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Background

Develop the fast method to calculate the convolution

k ∗ u(t) =
∫ t

0

k(t− s)u(s) ds. (1)

The convolution (1) arises in

• the integral models, i.e., the fractional differential equations, describing the

anomalous diffusion 1.

• wave propagation on bounded domains, which requires to impose transparent

(nonreflecting) boundary conditions 2 3 4 5

ûj(x, t) = −
∫ t

0

fj(t− s)∂ν ûj(x, s) ds, x ∈ ∂Ω.

1D Schrodinger EQ: 1/2-order Caputo fractional derivative
1
R. Metzler, J.H. Jeon, A.G. Cherstvy, and E. Barkai, Phys. Chem. Chem. Phys., 2014.

2
C. Lubich and A. Schadle, SIAM J. Sci. Comput., 2002.

3
L. Banjai, M. López-Fernández, and A. Schädle, SIAM J. Numer. Math., 2017.

4
S. Jiang and Greengard, Comput. Math. Appl., 2004

5
B. Li, J. Zhang, C. Zheng, , SIAM J. Numer. Math., 2018.
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The fractional operator: choosing k(t) = kα(t) =
tα−1

Γ(α)
yields

kα ∗ u(t) =
∫ t

0

(t− s)α−1

Γ(α)
u(s) ds. (2)

• The Riemann–Liouville (RL) fractional integral of order α for α > 0;

• The RL fractional derivative of order −α > 0 for α < 0 in the sense of

Hardamard finite-part integral.

An example: k−α ∗ u(t) = P.V.

[∫ t

0

(t− s)−α−1

Γ(−α) u(s) ds

]

=
d

dt
[(k1−α ∗ u)(t)] , 0 < α < 1.

(3)

• Variable-order fractional operators: α = α(t)

kα(t) ∗ u(t) =
∫ t

0

(t− s)α(t)−1

Γ(α(t))
u(s) ds. (4)

• How about α = α(s) in (4)?
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Numerical methods

• Interpolation: uniform or nonuniform grid points {t0, t1, ..., tM}

(kα ∗ u)(tn) ≈ (kα ∗ Iτu)(tn) =
n∑

k=0

ωn,ku(tk), 1 ≤ n ≤ M. (5)

• Convolution quadrature (CQ, fractional linear multistep method):

uniform grid points tk = kτ , τ > 0 is a step size

(kα ∗ u)(tn) ≈
n∑

k=0

ωn−ku(tk)

︸ ︷︷ ︸
convolution part

+
m∑

j=0

Wn,ju(tj)

︸ ︷︷ ︸
corrections

, 1 ≤ n ≤M, (6)

where ωn are the coefficients of the Taylor expansion of the generating

function,

ω(z) =
∞∑

n=0

ωnz
n,

which can be derived from the generating function of the linear multistep

method.

Shandong University August 2022



Storage and computational cost

Direct calculation of

kα ∗ u(tn) ≈
n∑

k=0

wn,ku(tk), 1 ≤ n ≤ M (7)

needs

1) storage: O(M) → O(1) as α→ ±1. For example, for linear interpolation

and α→ −1, (7) reduces to

n∑

k=0

wn,ku(tk) →
u(tn)− u(tn−1)

tn − tn−1
.

2) computational cost: O(M2) → O(M) as α→ ±1

Fast calculation yields

1) storage: O(log(M)) or O(Q); log(M) ≪M, Q≪M.

2) computational cost: O(M log(M)) or O(QM).
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Sum-of-exponentials

The basic idea is to seek a suitable sum-of-exponentials to approximate the

kernel function kα(t) = tα−1/Γ(α), i.e.,

kα(t) =
tα−1

Γ(α)
=

Q∑

j=1

wje
λjt +O(εtα−1), (8)

where ε > 0 is a given precision.

• Global approximation: (8) holds for ∀t ∈ [δ, T ], δ, T > 0 .

