"材料与能源前沿科学:非平衡态物理和计算方法"培训班

非平衡载流子的弛豫机制

杨威

Email: wei.yang@iphy.ac.cn 中国科学院物理研究所

北京计算科学研究中心, 2020/11/12

M

- 1. 介观体系的热力学平衡与非平衡
- 2. 低维体系的非平衡载流子的产生和探测
- 3. 什么是噪音谱学
- 4. GHz 噪音谱学与高电场输运的研究
- 5. 碳管布朗运动与受限量子输运的关联

热力学平衡

(equilibrium thermodynamics)

不受外界影响下,宏观性质是平衡的 (in balance),不随时间变化的状态

热力学非平衡

(Non-equilibrium thermodynamics)

宏观性质是非平衡	(out of balance)	,	随时间变化
的状态			

从经典热力学到固态量子/介观器件

介观 (Mesoscopic system) 纳米-微米尺度

Electrons in lattices

介观体系的热力学描述

温度是描述微观体系的一个很直观和具有物理量

E

低维系统的电学输运测量

Rev. Mod. Phy. 81, 109 (2009)

结构与物性的调控

6

0 D

C60

Liang, Nature 2002

C. Urgell, Wei Yang# et al., Nature Physics 2020

C. Marcus, Science 2016

1 D

Single molecular nanotube nanowire, Si, InAs

2 D Graphene,TMD, GaAs/AlGaAs...

EPFL, 2018

3 D GaAs, GaN,Si...

量子点卡诺循环热机

Nature Nano. 13, 920(2018)

1. 介观体系的热力学平衡与非平衡

2. 低维体系的非平衡载流子的产生和探测

3. 什么是噪音谱学

4. GHz 噪音谱学与高电场输运的研究

5. 碳管布朗运动与受限量子输运的关联

非平衡载流子的产生-电

非平衡载流子的产生-光

非平衡载流子的产生-高电场下的Zener效应

电子的弛豫时间

J=0E, D= EE $\frac{dP}{P} = -\frac{\sigma}{\epsilon}dt$ $\nabla \cdot \vec{j} + \frac{d\rho}{dt} = 0$ $\nabla \cdot D = \nabla \cdot (\overline{\tau} E) = P$ $\Rightarrow P(t) = Bexp(-\frac{t}{2})$ e 电子的强制的行机

电子的散射和弛豫

从低电场到高电场的电子输运

jsnt=nevsat it this . group velocity V 23 j=nev = neuE 高电场下, V(E) $\mathcal{V} = \frac{\mathcal{M}\mathcal{E}}{1 + \frac{\mathcal{M}\mathcal{E}}{1 + \frac{2}{1 + 1}}^{2}}$ $V_{\text{sot}} = \frac{2}{\pi} \cdot \frac{h\Omega}{\hbar k_{\text{F}}}$ Vsat) 广场和事场

非平衡载流子弛豫的探测-热输运

Grenoble, Nature Com. 2018

Suspended SiN-1D phonon waveguide 北京计算科学研究中心, 2020/11/12

17

T (K)

非平衡载流子弛豫的探测-光电流

Graham et al. Nat Phys. 2013

非平衡载流子弛豫的探测-光+噪音

19

非平衡载流子弛豫的探测--纳米机械学

非平衡载流子弛豫的探测-噪音谱学

Bernard Placais, PRL 2012 & Nature Physics 2013

1. 介观体系的热力学平衡与非平衡

2. 低维体系的非平衡载流子的产生和探测

3. 什么是噪音谱学

4. GHz 噪音谱学与高电场输运的研究

5. 碳管布朗运动与受限量子输运的关联

测量与噪音

measured signal is fluctuating in time

 $I(t) = <l > +\delta I(t)$

 $S_{II} = \delta I^2 / f$

噪音的种类

Alexander A. Balandin, Nat. Nano. 8, 549 (2013).

Resonances RLC Vibration Microwave Cavity

 $S_{total} = \alpha_H V^2 / Nf + S_V$

thermal noise shot noise

...

