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e Consider a fractional-order semilinear parabolic problem with & € (0, 1) :

Diu+ Lu+ f(x,t,u) =0 for(z,t) e Qx (0,7]
where Q <« RY, d € {1,2,3}, subjectto u(wz,0) = ug(z) and u = 0 on O
D{u(-,t) := ﬁ Sé (t —s) " 0su(-,s)ds =Caputo fractional derivative

Lu:=3% 1{ Oz (ax(x,t) Op,u) + by (2, 1) 5ka} + ¢(z, t) u =2nd order, elliptic




e Consider a fractional-order semilinear parabolic problem with ov € (O, 1) :
Diu+ Lu+ f(x,t,u) =0 for(z,t) e Q x (0,7]
where Q < RY, d € {1,2,3}, subject to u(z,0) = ug(z) and u = 0 on O
DYu(-,t) = ﬁ S(t) (t —s)™*0su(-,s)ds =Caputo fractional derivative

Lu = 221{—5xk(ak(377 t) Oz,ut) + bi(x, 1) éxku} + ¢(x, t) u =2nd order, elliptic

e For the a priori error analysis, we assume: there exists a unique solution of this
problem in C(Q2 x [0, T):

Olu(-, )| <1+tt| for [ =0,1,2

NOTE: This is a realistic assumption, in contrast to |d'u(-, )| < 1...

Also, our framework applies to less singular solutions...




PART #1 (most of the talk)

Pointwise-in-time a priori error analysis on quasi-graded temporal
meshes

N. Kopteva, Error analysis for time-fractional semilinear parabolic equations using upper and

lower solutions, SIAM J. Numer. Anal., 58 (2020), 2212-2234.

MESSAGES:
+ works for the reaction coefficient of arbitrary sign (in the linear case) + Allen-Cahn case, etc.
+ works on quasi-graded meshes of arbitrary degree of grading
+ the above mesh may be “arbitrarily” refined (any new nodes may be added)
+ predicts that milder (compared to the optimal) grading yields optimal convergence rates in
positive time  + “optimal” grading yields global accuracy
+ prove that computed solutions lie within a certain range (similarly to w)




AIM & SOME LITERATURE FOR THE LINEAR CASE

e Our AIM: estimate, a priori, the pointwise-in-time errors in L., ({2) and Ly (2)

norms on reasonably general temporal meshes: quasi-graded meshes with
arbitrary degree of grading that are allowed to be “arbitrarily” refined...

e Discrete Laplace transform approach: low regularity assumptions on the exact solution, BUT

uniform meshes (frequently convergence in positive time)
[B. Jin, R. Lazarov, Z. Zhou, IMA J. Numer. Anal., 2016], ...
[B. Jin, R. Lazarov, Z. Zhou, CMAME, 2019 — review]

e Graded temporal meshes = global in time convergence:
[H. Brunner, Math. Comp., 1985] — collocation for Volterra integral equations
[W. McLean, K. Mustapha, Numer. Math., 2007] — fractional wave equation
[K. Mustapha, B. Abdallah, K. M. Furati, 2014] — high-order Petrov-Galerkin in time
[M. Stynes, E. O’Riordan, J. L. Gracia, SINUM, 2017] — L1 method

e Discrete Gronwall inequality on general temporal meshes
[H.-L. Liao, D. Li, J. Zhang, SINUM, 2018],
[H.-L. Liao, W. McLean, J. Zhang, SINUM, 2019]....

e Barrier functions on quasi-graded temporal meshes = sharp pointwise-in-time bounds
[N. Kopteva, X. Meng, SINUM, 2020]: L1 and Alikhanov,
[N. Kopteva, SINUM, 2021]: L2 method




SEMILINEAR CASE (SUMMARY)

e Some earlier work: [Q. Du, J. Yang, Z. Zhou, J. Sci. Comput., 2020], [B. Jin, B. Li,
Z.. Zhou, SINUM, 2018], [B. Ji, H.-L. Liao, L. Zhang, Adv. Comput. Math, 2020], [H.-L. Liao,
T. Tang, T. Zhou, , J. Sci. Comput., 2020], ... energy stable methods...

e We employ the method of discrete upper and lower solutions
— They work for arbitrarily large times
— Under conditions A1l and A2, whenever the exact solution lies within a cer-

tain range (e.g., |01, 02|, or it is positive), the method of discrete upper and
lower solutions easily yields a similar property for the computed solutions.

e The pointwise-in-time error estimates: from the linear to the semilinear case

— The main stability property 1s extended to the case of reaction coefficient of

arbitrary sign
(a version for arbitrarily large 7' 1s also discussed)

Al = same pointwise-in-time error bounds as in the linear case....