• Local approximation: (8) holds for ∀t ∈ Iℓ ⊂ [δ, T ], i.e.,

Iℓ = [Bℓ−1τ, 2Bℓτ ], B > 1 is a positive integer, satisfying

[δ, T ] ⊂ I1 ∪ I2 ∪ I3 ∪ · · · ∪ IL, L =
⌈
log

(T/τ)
B

⌉
= O(log(T/τ )).
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The method based on the numerical Laplace transform

inversion

The Laplace transform of the kernel function kα(t) = tα−1/Γ(α) is

Kα(λ) = L[kα](λ) = λ−α.

The inverse Laplace transform yields [Lubich and Schädle, SISC, 2002;

López-Fernández, Lubich, and Schädle, SISC, 2008]

kα(t) =
1

2πi

∫

C
Kα(λ)e

tλdλ =
1

2πi

∫

C
λ−αetλdλ

=
1

2πi

∫ π

−π

(z(θ))−αz′(θ)etz(θ)dθ (λ = z(θ))

≈
N∑

j=−N+1

w
(ℓ)
j eλ

(ℓ)
j

t t ∈ Iℓ = [Bℓ−1τ, 2Bℓτ ],

(9)

where w
(ℓ)
j = 1

2πi
(λ

(ℓ)
j )−α∂θz(θj , µℓ), λ

(ℓ)
j = z(θj , µℓ), θj = (2j−1)π

2N
.
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• The optimal Talbot contour with z(θ, µℓ) given by [Weideman, SINUM,

2006]

z(θ, µℓ) = µℓ(−0.4814 + 0.6443(θ cot(θ) + i0.5653θ)), (10)

where µℓ = N/Tℓ, Tℓ = 2Bℓτ , B > 1 is a positive integer.

• The hyperbolic contour with z(θ, µℓ) given by [Lopez-Fernandez, Lubich,

et al., Numer. Math., 2005]

z(θ, µℓ) = µℓ(1− sin(ψ + iθ)) + σ. (11)

In numerical simulations, we can select σ = 0, ψ = 0.4π, µℓ = N/Tℓ,

Tℓ = Bℓτ , N =
⌈
− log(τ 1−αǫ)

⌉
, ǫ is a given precision.
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The method based on the multi-pole approximation

Find a rational approximation r(λ) to the Laplace transform of

kα(t+ δ) = (t+ δ)α−1/Γ(α), δ ≥ 0,

which takes the following form [Baffet and Hesthaven, SINUM, 2017]

r(λ) =

Q∑

j=1

cj
λ− λj

. (12)

Applying the inverse Laplace transform yields

kα(t+ δ) ≈ 1

2πi

∫

C
r(λ)etλdλ =

Q∑

j=1

wje
λjt. (13)

Shandong University August 2022



The method based on the Jacobi–Gauss quadrature

kα(t) =
tα−1

Γ(α)
can be expressed as

kα(t) =
sin(απ)

π

∫ ∞

0

λ−αe−tλdλ (α < 1)

=
sin(απ)

π

∫ A

0

λ−αe−tλdλ+O(εtα−1).

(14)

Taking A = 2m2 yields

∫ A

0

λ−αe−tλdλ =

∫ 2−m1

0

λ−αe−tλdλ

︸ ︷︷ ︸
Jacobi–Gauss

+

m2−1∑

k=−m1

∫ 2k+1

2k
λ−αe−tλdλ

︸ ︷︷ ︸
Legendre–Gauss

≈
No∑

j=1

w
(o)
j e−λ

(o)
j

t +

m2−1∑

k=−m1

Nk∑

j=1

w
(k)
j (λ

(k)
j )−αe−λ

(k)
j

t.

(15)
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Jacobi–Gauss quadrature [Jiang, Zhang, Zhang, and Zhang, Commun.

Comput. Phys., 2017]

kα(t) ≈ sin(απ)

π

∫ A

0

λ−αe−tλdλ

≈ sin(απ)

π

( No∑

j=1

w
(o)
j e−λ

(o)
j

t +

m2−1∑

k=−m1

Nk∑

j=1

w
(k)
j (λ

(k)
j )−αe−λ

(k)
j

t

)

=

Q∑

j=1

wje
λjt.

