature of the phonon bath is high. (2)The coupling strength ismedium ( 2.5a ~ ) and the bath
temperature is low ( vb > 1). Thefirst regime corresponds to the high temperature classical limit, and the
second regime corresponds to low-temperature quantum regime, where bath-induced coherence enhances the
energy transfer process.

5. Conclusion

In this paper we use the PTRE to analyse the effects of the phonon bath on the energy transfer process in a generic
three-levelmodel. As a quantitativemethod, the PTRE can reliably describe the dependence of the steady state
coherence on the system–bath coupling strength ranging from theweak to strong coupling regime.Our analysis
shows that the steady state coherence between the two excited states is crucial to the energy transfer efficiency.
When the effective temperature of the excited states is negative (populations are inverted), the coherence carries
a positive real part and enhances the efficiency beyond the strong coupling limit 0h . On the contrary, if the
effective temperature is positive (populations are not inverted), the coherence carries a negative real part and is
detrimental to the efficiency. The energy flux and efficiency compete with each other and cannot reach
maximum simultaneously; however, the study of their behaviors with respect to the coupling strength and
temperature provides the key information about how tomake an optimal compromise between the two
quantities.Wewill consider how to use quantum control to optimize the energy transfer process in the future
study.
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temperature of the phonon bath. The temperatures and dissipation coefficients of the pumping and trapping bath are the same as in
the figure 4.
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AppendixA. Secular-MarkovianRedfield equation in the polaron frame

The two excited states coupledwith the phonon bath is described by theHamiltonian in equations (1) and (4),
which is broadly studied as the spin-bosonmodel. Via the polaron transformation given in equation (9), the
system–bath coupling is effectively weakened to the order of the thermal-fluctuation, hence the second-order
perturbation theory can be applied.With the secular-Markov approximation, the PTRE for spin-bosonmodel
in the interaction picture is given by
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which can be further written in the Schrodinger picture as equation (15)
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Here, the Pauli operators it defined by the eigenstates of H0˜ are given in equations (16) and (17), and

cos
2

1 sin
2

2 , A2∣ ∣ ∣ ( )q q
+ñ = ñ + ñ

sin
2

1 cos
2

2 , A3∣ ∣ ∣ ( )q q
-ñ = ñ - ñ

where Jtan q k= . The dissipation rates ijG are related to the bath correlation functions
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where J2 2( ) kD = +k and B t Be eH t H ti ib b( ) ˜ ˜= - .
To transform equation (15) back into the local frame, we express the elements of the RDM ts ( )r¢ and ts ( )r by

the average of the Pauli operators t tTrz s s z, ,( ) [ ( ) ]t r tá ñ º ¢  and t tTrz s s z, ,( ) [ ( ) ]s r sá ñ º  . As zs commutes

with the polaron-transformation, the diagonal term tz ( )sá ñ is easily to obtained from ts ( )r¢ ,
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where ttot ( )r is the total densitymatrix for the TLS and its bath, t tTrs b tot( ) [ ( )]r r= and
t te eB B

tot
i 2

tot
i 2z z( ) ( ) †r r¢ = s s- is the polaron-transformed total densitymatrix. However, the polaron

transformation operator and x y( )s s do not commute, thus the off-diagonal terms cannot be obtained exactly.
This problem can be solved by using the Born approximation t ts btot ( ) ( )r r r¢ » ¢ Ä ¢ , which has already been
used in deriving the PTRE. The polaron transformation reduces the system–bath coupling, thusmakes the
factorization of the densitymatrix in the polaron frame reasonable. Therefore, we have
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Togetherwith equations (A2) and (A3), it is straightforwardly to obtain

t t tcos sin , A9z z x( ) ( ) ( ) ( )s q t q tá ñ = á ñ + á ñ

t t tsin cos , A10x z x( ) ( ) ( ) ( )s k q t k q tá ñ = á ñ - á ñ

t t A11y y( ) ( ) ( )s k tá ñ = - á ñ

followingwhich the expression for the Liouville operator v of the TLS is derived.

Appendix B.Weak and strong coupling limits of PTRE

In this appendix, wewould like to show that the PTRE in theweak (strong) coupling limit is exactly consistence
with the Redfield equation (rate equation based on the Fermi’s golden rule). In theweak coupling limit, we have

1k » , thus the polaron basis ∣ ( ) D ñk approaches the eigenbasis of the TLS 0∣ ( ) D ñ, where J0
2 2D = + .

In this eigen frame, the PTRE equation (15)with secular approximation is reduced to the Redfield equation
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t
n n

d

d
1 , B1s s s0 0[ ] [ ( )][ ] ( )[ ] ( )r r r= -G + D + G D++ ++ --

t
n

d

d
i

1

2
1 2 , B2s s0[ ] ( ( )) [ ] ( )r r= - D + G + D+- +-

⎡
⎣⎢

⎤
⎦⎥

where J
1

2
sin0

2( ) qG = D .