— Generalizations of the above results for other types of boundary conditions:
nonhomogeneous Dirichlet + periodic + Neumann/Robin/mixed




PLAN FOR PART #1

51 Assumptions Al + A2 on the nonlinearity f (and where they are used):

A1 is the only assumption on f required for the convergence analysis!

Examples: reaction coefficient of arbitrary sign, Allen-Cahn, Fisher, etc.

82 Assumptions on temporal meshes: quasi-graded, of arbitrary degree of grading,

may be “arbitrarily” refined (any new nodes may be added)

33 Stability result for the nonlinear case for the L1 method

sharp + general + relatively simple proof + useful

of type: [N. Kopteva and X. Meng, Error analysis for a fractional-derivative parabolic problem

on quasi-graded meshes using barrier functions, STAM J. Numer. Anal., 58 (2020), 1217-1238]

54 Main convergence result + discussion + numerical results:

+ optimal grading r = (2 — o)/« yields optimal convergence globally
+ milder grading > 2 — « yields optimal convergence rates in positive time, etc.

.1 semi-discretizations in time + finite differences + finite elements + various BC




§1: ASSUMPTIONS ON THE NONLINEARITY f

e Consider a semilinear fractional-order parabolic problem with v € (0, 1) :

Diu+ Lu+ f(x,t,u) =0 for (z,t) € Q x (0,T]

Al. Let f be continuous in s and satisfy f(-,t,s) € Ly(2) for all ¢ > 0 and

s € R, and the one-sided Lipschitz condition with some constant| A > 0 |:

f(ﬂf,t, Sl) o f(mathQ) = _)\(Sl _ 82) v81 = S92, T € Qa t>0

equivalent to (s; — so) (f(x,t,51) — f(2,1,82)) = —A(s1 — $2)? Vs1,82 € R
also equivalentto ¢,f = —\ if f is smooth

IMPORTANT MESSAGE:

A1 is the only assumption on f required for the convergence analysis!




q1:

ASSUMPTIONS ON THE NONLINEARITY f

e Consider a semilinear fractional-order parabolic problem with & € (0, 1) :

Diu+ Lu+ f(x,t,u) =0 for (z,t) € Q x (0,T]

Al. Let f be continuous in s and satisfy f(-,¢,s) € Ly(2) for all ¢ > 0 and

s € R, and the one-sided Lipschitz condition with some constant| A > 0 |:

f(ﬁlf)t’ 81) o f('rat7 82) = _)\(Sl _ 32) v81 = S92, T € Q? t>0




q1:

ASSUMPTIONS ON THE NONLINEARITY f

e Consider a semilinear fractional-order parabolic problem with & € (0, 1) :

Diu+ Lu+ f(x,t,u) =0 for (z,t) € Q x (0,T]

Al. Let f be continuous in s and satisfy f(-,¢,s) € Ly(2) for all ¢ > 0 and

s € R, and the one-sided Lipschitz condition with some constant| A > 0 |:

f(:lj,t7 81) o f($7t782) = _)\(81 _ 82) vSl = S92, T € Qa t>0

e Example 1 (Negative reaction coefficient). The linear f = c¢*(x,t) u — F(x,t), with a possibly

negative diffusion coefficient ¢* > — ), clearly satisfies Al;e.g. Df'u + Lu —u = F(x,1)...

Example 2 (Allen-Cahn equation). The cubic f = u® — u satisfies both A1 and A2 with, e.g.,
—0o1 = 0 = 1. Note that if |ug| < 1, then |u| < 1 V¢, while our results below imply a similar

property for the computed solutions.