(16)

Legendre–Gauss quadrature [Jing-Rebecca Li, SISC, 2010]

kα(t) ≈ sin(απ)

π

∫ σ

0

λ−αe−tλdλ

︸ ︷︷ ︸
O(ε)

+
sin(απ)

π

∫ A

σ

λ−αe−tλdλ

≈ sin(απ)

π

( m2−1∑

k=−m1

Nk∑

j=1

w
(k)
j (λ

(k)
j )−αe−λ

(k)
j

t

)

=

Q∑

j=1

wje
λjt.

(17)
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The method based on the Laguerre–Gauss quadrature

Rewrite

kα(t) =
sin(απ)

π

∫ ∞

0

λ−αe−tλdλ

as

kα(t) =
sin(απ)

π

∫ ∞

0

λ−αe−Tℓλ

︸ ︷︷ ︸
weight

e−(t−Tℓ)λdλ

=
sin(απ)

π

N∑

j=1

w
(ℓ)
j e−(t−Tℓ)λ

(ℓ)
j +O(ε), t− Tℓ ∈ Iℓ

=

Q∑

j=1

wje
λjt +O(ε).

(18)

See [Zeng, Turner, Burrage, JSC, 2018].
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The method based on the trapezoidal rule on the real line

Let λ = ex. Then

kα(t) =
sin(απ)

π

∫ ∞

0

λ−αe−tλdλ =

∫ ∞

−∞

sin(απ)

π
e−tex+(1−α)x

︸ ︷︷ ︸
φ(x,t)

dx,
(19)

where |φ(x, t)| → 0 as |x| → ∞ for t > 0. The trapezoidal rule for

approximating (19) is [Trefethen, Weideman, SIAM Rev., 2014; McLean,

Contemporary Computational Mathematics, 2018]

kα(t) = h

∞∑

j=−∞
φ(jh, t) +O(e−1/h)

= h

−N1−1∑

j=−∞
φ(jh, t)

︸ ︷︷ ︸
O(ε)

+h

N2∑

j=−N1

φ(jh, t) + h
∞∑

j=N2+1

φ(jh, t)

︸ ︷︷ ︸
O(ε)

+O(e−1/h)

=

Q∑

j=1

wje
λjt +O(e−1/h) +O(ε). (20)
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Table: Comparison of different methods for approximating kα(t) = tα−1/Γ(α).

Kernel
approximation

method

Range
of α

Are λj

dependent
on α?

Extension to
variable-order
α = α(t)?

Global/Local
approximation

Contour
quadrature (9) α ∈ R No Yes Local, t ∈ Iℓ

Multi-pole
method (13) α < 1 Yes No Global, t ∈ [δ, T ]

Jacobi–Gauss
quadrature (16) α < 1 Yes No Global

Legendre–Gauss
quadrature (17) α < 1 No Yes Global

Laguerre–Gauss
quadrature (18) α < 1 Yes No Local

Trapezoidal
rule (20) α < 1 No Yes Global
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Compare the different kernel approximation methods.

Define the relative error

e(t) =

∣∣∣∣∣
kα(t)−

∑Q
j=1 wje

λjt

kα(t)

∣∣∣∣∣ .
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Figure: Comparison of different kernel approximation methods, δ = 0.1,
T = 1000, α = −0.4, and B = 5.
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Figure: Comparison of different kernel approximation methods, δ = 0.1,
T = 1000, α = 0.95, and B = 5.
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An improved kernel approximation method

We already have

kα(t) =
sin(απ)

π

∫ ∞

0

λ−αe−tλdλ ≈
Q∑

j=1

wj(α)e
λj(α)t, α < 1. (21)

Hence, kα(t) can be approximated by

kα(t) =
t

α− 1
kα−1(t)

≈ t

α− 1

Q∑

j=1

wj(α− 1)eλj(α−1)t (α < 2)

=t

Q∑

j=1

ŵje
λ̂jt,

(22)

where ŵj =
wj (α−1)

α−1
, λ̂j = λj(α− 1).

kα(t) =
t2

(α− 1)(α− 2)
kα−2(t), α ∈ (2, 3).
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Figure: Comparison between the hyperbolic quadrature (9) based on the
contour quadrature (11) and the improved method (22), Q = 256.
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Variable-order fractional case

Table: Comparison of different methods for approximating kα(t) = tα−1/Γ(α).