In the strong coupling limit, the coherence is quickly destroyed by dissipation, thuswe only need to consider
the equations for the populations. Additionally, as 0k » with largeα, the eigenbasis of H0˜ are reduced to the
local basis 1∣ ñand 2∣ ñ. As a result, equation (15) becomes a kinetic equation governing the populations
Pi s ii[ ]rº , which can bewritten as

t
P P P

d

d
, B31 12 1 21 2 ( )= -G + G

where

J
1

2
d e e 1 , B4Q

12
2 2

0

i[ ( )] ( )( )òk tG = -t t
¥

R

J
1

2
d e e 1 , B5Q

21
2 2

0

i[ ( )] ( )( )òk tG = -t t
¥

-R

with

Q
J

d cos coth 2 i sin . B6
0 2 v( ) ( ) [ ( ) ( ) ( )] ( )òt w

w
pw

wt b w wt= -
¥

The above transition rates 12G and 21G are the same as those obtained from the Fermi’s golden rule. In aword, the
PTRE smoothly connects theweak and strong coupling limits, and provides a useful tool to study the
intermediate coupling regionwhere there is usually no reliable approximationmethods.

Furthermore, following from equation (B3) the three-level system in the strong coupling limit can be
understood from the perspective of population kinetics. The population transitions rate from state i∣ ñ to j∣ ñ is
denoted by ijG , then the net population flux from i∣ ñ to j∣ ñ is P Pij i ji jG - G . In the steady state, the net population
fluxes between each two local statesmust be equal with each other due to population conservation, whichmeans
there is a circulation F in the three-level system:

F P P P P P P . B712 1 21 2 20 2 02 0 01 0 10 1 ( )= G - G = G - G = G - G

Then the energyflux from i∣ ñ to j∣ ñ is just the populationflux F times the corresponding energy gap,
Fi j i j(  = - ), which directly leads to the efficiency 0 2 1 h = .With straightforward calculation, we

obtain the steady state population P D Di i= from the kinetic equation (B7), where

D , B81 01 20 02 21 21 01 ( )= G G + G G + G G

D , B92 02 10 01 12 12 02 ( )= G G + G G + G G

D , B100 10 20 20 12 21 10 ( )= G G + G G + G G

D D D D . B111 2 0 ( )= + +

In the case of low temperature trapping bath, the transition rate 02G can be neglected comparingwith 20G . Then
we have D1 01 20 21( )» G G + G and D2 01 12» G G , then the population inversion P P1 2> requires

020 21 12G + G - G > . In the strong coupling limit, the transition rates between the two excited states are almost
the same 12 21G » G , thus P P D 01 2 01 20- » G G > is established, which is consistent with the results obtained
from the PTRE.

AppendixC. Steady state of the TLS in polaron frame

For convenience, we rewrite equation (15) in the formof the Bloch equation

t
t M t C

d

d
. C1( ) ( ) ( )t tá ñ = - á ñ +  

Here t t t t, ,T
z x y( ) [ ( ) ( ) ( ) ]t t t tá ñ = á ñ á ñ á ñ


. The transitionmatrixM and the constant term C C C C, ,

T
z x y( )=



are

M

0

, C2

z zx

xz x xy

yz yx y

( )
g g
g g g
g g g

= D +
- D +

k

k

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟
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C C C C, , , C3
T

z x y( ) ( )=


the expressions of thematrix elements are given in appendixD.
The time evolution of t( )tá ñ


is straightforwardly given by

t M C M Ce 0 , C4Mt 1 1( ) [ ( ) ] ( )t tá ñ = á ñ - +- - -   

with the steady state M C1( )tá ¥ ñ = - 
. In the followingwewill neglect time argument¥when referring to the

steady state for convenience. The population difference ztá ñvaries with the coupling strength as shown infigure
C1 . In theweak coupling limit, the TLS steady state distribution is canonical in the eigenbasis, i.e.,

lim tanh
1

2
, C5z

0
v 0 ( )t bá ñ = - D

a
⎜ ⎟⎛
⎝

⎞
⎠

which is just the thermodynamic equilibrium state.When the system–bath coupling gradually increases, the
systemdistribution deviates from e

canr and follows the Boltzmann distribution

tanh
1

2
, C6z v ( )t bá ñ = - Dk⎜ ⎟⎛

⎝
⎞
⎠

with respect to the energy gapDk between the eigenvalues of ∣+ñand ∣-ñ in the polaron frame. Furthermore,
when goes into the strong coupling limit, we have

lim tanh
1

2
, C7z v ( )t bá ñ = -

a¥
⎜ ⎟⎛
⎝

⎞
⎠

which is the Boltzmann distributionwith respect to the local site energies 1 and 2 . The deviation from the
canonical state s

canr due to the strong system–bath coupling has been studied via the cumulant expansion
method in the polaron-transformed thermodynamic distribution [20, 21] and from the view point of energy
shell deformation [18, 19, 22].