Example 3 (Fisher equation). The quadratic f = u® — wu satisfies A2 with, e.g., o1 = 0 and

o9 = 1, but not A1 (which is easily addressed below...)




91: WHAT IF A1 IS SATISFIED LOCALLY?

e Consider a semilinear fractional-order parabolic problem with & € (0, 1) :

Diu+ Lu+ f(x,t,u) =0 for (z,t) € Q x (0,T]

e Approach I  (well known for classical semilinear equations...)

Suppose that o1 < u < 0o V(z,t) € 2 x [0, T] (equivalent to u bounded)

)
f(x,t,o0f) for u <o} <oy

i. Suppose f(z,t,u) =< f(x,t,u) for of <u <o satisfies Al

| f(z,t,03) for u> 05 > o0y

ii. Let u;, be the computed solution using f
= U, =u+ O(M~9) (under assumption Al; see §3+84 below)
iii. If M is sufficiently large = |u), — u| < max{|o} — o1|,|0s — 02|}

= O-ik <ah<0-; = (x7t7ﬂh) :f(xatvah)

Hence, u;, = uy, computed solution using f.

= | up, =u+O(M™9)




91: WHAT IF A1 IS SATISFIED LOCALLY?

e Consider a semilinear fractional-order parabolic problem with & € (0, 1) :

Diu+ Lu+ f(x,t,u) =0 for (z,t) € Q x (0,T]

A2. There exist constants 07y < 0 < 0y : f(-,-,01) < 0and f(-,-,09) = 0.

e Example 3 (Fisher equation). The quadratic f = u? — wu satisfies A2 with, e.g., o1 = 0 and

o9 = 1, but not A1 (which is easily addressed below...)

e Approach II —using A2

see [§8.1 in N. Kopteva, Error analysis for time-fractional semilinear parabolic equations using

upper and lower solutions, STAM J. Numer. Anal., 58 (2020), 2212-2234]

Steps i+ii: as before, only with o] = oy and 0 := 05. Now f(z,t, u) satisfies A1 + A2.

iii. By A2, the unique computed solution | 0 < 1), < 09

see [§2—Discrete upper and lower solutions in the above paper]

Hence, again u;, = uy,, computed solution using f = | up =u+ O(M™9) | O




32: ASSUMPTIONS ON TEMPORAL MESHES

e Our ASSUMPTION on the temporal mesh {t;}2, on [0, T]:

ri=ti = M7, =t =t sy

J

e Graded temporal mesh| {¢; = T'(j/M)"}

e Given a (quasi-)graded temporal mesh | 7, ~ Tt

with some r > 1

see [ §2.4 in Kopteva+Meng, SINUM, 2020 ]

M
j=0

1-1/r

satisfies 7; ~ T t;

1-1/r

i , we are allowed to

add new nodes in an arbitrary manner, but with the first mesh interval un-

changed...

e Note the case

r=1

: we are allowed add new nodes in an arbitrary manner

to a quasi-uniform mesh, but the first mesh interval unchanged




§2: WHY GRADED MESHES?

e We assume: there exists a unique solution of this problem in C'(Q2 x [0, T']):

[Olu(-, )] < 1+t

for [ =0,1,2

NOTE: This is a realistic assumption, in contrast to |0'u(-, t)| < 1;

e Graded meshes in time: | {t; = T'(j/M)"}

M .
=0 with some r > 1

r = (2 — a)/a yields optimal global accuracy

| 7 > 2 — « yields optimal accuracy in positive time

e Uniform meshes: » = 1 yields sub-optimal convergence in positive time...




§3: STABILITY RESULT FOR LINEAR CASE

e STABILITY result [Kopteva+Meng]:

Given an inverse-monotone discrete

fractional-derivative operator J;', associated with a temporal mesh {t; }é\io on

[0, T'] with

T . =1

, and v € R, under the above condition on the mesh:

V=1,

67V < (r/t5)7

= VI <V = Tt;?‘_l 3

VO =0

-

1 ify>0
1+ 1In(t;/T) ify=0

| (T/t5)7 if v <0




§3: STABILITY RESULT FOR LINEAR CASE

e STABILITY result [Kopteva+Meng]: Given an inverse-monotone discrete
fractional-derivative operator J;', associated with a temporal mesh {t; }]j‘i o on

|0, 7] with | 7 := t; |, and v € R, under the above conditions on the mesh:

’

o7V < (/)7 o ! ify >0

= VI <V =757 S 14+ In(t/r) ify=0

Vi=1, V=0 (1/t;)7 ifv<0
\

e | SHARP | consistent with the analogous property for the continuous Dy"...

e | USEFUL | as truncation errors in time are bounded by negative powers of ¢;
=> sharp pointwise-in-time error bounds

e Relatively | SIMPLE proof | using clever BARRIER functions + DMP...

e | GENERAL | this approach was applied to

— 3 discrete fractional-derivative operators: L1 + Alikhanov + L2...

— Quasi-graded temporal meshes with arbitrary degree of grading...




e STABILITY result [Kopteva+Meng]: Given an inverse-monotone discrete
fractional-derivative operator ¢;', associated with a temporal mesh {¢; }ﬁ.‘io on

|0, T| with| 7 :=t; |, and ¥ € R, under the above condition on the mesh:

;

67V < (r/t5)7 . . L ify>0

= VI <V =757 S 14+ In(t/r) ify=0

Vi=1, V'=0 (1/t;)7 if v <0
\

e | SHARP | consistent with the analogous property for the continuous Dy

Dpo(t) = F(t) = min{L, (/001 |
Vt > 0, v(0) =0

~V(t) fort>r

—using v(t) = JEF(t) = {T(a)} 7 { (t — s)* " F(s) ds
e NOTE: the explicit inverse of Dy* is J;* — readily available;

e HOWEVER, for any discrete 9;*, the above result is NON-TRIVIAL




§3: STABILITY RESULT FOR THE NONLINEAR CASE

e STABILITY result [Kopteva+Meng]: Given an inverse-monotone discrete

fractional-derivative operator J;', associated with a temporal mesh {t; }]j‘i o on

|0, 7] with | 7 := t; |, and v € R, under the above condition on the mesh:

)

o7V < (/)7 o ! ify >0

= VI <V =757 S 14+ In(t/r) ify=0

Vi1 V= (1/t;)" ifv <0
\

e New STABILITY result: Given an L1-type discrete fractional-derivative op-

erator d;', associated with a temporal mesh {t;}72, on [0, 7] with| 7 := #;

v € R, under the above condition on the mesh and A7%* < {T'(2 — )} '

, and

(67 = V7| < (7/t)7 | |
= |V <V = tho-‘_l
VJ

\%

1, V=0

1 ify>0
(/t;)7 ifvy <0

Does NOT follow from [Kopteva+Meng] (as A > 0)




§3: STABILITY RESULT FOR THE NONLINEAR CASE

e New STABILITY result: Given an L1-type discrete fractional-derivative op-

erator 07, associated with a temporal mesh {t;}72, on [0, 7] with| 7 := #; |, and

v € R, under the above condition on the mesh and A7%* < {T'(2 — o)} "

(67 = V7| < (7/t;)7" 1 if v >0

= VI <V = Tt;?‘_l
(7/t;)7 ifvy <0

Vi=1, V0=0

Does NOT follow from [Kopteva+Meng] (as A > 0)
e PROOF:

Step 1 [Comparision principle for 6 — A] Let A7 < {T'(2 — )} 7' V5 > 1.
Then V° < BY and (6% — \)V™ < (6% — \)B™ V'm imply V™ < B™ YV m.

(The proof is elementary. { B""} is called an upper barrier or an upper solution.)

Step 2 Construction of a suitable barrier { B} — the non-trivial part!

sothat —B™ < V™ < B™...

HINT: we use a certain linear combination of certain barriers from [Kopteva+Meng]...




§3: STABILITY RESULT FOR THE NONLINEAR CASE

e New STABILITY result: Given an L1-type discrete fractional-derivative operator 3", asso-

ciated with a temporal mesh {¢; }é\io on [0, T] with | 7:=1t; |, and v € R, under the above

condition on the mesh and A\7¢* < {I'(2 —a)} ™"

(67 = VI < (/)7

= |V <V = tho-‘_l

Vi>1, V0=0

1 ify >0
(r/t;)7 ify <0

e Note a straightforward EQUIVALENT version:

(0 = W7 < (/t;)7* -
= WISV .= Tt;-)‘_l
Vi=1, W°%=0

1 ify>0
(7/t;)7 ity <0

PROOF (standard in the context of finite differences; rely on |a| < b < —b < a < b)

—

Apply the above for W7 = +V7 ...