Kernel
approximation

method

Range
of α

Are λj

dependent
on α?

Extension to
variable-order
α = α(t)?

Global/Local
approximation

Contour
quadrature (9) α ∈ R No Yes Local

Multi-pole
method (13) α < 1 Yes No Global

Jacobi–Gauss
quadrature (16) α < 1 Yes No Global

Legendre–Gauss
quadrature (17) α < 1 No Yes Global

Laguerre–Gauss
quadrature (18) α < 1 Yes No Local

Trapezoidal
rule (20) α < 1 No Yes Global
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Variable-order fractional case: α = α(t)

Contour quadrature: From (9), we can obtain

kα(t)(t) =
tα(t)−1

Γ(α(t))
=

1

2πi

∫

C

λ−α(t)etλdλ. (23)

Legendre–Gauss quadrature:

kα(t)(t) =
sin(α(t)π)

π

∫ ∞

0

λ−α(t)e−tλdλ

=
sin(α(t)π)

π

∫ A

σ

λ−α(t)e−tλdλ+O(ε)

=
sin(α(t)π)

π

K∑

j=1

∫ σj

σj−1

λ−α(t)e−tλdλ+O(ε)

(24)

Trapezoidal rule: λ = ex

kα(t)(t) =
sin(α(t)π)

π

∫ ∞

0

λ−α(t)e−tλdλ

=
sin(α(t)π)

π

∫ ∞

−∞
e(1−α(t))xe−texdx

(25)
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Figure: Comparison of different kernel approximations for variable-order
fractional orders, τ = 1, T = 1000, and Q = N × L = 64× 4 = 256.
The trapezoidal rule shows better accuracy than the other two methods
for negative α(t), but displays the worst accuracy when α(t) > 0.
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Figure: The accuracy of the Legendre–Gauss quadrature for the method
(17) for the variable order fractional case, τ = 1, T = 1000, m2 = 6,
N = 16, and Q = N ×m.
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The unified fast time-stepping method

1. Fast method for RL fractional integral (kα ∗ u)(t) is

F(α), α > 0.

Fast method for RL fractional derivative RLD
α
0,tu(t) = P.V.((k−α ∗ u)(t)) is

F(−α), α > 0.

2. Fast method for the Caputo fractional derivative

CD
α
0,tu(t) = (km−α ∗ u(m))(t) = P.V.(k−α ∗ (u− φ)(t)), m− 1 < α < m

reads as

F(−α) + B(α).

For a smooth u(t), φ(t) =
∑m−1

j=0
u(j)(0)
Γ(j+1)

tj , so that

B(α) = −
m−1∑

j=0

tj−α

Γ(j + 1− α)
u(j)(0).
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The linear interpolation operator Π1 : C[0, T ] → C[0, T ] reads as

Π1u(t)|t∈[tj−1,tj ] =
t− tj

tj−1 − tj
u(tj−1) +

t− tj−1

tj − tj−1
u(tj), (26)

Then the convolution integral (kα ∗ u)(t) can be approximated by

D−α,nu = (kα ∗ Π1u)(tn) =

n∑

j=1

(A
(α)
n,ju

j−1 +B
(α)
n,j u

j), (27)

where uj = u(tj) and

A
(α)
n,j =

∫ tj

tj−1

kα(tn − s)
s− tj

tj−1 − tj
ds,

B
(α)
n,j =

∫ tj

tj−1

kα(tn − s)
s− tj−1

tj − tj−1
ds.

(28)

• α > 0: (27) is the fractional trapezoidal rule.

