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Review

Consider the nonlinear fractional initial-value problem (FIVP)

CDα0 y(t) = g(t, y(t)) for t ∈ (0, T ], with y(0) = y0, (1.1)

where CDα0 is the Caputo fractional derivative of order α ∈ (0, 1), the nonlinear function
g is assumed to be continuous and satisfies a Lipschitz condition in its second variable
on a suitable set D:

|g(t, y)− g(t, ŷ)| ≤ L̂|y − ŷ| for t ∈ [0, T ]. (1.2)

• Direct method: directly approximate the fractional derivative operator in (1.1);

• Indirect method: transform (1.1) into the corresponding integral form, and then
use the numerical methods to solve the integral equation.
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Direct method

• L1 type method

Keith Oldham & Jerome Spanier (Book, 1974);
Zhizhong Sun, & Xiaonan Wu (Appl. Numer. Math., 2006);
Yumin Lin & Chuanju Xu (J. Comput. Phys., 2007);
Martin Stynes et al. (SIAM J. Numer. Anal., 2017);
Honglin Liao et al. (SIAM J. Numer. Anal., 2018);
...

• L2 type method

Guanghua Gao et al. (J. Comput. Phys., 2014);
Anatoly A. Alikhanov (J. Comput. Phys., 2015);
Anatoly A. Alikhanov, Chengming Huang (Appl. Math. Comput., 2021);
...

• Convolution quadrature

Christian Lubich (SIAM J. Math. Anal., 1986);
Bangti Jin et al. (SIAM J. Sci. Comput., 2017);
...

• Spectral method
...

• Discontinuous Galerkin method
...
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Indirect method

FIVP (1.1) is equivalent to the weakly singular Volterra integral equation

y(t) = y0 +
1

Γ(α)

∫ t

s=0
(t− s)α−1g(s, y(s)) ds. (1.3)

• Predictor-corrector method

Kai Diethelm et al., (Numer. Algorithms, 2004);
Weihua Deng (J. Comput. Appl. Math., 2007);
Changpin Li et al., (J. Comput. Phys., 2016);
Thien Binh Nguyen & Bongsoo Jang (Fract. Calc. Appl. Anal., 2017);
...

• Block-by-block method

Junying Cao & Chuanju Xu (J. Comput. Phys., 2013);
...

• Corrected methods

Wanrong Cao et al., (SIAM J. Sci. Comput., 2016);
...
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Graded meshes

• A complication is that typical solutions of this class of problem lack regularity at
the initial time. The maximum errors of most schemes are O(N−α) (see Zhou
& Stynes (East Asian J. Appl. Math., 2022)):

L1 method;
L1 method;
L2-1σ method;
...

• To address this difficulty in their numerical solution, it is by now well known
that nonuniform meshes — specifically, graded meshes — are an efficient way of
handling the initial weak singularity appearing in solutions;

Martin Stynes et al. (SIAM J. Numer. Anal., 2017);
Jinye Shen et al. (Submitted, 2022);
Hu Chen & Martin Stynes (J. Sci. Comput., 2019);
...

• Divide the interval [0, T ] into N sub-intervals by the mesh points tn := T (n/N)r

for 0 ≤ n ≤ N . Here r ≥ 1 is a user-chosen mesh-grading parameter.
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The solution y of (1.1)

• Existence of a solution of (1.1) is studied in [Kai Diethelm, Book, 2010, The-
orem 6.1].

• Uniqueness of this solution is guaranteed by [Kai Diethelm, Book, 2010, The-
orem 6.5].

Furthermore, from Kai Diethelm et al., (Numer. Algorithms, 2004, Theorem 2.1) one
sees that y has the structure described in the following lemma.

Lemma 2.1
(Structure of solution y) Assume that the set D where the Lipschitz condition holds
includes {(t, y(t)) : 0 ≤ t ≤ T}, where y ∈ C[0, T ] is the solution of (1.1).

(a) Suppose that g ∈ C2(D). Then there exist a function ψ ∈ C1[0, T ] and
c1, c2, . . . , cv̂ ∈ R such that

y(t) = ψ(t) +

v̂∑
v=1

cvt
vα where v̂ := d1/αe − 1.