=

Either use the same barrier directly for {7 };

OR employ (6% — \)V7 = (7/t;)7"! subjectto VY = 0= WI < VI < ---

NOTE: in the above, one may, of course, replace W’ by |1V’ | and get another useful version...




§3: STABILITY RESULT FOR THE NONLINEAR CASE

e New STABILITY result: Given an L1-type discrete fractional-derivative operator 3", asso-

ciated with a temporal mesh {¢; }é\io on [0, T] with | 7:=1t; |, and v € R, under the above

condition on the mesh and A\7¢* < {I'(2 —a)} ™"

(7 = VI < (/)7 o L] ify >0
= |VI| <V = 1tf .
Vix=1, VO=0 (r/t;)7 ify <0

e Another possible version

(6 — VI = XV < (/) N R
= |V <V =7t .
viz1, V0=0 (7/t,) ify <0

e PROOF requires very minor changes

Step 1 [Comparision principle for (6% — A\)V7 — \*V7~1] is as straightforward...

Step 2 Similar barrier { B} works...




§4: CONVERGENCE RESULTS

The convergence results in [Kopteva, SINUM, 2020] are presented as follows:

e Section 4 Paradigm for temporal-discretization error analysis:
simplest example Du + f(t,u) = 0

e Section5 + 6 +7 Semi-linear parabolic case

— Semidiscretization in time: Ly(€2) and Lo (€2)

Extends the above, in a simple way, to the equation with spatial derivatives

— Finite differences: Ly ((2)

Employ the discrete maximum principle of the spatial discrete operator...

— Finite elements: Ly(£2) and L (€2) norms

Ritz projection is employed in the analysis...

e Section 8 Nonhom. Dirichlet + Periodic + Neumann + mixed bound. conditions




34: TYPICAL ERROR BOUND

e L1 semidiscretization in time:

00U + LU + f(+,t;,U7)=01inQ, U’ =0 ondQ2 for j=1; U®=uy

e THEOREM: (i) Assuming A1, there exists a unique solution {U™} and

(Mgt ifl<r<2-a,
(- t) = U™ < 4 M09 el S PR S a,

M, T e > 2

for p € {2, 00}

(1) If, additionally, f satisfies A2, and 01 < ug < g9, theno; < U™ < 05 Vm.

e COROLLARY: If |Qju(-,t)|r, @ <1+t*" forl =1,2and ¢ € (0,7], then

max; HU(, tm) — UmHLp(Q) S M~ minar, 2—a = Toptimal =

lu(-tm) = U™, < M—™mMm27ed - fort,, ~ landr # 2 — a

(2 —a)/a

=7r>2—«




84: SOME NUMERICS I

2d Test Problem: £ = —(02 +02, ), Allen-Cahn type nonlinearity f = (u®—u)/c,
Q = (0,7)? for t € [0,1], subject to u(0,¢) = ug = 2(2y — %) sinx siny, graded temporal mesh,

finite differences in space.

Maximum nodal errors at ¢t = 1 and Computational Rates g in M~ or N4

errors and convergence rates in time

errors and convergence rates in space

N =2M M = N?
M=2" M=2° M=2" M=28 N=22 N=2* N=2° N =26
r=1
a=0.3 1.88¢-3 8.98e-4 4.37e-4 2.15e-4 1.23e-2  2.99e-3 7.49¢-4 1.87e-4
1.07 1.04 1.02 2.05 2.00 2.00
a=05  74le-4 335¢-4 1.58¢-4 7.65e-5 8.09¢-3 2.07e-3 5.13e-4 1.28e-4
1.15 1.08 1.05 1.97 2.01 2.00
a=0.7 1.06e-3 4.83e-4 227e-4 1.08e-4  5.87e-3 1.48e-3 3.67e-4 9.14e-5
1.13 1.09 1.06 1.98 2.02 2.01
r=2
a=03 5874 1.7%-4 549-5 1.69e-5 1.15e-2 2.8le-3 7.0de-4 1.75e-4
1.71 1.71 1.70 2.04 2.00 2.00
a=05 330e-4 1.09-4 370e-5 129-5 7.88e-3 2.0le-3 498e-4 1.24e-4
1.60 1.56 1.53 1.97 2.01 2.00
a=07 7.14e-4 2.83e4 1.15e-4 4.75e-5 5.66e-3 1.42e-3 3.49e-4 8.66e-5
1.33 1.30 1.28 1.99 2.02 2.01