• α < 0: (27) is the popularly used L1 method for discretizing the RL

fractional derivative.
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The aim of this section is to design fast algorithms to calculate

(kα ∗Π1u)(tn) =

∫ tn

t0

kα(tn − s)Π1u(s)ds =
n∑

j=1

(A
(α)
n,juj−1 +B

(α)
n,j uj). (29)

Divide (kα ∗ Π1u)(tn) into two parts as

(kα ∗Π1u)(tn) =

∫ tn

tn−1

kα(tn − s)Π1u(s)ds

︸ ︷︷ ︸
Local part : Lα,nu

+

∫ tn−1

0

kα(tn − s)Π1u(s)ds

︸ ︷︷ ︸
History part : Hα,nu

,

(30)

where the local part Lα,nu and the history part Hα,nu can also be expressed as

Lα,nu = A(α)
n,nu

n−1 +B(α)
n,nu

n, (31)

Hα,nu =

n−1∑

j=1

(A
(α)
n,ju

j−1 +B
(α)
n,j u

j). (32)

Develop the fast memory-saving method to calculate the history part Hα,nu.
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The history part Hα,nu can be approximated via

Hα,nu =
n−1∑

j=1

(A
(α)
n,ju

j−1 +B
(α)
n,j u

j)

︸ ︷︷ ︸
Direct calculation

=

∫ tn−1

0

kα(tn − s)Π1u(s)ds

≈
∫ tn−1

0

Q∑

j=1

wj(α)e
λj(tn−s)Π1u(s)ds

=

Q∑

j=1

wj(α)e
λj(tn−tn−1)

∫ tn−1

0

eλj(tn−1−s)Π1u(s)ds

︸ ︷︷ ︸
Yj(tn−1)

=

Q∑

j=1

wj(α)e
λj(tn−tn−1)Yj(tn−1)

︸ ︷︷ ︸
Fast calculation

=: FH
α,nu,

(33)

where Yj(t) satisfies the following ODE

Y ′
j (t) = λjYj(t) + Π1u(t), Yj(0) = 0. (34)
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The above linear ODE has the analytical solution

Yj(t) = eλjtYj(0) +

∫ t

0

eλj(t−s)Π1u(s)ds,

which can be exactly solved by the following recursive relation

Yj(tm) = eλj(tm−tm−1)Yj(tm−1) +

∫ tm

tm−1

eλj(tm−t)Π1u(t)dt

= Λ1Yj(tm−1) + Λ2u
m−1 +Λ3u

m

(35)

at t = tm, where Yj(0) = 0 and






Λ1 = eλj(tm−tm−1),

Λ2 =
1

λj

(
ez − 1− ez − z − 1

z

)
, z = λj(tm − tm−1),

Λ3 =
1

λj

ez − z − 1

z
, z = λj(tm − tm−1).

(36)
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Algorithm 1: Fast calculation of the fractional operator kα ∗ u(t) based on the

kernel approximation

kα(t) ≈ tα−1

Γ(α)
=

Q∑

j=1

wj(α)e
λj(α)t, t ∈ [δ, T ] (37)

Step 1. Divide (kα ∗ Π1u)(tn) into two parts as

(kα ∗Π1u)(tn) =

∫ tn

tn−1

kα(tn − s)Π1u(s)ds

︸ ︷︷ ︸
Local part : Lα,nu

+

∫ tn−1

0

kα(tn − s)Π1u(s)ds

︸ ︷︷ ︸
History part : Hα,nu

.

Step 2. Calculate the local part Lα,nu directly by (31).

Step 3. Approximate the history part Hα,nu by

FH
α,nu =

Q∑

j=1

wj(α)e
λj(α)(tn−tn−1) Yj(tn−1) , n ≥ 2, (38)

where FH
α,nu = 0 for n ≤ 1, Yj(tn−1) satisfies (35).