 $S_I = F * 2eI$

噪音与电子输运特性-Fano factor

噪音谱学的应用

Ground state cooling

Electron pairing in LaSrCuO junction

Nature 572,493 (2019)

GHz噪音谱的标定

$$\mathbf{S}_{VV}^{out} = \mathbf{S}_{VV}^{sample} + \mathbf{S}_{VV}^{amp.line}$$

A tunnel junction is used to
calibrate the background noise
$$\mathbf{S}_{VV}^{sample} = \mathbf{S}_{VV}^{TJ} \propto 2e \mathbf{I}_{ds} \longrightarrow \mathbf{I}_{noise}$$

Noise spectra with a bandwidth of ~5 GHz

热噪音与电子温度

Noise temperature $k_B T_N \equiv S_I / 4G_{diff}$ 电子温度 Hot electrons, heat equation, Wiedemann-Frantz $k_B T_N \equiv \langle k_B T_e \rangle = \frac{\sqrt{3}}{8} \times Length \times \sqrt{P/\sigma}$ $k_B T_e$ 电子-空穴对 Hot Fermi sea + holes $k_B T_N \equiv \int_{-\infty}^{\infty} f(1-f) dE \approx k_B T_e + \frac{n_h}{DOS}$ FK = JoT Charge + heat $L_{o} = \frac{\pi^{2}}{2} \left(\frac{k_{s}}{2}\right)^{2}$

1. 介观体系的热力学平衡与非平衡

2. 低维体系的非平衡载流子的产生和探测

3. 什么是噪音谱学

4. GHz 噪音谱学与高电场输运的研究

5. 碳管布朗运动与受限量子输运的关联

石墨烯的能带和声子谱

Weak electron-phonon coupling

Weak thermal electron-phonon coupling

$$P(T \ll \theta_{BG}) = \Sigma \Delta T^{4} = \frac{\pi^{2} D^{2} k_{B}^{4} |\mu|}{15 \rho_{m} \hbar^{5} s^{3} v_{F}^{3}} \times (T_{e}^{4} - T_{ph}^{4})$$
$$P(T \gg \theta_{BG}) = G_{o} \Delta T = \frac{D^{2} k_{B} |\mu|^{4}}{2 \pi \rho_{m} \hbar^{5} v_{F}^{6}} \times (T_{e} - T_{ph})$$

J. K. Viljas and T. T. Heikkilä PRB (2010)

电子-声子弛豫的三种常见类型

$$-\frac{\sigma\pi^{2}L^{2}}{6}\frac{\partial^{2}}{\partial x^{2}}\left(\frac{k_{B}T_{e}}{e}\right) = \varepsilon \cdot J - P(T_{e}, T_{ph}) - P_{OP}$$

$$\frac{WF}{6}\frac{Low-TAC}{6}\frac{Super-collisions}{Collisions} OP$$

$$\frac{P \propto T^{2}}{2}\frac{\alpha T^{3}}{\alpha T^{4}}\frac{\alpha exp[T/\Omega_{OP}]}{\alpha T^{2}}$$

$$\frac{WF}{6}\frac{WF$$

迁移率对器件的影响

高质量G/hBN器件

Hyperbolic phonons of hBN

(Courtesy of F. Koppens, Kaprun School 2015) 北京计算科学研究中心, 2020/11/12

G/hBN 的高电场输运特性

Zener-Klein tunneling

Wei Yang, et al. Nature Nano. 13, 47(2018)

Zener-Klein Tunneling, Pauli blocking:

$$\sigma_{ZK} = \alpha \frac{4e^2}{h} \frac{k_F l_{ZK}}{4\pi} = Const. \quad ; \quad \dot{n}_{e-h}^{ZK} = \frac{e k_F}{\pi^2 \hbar} (E - E_{ZK})$$

$$E_{zk} = \frac{2E_F}{el_{zk}} \text{ (dashed line)}$$

低电场下的电流饱和效应

器件的直流测量与GHz 热噪音测量

Zener Klein tunneling and Hyperbolic cooling

40

ZK and HPP at CNP

ZK and HPP at medium doping

42

Hot electrons and HPP emissions at high doping

Super-Planck HPP thermal emission $(\sigma_{hot}(\omega, q) \text{ by Polini at al.})$ $P_J = 0.5 \frac{GW}{m^2}, \ kT = 0.4 eV, \ n_e = 4 \ 10^{12}$ $\swarrow P_{HPP}^{th} = 2.4 \times M \ \frac{GW}{m^2} = 0.24 \ \frac{GW}{m^2} = P_J/2 = P_{WF}$ by taking $M^{th} \approx 0.1$

1. 介观体系的热力学平衡与非平衡

2. 低维体系的非平衡载流子的产生和探测

3. 什么是噪音谱学

4. GHz 噪音谱学与高电场输运的研究(磁场下)

5. 碳管布朗运动与受限量子输运的关联

Bilayer graphene in magnetic field

Zener field $E_c \sim \hbar \omega_c / e R_c$ $\omega_c = e B / m^*$ ($R_c \sim \sqrt{N} l_B$ $l_B = \sqrt{\hbar / e B}$)

Two probe measurement of QHE in BLG

Wei Yang et al, PRL.121, 136804 (2018).