84: SOME NUMERICS II

2d Test Problem: £ = —(02 + 02, ), Allen-Cahn type nonlinearity f = (u®—u)/a,
Q = (0,7)2 for ¢ € [0,1], subject to u(0,t) = up = 2(2y — z?) sinz siny, graded temporal mesh,

finite differences in space.

Maximum nodal errors at and Computational Rates ¢ in M~ or N7¢

errors and convergence rates in time

r=22 N=1Mm
e’ 2

errors and conver gence rates n Space
r=2=2M=N?
(@3

M=2° M=2" M=2"Y M=2"" N=2° N=2* N=2° N=2°
a=0.3 1.49e-4  4.79e-5 1.55e-5 4.97e-6 1.96e-2 4.82e-3 1.20e-3 3.0le-4
1.64 1.63 1.64 2.02 2.00 2.00
a=0.5 391e-4 1.43e-4 5.20e-5 1.88e-5 1.24e-2  3.18e-3 7.95e-4 1.98e-4
1.45 1.46 1.47 1.97 2.00 2.01
a=0.7 8.90e-4 3.83e-4 1.63e-4 6.83e-5 1.43e-2 3.63e-3 8.76e-4 2.12e-4
1.22 1.24 1.25 1.98 2.05 2.05
errors and convergence rates in time
’]”:1’ NzﬁlSM ’I°=2_Oé, N=%M
M=215M=216 M=217 M:218 M:210 M=211 M=212 M=213
a=0.3 1.30e-2 1.13e-2 9.77e-3 8.37e-3 9.77e-3 7.47e-3 5.59e-3 4.11e-3
0.20 0.21 0.22 0.39 0.42 0.45
a = 0.5 2.73e-3  1.95e-3 1.39e-3 9.88e-4 2.73e-3 1.64e-3 9.88e-4 5.94e-4
0.49 0.49 0.49 0.73 0.73 0.73
a=0.7 3.15e-4 1.93e-4 1.19e-4 7.33e-5 9.84e-4 5.27e-4 2.82e-4 1.51e-4
0.70 0.70 0.70 0.90 0.90 0.90




CONCLUSIONS = PLAN FOR PART #1

51 Assumptions Al + A2 on the nonlinearity f (and where they are used):

A1 is the only assumption on f required for the convergence analysis!

Examples: reaction coefficient of arbitrary sign, Allen-Cahn, Fisher, etc.

82 Assumptions on temporal meshes: quasi-graded, of arbitrary degree of grading,

may be “arbitrarily” refined (any new nodes may be added)

33 Stability result for the nonlinear case

sharp + general + relatively simple proof + useful

of type: [N. Kopteva and X. Meng, Error analysis for a fractional-derivative parabolic problem

on quasi-graded meshes using barrier functions, STAM J. Numer. Anal., 58 (2020), 1217-1238]

54 Main convergence result + discussion + numerical results:

+ optimal grading r = (2 — o)/« yields optimal convergence globally
+ milder grading > 2 — « yields optimal convergence rates in positive time, etc.