Step 4. Output FD
−α,nu = Lα,nu+ FH

α,nu.
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Algorithm 2: Fast calculation of the fractional operator kα ∗ u(t) based on the

improved kernel approximation

kα(t) =
tα−1

Γ(α)
=

t

α− 1
kα−1(t) ≈ t

Q∑

j=1

ŵje
λ̂jt, t ∈ [δ, T ] (39)

Step 1. Divide (kα ∗ Π1u)(tn) into two parts as

(kα ∗Π1u)(tn) =

∫ tn

tn−1

kα(tn − s)Π1u(s)ds

︸ ︷︷ ︸
Local part : Lα,nu

+

∫ tn−1

0

kα(tn − s)Π1u(s)ds

︸ ︷︷ ︸
History part : Hα,nu

.

Step 2. Calculate the local part Lα,nu directly.

Step 3. Approximate the history part Hα,nu by

FH
α,nu =

Q∑

j=1

ŵj(α)e
λ̂j(tn−tn−1) (tnYj(tn−1)− Zj(tn−1)) , n ≥ 2, (40)

where FH
α,nu = 0 for n ≤ 1, Yj(tn−1) satisfies (35).

Step 4. Output FD
−α,nu = Lα,nu+ FH

α,nu.
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Hα,nu =

n−1∑

j=1

(
A

(α)
n,ju

j−1 +B
(α)
n,j u

j
)
=

∫ tn−1

0

kα(tn − s)Π1u(s)ds

≈
Q∑

j=1

ŵj(α)

∫ tn−1

0

(tn − s)eλ̂j(tn−s)Π1u(s)ds

=

Q∑

j=1

ŵj(α)e
λ̂j(tn−tn−1) (tnYj(tn−1)− Zj(tn−1))

=: FH
α,nu,

(41)

where

Yj(tn−1) =

∫ tn−1

0

eλ̂j(tn−1−s)Π1u(s)ds,

Zj(tn−1) =

∫ tn−1

0

eλ̂j(tn−1−s)sΠ1u(s)ds.

(42)
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Application to FODEs

Consider the following fractional ODE (FODE)





CD

α(t)
0,t u(t) = −u(t) + f(u, t), 0 < α(t) ≤ 1, t ∈ (0, T ] ,

u(0) = u0,
(43)

where

CD
α(t)
0,t u(t) = P.V.(k−α(t) ∗ u(t))−

t−α(t)

Γ(1− α(t))
u(0).

The fast method for (43) reads: Find FU
n for n ≥ 1 such that

FD
αn,n

FU − t−αn
n

Γ(1− αn)
FU

0 = −FU
n + f(FU

n, tn), FU
0 = u0. (44)

The direct method for (43) reads: Find Un for n ≥ 1 such that

Dαn,nU − t−αn
n

Γ(1− αn)
U0 = −Un + f(Un, tn), U0 = u0. (45)
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Error of the direct method (uniform time mesh tj = jτ )

Rn = CD
α
0,tu(tn)− CD

α
0,tΠ

1u(tn) = O(τ 2−α).

Theorem (Huang, Zeng, Guo, 2022)

Assume that

k−α(t) =
t−α−1

Γ(−α) =

Q∑

j=1

wje
λjt +O(εt−α−1), t ∈ [δ, T ]. (46)

Let Un and FU
n be the solutions of the direct method and fast method,

respectively. If τ is sufficiently small and ε/τα . 1, then

|Un − FU
n| . εnα, 1 ≤ n ≤M. (47)

Hence,

|FUn − u(tn)| ≤ |Un − FU
n|

︸ ︷︷ ︸
.εnα

+ |Un − u(tn)|︸ ︷︷ ︸
Error of the direct method≤|Rn|

.
(48)
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Time-fractional PDEs

Semi-linear time-fractional subdiffusion equation






CD
α
0,tu(x, t) = ∂xxu(x, t) + f(u), (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω̄,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ].

(49)

Fast FDM for (49) is given by: For 1 ≤ n ≤ nT , find FU
n
j such that





FD

αn,n
FU

n
j = δ2xFU

n
j + f(FU

n
j ), 1 ≤ j ≤M − 1,

FU
n
0 = FU

n
M = 0, FU

0
j = u0(xj), 0 ≤ j ≤M.