AppendixD. Elements of thematrixesM and M̄

The quantities defined in equations (C2) and (C3) are determined by the superposition of the correlation
functions equation (A4) following from equations (15) and (C1). By defining the functions

f t Q t Q tcosh cosh 2, D1( ) [ ( )] [ ( )] ( )= + - -

g t Q t Q tsinh sinh , D2( ) [ ( )] [ ( )] ( )= + -

it is straightforwardly to obtain

J t t f t g t
1

2
d cos cos , D3z

2 2

0

2( )[ ( ) ( )] ( )òg k q= D +k
¥

J t f t t g t
1

2
d sin cos , D4x

2 2

0

2[ ( ) ( ) ( )] ( )òg k q= + Dk
¥

FigureC1.The steady state of TLS as a function of the system–bath coupling strengthα. The steady states of the PTRE follow the
canonical distribution in the polaron transformed basis, which rotates with the coupling strengthα. In theweak coupling limit, the
system steady state is the canonical distribution in the eigen basis (black dash line); while in the strong coupling limit, the steady state is
the canonical distribution in the localized basis (red dotted–dashed line). The inset shows the coherent termof the steady state, which
is small in the polaron transformed basis.We choose the parameters in units of J: J 51 = , J 4.52 = , J 5cw = and J 1vb = .
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J tf t t
1

2
d cos cos sin , D5y

2 2

0

2 2( )[ ( ) ] ( )òg k q q= D +k
¥

J tf t
1

4
sin 2 d , D6zx

2 2

0
( ) ( )òg k q=

¥

J tf t t
1

4
sin 2 d cos , D7xz

2 2

0
( ) ( ) ( )òg k q= Dk

¥

J tg t t
1

2
d sin , D8xy

2 2

0
( ) ( ) ( )òg k= Dk

¥

J tf t t
1

2
cos d sin , D9yx

2 2 2

0
( ) ( ) ( )òg k q= - Dk

¥

J tf t t
1

4
sin 2 d sin , D10yz

2 2

0
( ) ( ) ( )òg k q= Dk

¥

C J t t

Q t Q t

i

2
d sin

cos cosh sinh , D11

z
2 2

2

( )

[ [ ( )] [ ( )]] ( )
òk

q

=- D

´ +

k
-¥

¥

C J t t Q t
i

4
sin 2 d sin cosh , D12x

2 2 ( ) [ ( )] ( )òk q= - Dk
-¥

¥

C J t t

Q t Q t

i

4
sin 2 d 1 cos

cosh cosh . D13

y
2 2

0
[ ( )]

[ [ ( )] [ ( )]] ( )
òk q=- - D

´ - -

k
¥

The Liouville operator v for the three-level system is obtained from equation (C1)with the expressions
given above. Here the relation 100 11 22r r r+ + = for the three-level system should be used to substitute

1s s11 22[ ] [ ]r r+ = for the TLS. Taking the contributions of the Lindblad terms p and t defined in
equation (8) into consideration, the elements of thematrix M̄ in equation (18) are

M

n n

cos sin
1

2
sin 2

1

2
1 1 , D14

z x xz zx11
2 2

p p t t

¯ ( )

[ ( ) ( )] ( )

g q g q g g q

g g

= + + +

+ + + +

M C C n ncos sin
1

2
3 1 3 1 , D15z x12 p p t t¯ [ ( ) ( )] ( )q q g g= - - + + - +

M sin cos
1

2
sin 2 , D16xz zx z x13

1 2 2¯ ( ) ( )k g q g q g g q= - + -- ⎡
⎣⎢

⎤
⎦⎥

M sin , D17xy14
1¯ ( ) ( )k g q= - D +k

-

M n n
1

2
1 1 , D1821 p p t t¯ [ ( ) ( )] ( )g g= + - +

M n n
1

2
3 1 3 1 , D1922 p p t t¯ [ ( ) ( )] ( )g g= + + +

M M 0, D2023 24¯ ¯ ( )= =

M sin cos
1

2
sin 2 , D21zx xz z x31

2 2¯ ( ) ( )k g q g q g g q= - + -
⎡
⎣⎢

⎤
⎦⎥

M C Ccos sin , D22x z32¯ ( ) ( )k q q= -

M

n n

cos sin
1

2
sin 2

1

2
1 1 , D23

x z xz zx33
2 2

p p t t
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g q g q g g q

g g
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+ + + +

M cos , D24xy34¯ ( ) ( )g q= D +k
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