.1 semi-discretizations in time + finite differences + finite elements + various BC




PART #2 (very brief)

Pointwise-in-time a posteriori error control for time-fractional
semilinear parabolic equations

MESSAGES:
+ pointwise-in-time a posteriori error bounds in the Lo (£2) and L., (£2) norms
+ explicit upper barriers on the residual are given that guarantee that the error remains within a
prescribed tolerance and within certain desirable pointwise-in-time error profiles
+ applicability to wide classes of time discretizations and arbitrarily large times

AIM TO GENERALIZE TO THE SEMILINEAR CASE:
N. Kopteva, Pointwise-in-time a posteriori error control for time-fractional parabolic equations,

Applied Mathematics Letters, 123 (2022), 107515.




e Our AIM: pointwise-in-time a posteriori error estimates in L5 ({2) and L (€2)

norms on general temporal meshes for reasonably general discretizations

e FHirst, recall

[INK, Pointwise-in-time a posteriori error control for time-fractional parabolic equations, Ap-

plied Mathematics Letters, 123 (2022), 1075135]

for a linear fractional-order parabolic problem with a € (0, 1) :

Diu+ Lu = f(x,t) for (z,t) € Q x (0,T]
where Q < RY, d € {1,2,3}, subject to u(z,0) = ug(z) and u = 0 on O

D{u(-,t) = ﬁ Sé(t — 5)"*d,u(-, s) ds = J}~“0,u =Caputo fractional derivative

L is a second-order elliptic operator




LINEAR CASE RESULTS I

e A posteriori error estimates in the /,({2) norm:
Crucial LEMMA:

<D?U('7t)7 U(at)> = (D?HU(,t)H)HU(,t)H
THEOREM: error estimate via the residual R},
AeR:(Lv, vy = AP = [[(un —w)(, )| L) < (DF + )Rl )] @)

Residual BARRIERS to guarantee a desirable error profile...
= no need to store past values of the sampled residual...

e A posteriori error estimates in the . (¢2) norm (using max principle)
react.coefficient > A e R = |(up —w)(-,8)| L) < (Df + N7 Ru(-, ).

e Application for the L1 method: (for other methods, see [NK + S.Franz, Sep-20227])
Adaptive algorithm + Numerics
Optimal orders of convergence: globally / in positive time
Competitive in comparison with a-priori-chosen graded meshes

e Variable-coefficient multiterm time-fractional case (jointly with M. Stynes, 2022)




LINEAR CASE II : RESIDUAL BARRIERS

Using the comparison principle, one can derive residual barriers that guarantee
certain desirable pointwise-in-time error profiles for |||z, o) with p € {2, oo}.

o COROLLARY: If |Ru(-,t)|z,) < (Dff + N)E(t) Vt > 0 for some barrier
function £(t) = 0Vt > 0, then |(up, — ) (-, t)| 1, < E(t) VI = 0.

e COROLLARY: Suppose that A > 0. Then for the error e = u;, — u one has

IRu( )|y < TOL-Ro(t) = [e(,0)l1,@) < TOL.

IRu( )y S TOL-Ra(t) = el 1)@ < TOL -7,

Ro(t) :={T(1 — )} 1t + A, Ri(t) :={T(1 — )}t o(7/t) + NEL(1),

E1(t) := max{r, t}o 1,
Q(S) "= S_B[l o ((1 o S)+)B] > S_B min{ﬁsa 1}7 5 =1
where 7 > 0 is an arbitrary parameter (and t*~ can be replaced by & (t)).

ADVANTAGE: no need to store past values of the sampled residual...




SEMILINEAR CASE

e Consider Dfu + Lu + g(x,t,u) = f(x,t) for (z,t) € 2 x (0, T], assuming that
g is sufficiently smooth and, with some u € R, satisfies

Ovg(x,t,v) = V(x,t,v) e Q x (0, T] x R.
Then, 1n view of the standard linearization
gz, t,up)—gl(z, t,u) = é(x,t) (up—u), ¢:= Jl Ovg(z,t, u+s(up—u))ds = p,
the error satisfies (Dy* + L + ¢)(up —u) = Ry, v(z/ith the updated definition of the
residual Ry, := Djuy, + Luy + g(x, t,up) — f(x,t).

e COROLLARY: Assume that (Lv,v) > \*|v|* for some \* € R (instead of
(Lv,v) = Mv|?), or, similarly, ¢ = \* (instead of ¢ = \). Then one gets the

above error bounds with | A := \* 4+ p |.

e In PROGRESS: A posteriori choice of A = \,(¢), based on the a posteriori
error control in the L, (£2) norm...
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FINAL

Thank you!