(50)

Direct FDM for (49) is given by: For 1 ≤ n ≤ nT , find U
n
j such that





Dαn,nUn

j = δ2xU
n
j + f(Un

j ), 1 ≤ j ≤M − 1,

Un
0 = Un

M = 0, U0
j = u0(xj), 0 ≤ j ≤M.

(51)
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Theorem

Let u and Un
j be the solutions of (49) and (51), respectively, u(·, t) ∈ C4(Ω),

and f(z) satisfies the local Lipschitz condition. If τ is sufficiently small, then

‖u(·, tn)− Un‖Lp . τ tα−1
n + h2tαn, 1 ≤ n ≤M,

where p = 2,∞.

See [Dongfang Li et al., JSC, 2022; Natalia Kopteva and Xiangyun Meng,

SINUM, 2020].
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Theorem (Huang, Zeng, Guo, 2022)

Let Un
j and FU

n
j be the solutions of (51) and (50), respectively, f(z) satisfies

the local Lipschitz condition. If τ is sufficiently small and ε/τα . 1, then

‖FUn − Un‖Lp . εnα, 1 ≤ n ≤M,

where p = 2,∞.

Furthermore,

‖FUn − u(·, tn)‖Lp .
(
τ tα−1

n + h2tαn
)
+ εnα, 1 ≤ n ≤M,

where p = 2,∞.
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Nonuniform grids

tj = T (j/M)r r = 1 reduces to the uniform grid.

Theorem (Yang, Zeng, 2022)

Let Un
j and FU

n
j be the solutions of (51) and (50), respectively, f(z) satisfies

the local Lipschitz condition. If εMα . 1, then

‖FUn − Un‖Lp . εMαtα/r
n . εnα, 1 ≤ n ≤M,

where p = 2,∞.

Furthermore,

‖FUn − u(·, tn)‖Lp .
(
temporal error+ h2tαn

)
+ εnα, 1 ≤ n ≤M.
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Numerical results

Consider the following fractional ODE

CD
α(t)
0,t u(t) = −u(t) + f(u, t), u(0) = u0, t ∈ (0, T ] , (52)

where 0 < α(t) ≤ 1.

Choose the nonlinear term f = u(1− u2) and the initial value u0 = 1.

Compute the reference solutions Un
ref with a smaller step size τ = 10−3.
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Figure: (a) Numerical solutions for α = 0.1, 0.5, 0.9. (b) the errors
between numerical solutions and reference solutions for different
fractional orders α = 0.1, 0.5, 0.9; (c) the difference between theShandong University August 2022



Consider the following time-fractional Allen–Cahn equation





CD

α
0,tu(x, t) = γ

(
ε∆u(x, t)− ε−1F ′(u)

)
, (x, t) ∈ Ω× (0, T ] ,

u(x, 0) = u0(x), x ∈ Ω,
(53)

subject to periodic boundary conditions, where α ∈ (0, 1], Ω ⊂ R
d, x = (x, y)

for d = 2, x = (x, y, z) for d = 3, ε is the thickness of phase interface, γ is

mobility constant, and F is defined by

F (u) =
1

4
(1− u2)2.
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The computational domain Ω = (−1, 1)2 is partitioned uniformly into 128× 128

subdomains, ε = 0.02, and γ = 0.02. The initial condition is taken as

u0 =− tanh
( (

(x− 0.3)2 + y2 − 0.22
)
/ε
)
tanh

( (
(x+ 0.3)2 + y2 − 0.22

)
/ε
)

× tanh
( (
x2 + (y − 0.3)2 − 0.22

)
/ε
)
tanh

( (
x2 + (y + 0.3)2 − 0.22

)
/ε
)
.
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Figure: Numerical solutions of the Allen–Cahn equation (53). Solution
snapshots at t = 1, 10, 50, 100 (from top to bottom) for three fractional
orders α = 0.4, 0.7, 0.9 (from left to right).
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Figure: Numerical solutions of (53) with variable-order
α(t) = 0.4 + sin2(t)/2. Solution snapshots at t = 1, 30, 50 (top: from
left to right) and t = 100, 150, 200 (bottom: from left to right).