(b) Suppose that g ∈ C3(D). Then there exist a function ψ ∈ C2[0, T ] and
c1, c2, . . . , cv̂ , d1, d2, . . . , dṽ ∈ R such that

y(t) = ψ(t) +
v̂∑
v=1

cvt
vα

+
ṽ∑
v=1

dvt
1+vα with v̂ := d2/αe − 1, ṽ := d1/αe − 1.

Yongtao Zhou 12th August 2022 Fast predictor-corrector methods 7 / 40



1 Introduction 2 Second-order predictor-corrector method 3 Third-order predictor-corrector method 4 Concluding remarks

The solution y of (1.1)

• y can be written as a sum of singular and regular parts. In particular y(t) ∼
y0 + c1tα near t = 0, so y has a weak singularity at t = 0.

• From Lemma 2.1 it follows that

y ∈ C[0, T ]∩C2(0, T ] with |y(k)(t)| ≤ C(1+ tα−k) for k = 0, 1, 2, t ∈ (0, T ].
(2.1)

• For z := CDα0 y one has

z ∈ C[0, T ]∩C2(0, T ] with |z(k)(t)| ≤ C(1+ tα−k) for k = 0, 1, 2, t ∈ (0, T ].
(2.2)
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Predictor-corrector method (from Kai Diethelm et al.,
(Numer. Algorithms, 2004))

At each mesh point t = tn+1, one can rewrite (1.3) as

y(tn+1) = y0 +
1

Γ(α)

n−1∑
j=0

∫ tj+1

s=tj

(tn+1 − s)
α−1

g(s, y(s)) ds

+
1

Γ(α)

∫ tn+1

s=tn

(tn+1 − s)
α−1

g(s, y(s)) ds. (2.3)

• The prediction stage: on each interval Ij = [tj , tj+1], 0 ≤ j ≤ n, replace
g(s, y(s)) by gj = g(tj , yj);

y
P
n+1 = y0 +

1

Γ(α)

n∑
j=0

bj,n+1gj . (2.4)

• The correction stage: on each interval Ij = [tj , tj+1], 0 ≤ j ≤ n, replace
g(s, y(s)) by the linear interpolation of gj and gj+1;

yn+1 = y0 +
1

Γ(α)

 n∑
j=0

aj,n+1gj + an+1,n+1g(tn+1, y
P
n+1)

 . (2.5)

• Different approximations of the history part are used in the prediction and correc-
tion stages; Too expensive; Order of convergence N−min{2α,1+α} (see Yanzhi
Liu et al. Numer. Algorithms, 2018, Theorem 1.5);
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New predictor-corrector method
At each mesh point t = tn+1, one can rewrite (1.3) as

y(tn+1) = y0 +
1

Γ(α)

n−1∑
j=0

∫ tj+1

s=tj

(tn+1 − s)
α−1

g(s, y(s)) ds

+
1

Γ(α)

∫ tn+1

s=tn

(tn+1 − s)
α−1

g(s, y(s)) ds. (2.6)

• The prediction stage: for n = 0, replace gy := g(s, y(s)) by g0; for n ≥ 1, on
each interval Ij for j = 0, 1, . . . , n − 1, replace gy by the linear interpolation of
gj and gj+1, but on the final interval In, replace gy by the linear function that
interpolates to gn−1 and gn;

y
P
n+1 = y0 +

1

Γ(α)

n−1∑
j=0

(
a
n+1
j,0 gj + a

n+1
j,1 gj+1

)
+

1

Γ(α)

(
b
n+1
n,0 gn−1 + b

n+1
n,1 gn

)
. (2.7)

• The correction stage: on each interval Ij for j = 0, 1, . . . , n, replace gy by the
linear interpolation of gj and gj+1;

yn+1 = y0 +
1

Γ(α)

n−1∑
j=0

(
a
n+1
j,0 gj +a

n+1
j,1 gj+1

)
+

1

Γ(α)

[
a
n+1
n,0 gn + a

n+1
n,1 g(tn+1, y

P
n+1)

]
.

(2.8)

• Introduced by Nguyen & Jang (Fract. Calc. Appl. Anal., 2017) on uniform
meshes, but we implement it on our graded mesh.
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Error analysis of the second-order predictor-corrector
method

For this error analysis, we give first some preparatory results.

Lemma 2.2
[Alfio Quarteroni and Alberto Valli, Book, 1994, Lemma 1.4.2] (Classical discrete Gron-

wall inequality) Let {kj}Nj=0 and {qj}Nj=0 be nonnegative sequences. Let d0 ≥ 0.