Quantum Hall breakdown captured by noise avalanche

Many-Body interaction induced QHE breakdown

S_I=Fano*2el_{ds}

Wei Yang et al, PRL.121, 136804 (2018).

- 发现了Zener-Klein隧穿效应,揭示了非平衡电子-空 穴对的存在
- 实现一种远程声子辅助的高效制冷,解决了电子器 件高功率工作下热力学不稳定的问题
- 首次观测到量子霍尔效应的崩溃临界电场与本征齐 纳临界电场吻合
- 提出一种磁激发不稳定引发量子霍尔效应崩溃的新机制,打破了长期采用单电子图像描述的局限性

[1] <u>Wei Yang</u>, et al. Nature Nanotechnology, 13, 47 (2018).

[2] <u>Wei Yang</u>, et al. Phy. Rev. Lett., 121, 136804 (2018).

1. 介观体系的热力学平衡与非平衡

2. 低维体系的非平衡载流子的产生和探测

3. 什么是噪音谱学

4. GHz 噪音谱学与高电场输运的研究

5. 碳管布朗运动与受限量子输运的关联

Mechanical resonators

M. Poggio et al. PRL (2007)

Cleland Group, Nature (2009)

A. Naik et al. Nature (2006)

by Side band cooling

J. D. Teufel al. Nature (2011)

2 μm Ground state

J. D. Thompson et al. Nature (2008)

Kippenberg Group, Nature (2007)

S CNT D Gate

CNT for sensing applications

Mass sensing with yg (10⁻²⁴g) resolution

Bachtold's Group Nature Nano. 7, 301 (2012)

$$f = \sqrt{k/m}$$

Force sensitivity of ~12 zN/\sqrt{Hz}

Bachtold's Group Nature Nano. 8, 493 (2012)

 $S_{\rm F} = 4k_{\rm B}T\gamma = 4k_{\rm B}T\sqrt{Mk_0/Q}$

Basics about quantum transport in CNT

Coulomb Blockade

 $k_B T, \Gamma \ll E_C$ $R > h/e^2$

Coulomb Blockade

Kondo resonance

Zero bias conductance Kondo ridge

Transparent tunnelling *Fabry perot Interference*

$$L = \frac{hv_f}{2eV_c} = 1.22 \ \mu m$$

Detection of the nanotube's vibration

C.Urgell#, W. Yang#*, et al. Nature Physics 16, 32(2020)

Adrian Bachtold Carles Urgell

$$\int_{-\infty}^{+\infty} S_{xx}(\omega) \frac{d\omega}{2\pi} = \langle x^2 \rangle.$$

$$m\omega_0^2 \langle x \rangle^2 = k_B T$$

sample

Ultra-clean CNT Resonator, also a good transistor

北京计算科学研究中心, 2020/11/12

Dynamic heating and Self-Oscillations

The measured voltage signal

The extracted vibration motion

北京计算科学研究中心, 2020/11/12

61

Dynamic cooling the resonator to a state of few quanta

Electrothermal model

结

- 实现了高灵敏度的 MHz噪音测量(0.5 pm/√Hz)
- 实现了电子对碳管热振动的量子反作用调控
- 实现将谐振子冷却到接近量子基态(~4.6 量子)

[1] C. Urgell#, <u>W. Yang</u>#*, et al. Nature Physics, 16, 32 (2020).
[2] S. L. de Bonis#, C. Urgell#, <u>W. Yang</u>, et al. Nano Letters, 18, 5324 (2018).

What Now?.....

Multilayer Van de Waals Devices

Multilayer MoS₂ FETs

Jian Tang, et al., Advanced Electronic Materials, 2000550(2020)

Moir éPhysics-From single particle to many body interaction

THERE IS PLENTY OF ROOM AT THE BOTTOM

---Richard Feynman

Acknowledgement

Institute of Physics, CAS, Beijing

Prof. Guangyu Zhang

Prof. Li Lu

Prof. Fanming Qu

Dr. Xiaobo Lu

Dr. Chen Shen

ShanghaiTech University, Shanghai

Prof. Jianpeng Liu

CNRS, ENS Paris

Prof. Bernard Plaçais

Dr. Holger Graef

LPS, Paris

Prof. M. O. Goerbig

ICFO, Barcelona Prof. Adrian Bachtold

ICFO⁹ erc

Carles Urgell

NIMS, Japan Dr. Kenji Watanabe Dr. Takashi Taniguchi

欢迎交流、加入我们!

杨威,特聘研究员

物理所-纳米实验室N07组

Email: wei.yang@iphy.ac.cn

Tel: 010-82648050

http://www.iop.cas.cn/rcjy/yjdwfgj/?id=1349

Thanks very much!