Shandong University August 2022



40 60 80 100

t

105

106

107

108

109

1010

M
em

or
y 

(B
yt

es
)

Fast method
Direct method

(a) The active memory requirement.

40 60 80 100

t

103

104

C
P

U
 T

im
e 

(s
)

Fast method
Direct method

(b) The computational time.

Figure: The comparison of the fast method (red stars) and direct method
(blue circles) for solving two-dimensional Allen–Cahn equation (53) with
the time step size τ = 0.01, the spatial step size h = 1/64, and α = 0.9.
We can see that the proposed unified fast method can significantly reduce
the memory and thus use much less time than that of the direct method.
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Three-dimensional time-fractional Allen–Cahn equation (53) subject to the

following initial condition

u0 = tanh

(
1 + 0.2 cos(6θ)−

√
x2 + 2y2 + z2√

2ε

)

,

where θ = tan−1(z/x). The computational domain Ω = (−1.5, 1.5)3 is divided

uniformly into 32× 32× 32 subdomains, ε = 0.05, and γ = 0.05. The time

step size is taken as τ = 0.01.

The initial condition is a star-shaped ball, which becomes smaller as the time t

increases for α = 0.4, 0.7, 0.9. For a fixed time t, the ball becomes smaller as

the fractional order α becomes larger.
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Figure: Numerical solutions of the three-dimensional Allen–Cahn
equation (53). Solution snapshots at t = 1, 10, 50, 100 (from left to
right) for three fractional orders α = 0.4, 0.7, 0.9 (from top to bottom).
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Figure: Snapshots of numerical solutions of the three-dimensional
Allen–Cahn equation (53). Top: α = 0.4, t = 300, 500, 800, 1000 (from
left to right); center: α = 0.7, t = 140, 200, 250, 300 (from left to right);
bottom: α = 0.9, t = 110, 120, 130, 140 (from left to right).
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Consider the following one-dimensional Schrödinger equation





iut(x, t) = −uxx(x, t), for t > 0, x ∈ R,

u(x, 0) = u0(x), for x ∈ R.
(54)

In applications, we are concerned with the solution on the bounded domain

x ∈ Ω, for example, Ω = [−3, 3]. In such a case, (54) is equivalent to a

time-dependent Schrödinger equation with nonreflecting boundary conditions

[?] 




iut(t) = −uxx(t), for t > 0,

u(x, t) = e
π
4
i(k1/2 ∗ ux)(t), at x = −3,

u(x, t) = −e π
4
i(k1/2 ∗ ux)(t), at x = +3,

u(x, 0) = u0(x), for x ∈ [−3, 3],

(55)

where i2 = −1 and u(t) = u(x, t), ux(t) = ux(x, t) = ∂xu(x, t).
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The Crank–Nicolson method is applied to the first equation in (55), the

fractional integral operator in the second or third equation in (55) is discretized

by the fast Algorithm 1, we obtain a semi-discrete method for (55) as follows:

Find Un = U(·, tn) for n ≥ 1 such that






i
Un − Un−1

tn − tn−1
= −U

n
xx + Un−1

xx

2
, for x ∈ (−3, 3),

Un(±3) = ∓e π
4
i
FD

−1/2,nUx(±3),

U0(x) = u0(x), for x ∈ [−3, 3].

(56)

The initial data u(x, 0) = 1√
ξ
eikx−x2/(4ξ). The exact solution of (54) is

u(x, t) =
1√
ξ + it

eik(x−kt)−(x−2kt)2/4(ξ+it), ξ, k ∈ R.
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(a) Real part. (b) Imaginary part.

(c) Absolute values. (d) Point-wise errors.

Figure: Numerical solutions of the Schrödinger equation (54) on the
interval [−3, 3], h = τ = 0.001, ξ = 0.04, k = 2. (a) The real part of the
numerical solution; (b) The imaginary part of the numerical solution; (c)
The absolute value of the numerical solution; (d) The point-wise error
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Figure: (a) The L2 errors of the numerical solution under different time
step size; (b) Comparison of the computational time between the fast
method and the direct method.
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