Assume that the sequence {φn}Nn=0 satisfies
φ0 ≤ d0,

φn ≤ d0 +
n−1∑
j=0

qj +
n−1∑
j=0

kjφj for 1 ≤ n ≤ N.

Then one has

φn ≤

d0 +

n−1∑
j=0

qj

 exp

n−1∑
j=0

kj

 for 1 ≤ n ≤ N.
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Error analysis of the second-order predictor-corrector
method

Lemma 2.3

Let w ∈ C[0, T ] ∩ C2(0, T ]. Assume that |w(k)(t)| ≤ C(1 + tα−k) for k = 0, 1, 2 and
all t ∈ (0, T ]. For n = 0, 1, . . . , N − 1, set

I
n+1
1 =

∣∣∣∣∣∣
n∑
j=0

∫ tj+1

s=tj

(tn+1 − s)
α−1

(w − Π1,jw)(s) ds

∣∣∣∣∣∣ ,

I
n+1
2 =

∣∣∣∣∣∣
n−1∑
j=0

∫ tj+1

s=tj

(tn+1 − s)
α−1

(w − Π1,jw)(s) ds +

∫ tn+1

s=tn

(tn+1 − s)
α−1

(w − Π1,n−1w)(s) ds

∣∣∣∣∣∣ .
Then

I
n+1
1 + I

n+1
2 ≤ C


N−2rα for rα < 1,

N−2 lnN for rα = 1,

N−2 for rα > 1.

0 ≤ n ≤ N − 1.
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Error analysis of the second-order predictor-corrector
method

We can now prove an error bound for our predictor-corrector solution.

Theorem 2.4
Recall that y(t) is the solution of (2.6) and {yj}Nj=0 is the solution of the second-order

predictor-corrector method (2.7) and (2.8). One has

|y(tj)− yj | ≤ C


N−2rα for rα < 1,

N−2 lnN for rα = 1,

N−2 for rα > 1.

1 ≤ j ≤ N.

Remark 2.1
Our predictor-corrector method and its error analysis can easily be generalised to the
FIVP (1.1) with α ∈ (1, 2), with two initial conditions specifying y(0) and y′(0). In
this setting the error for 1 ≤ j ≤ N satisfies the bound

|y(tj)− yj | ≤ C
{
N−2 lnN for rα = 1,

N−2 otherwise,

on our graded mesh.
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Fast evaluation of the second-order predictor-corrector
method

• To reduce the computational cost and storage requirements of our predictor-
corrector method (2.7) and (2.8), we use the sum-of-exponentials (SOE) tech-
nique of [Shidong Jiang et al. Commun. Comput. Phys., 2017].

• For the history part, we replace the kernel tα−1 by its SOE approximation. Then

ȳPn+1 = y0 +
1

Γ(α)

(Nexp∑
i=1

$iP
n
i + bn+1

n,0 ḡn−1 + bn+1
n,1 ḡn

)
, (2.9)

ȳn+1 = y0 +
1

Γ(α)

(Nexp∑
i=1

$iP
n
i + an+1

n,0 ḡn + an+1
n,1 g(tn+1, ȳ

P
n+1)

)
. (2.10)

where Pni can be get by using a recursive relation

Pni = e−siτn+1Pn−1
i +An+1

i,0 ḡn−1 +An+1
i,1 ḡn for 1 ≤ i ≤ Nexp, 1 ≤ n ≤ N − 1.
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Fast evaluation of the second-order predictor-corrector
method

Theorem 2.5

Recall that y(t) is the solution of (2.6) and {ȳj}Nj=0 is the solution of the fast second-

order predictor-corrector method (2.9) and (2.10). Then

|y(tj)− ȳj | ≤ Cε+ C


N−2rα for rα < 1,

N−2 lnN for rα = 1,

N−2 for rα > 1.

1 ≤ j ≤ N.
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An FIVP numerical example

Example 2.6

Consider the FIVP CDα0 y(t) = y(t) − t3 + 6t3−α

Γ(4−α)
for t ∈ (0, 1], subject to y(0) = 1.

Its exact solution is y(t) = Eα(tα) + t3, where

Eα(s) =
∞∑
k=0

sk

Γ(αk + 1)

is the standard Mittag-Leffler function. Thus,

CDα0 y(t) =
6t3−α

Γ(4− α)
+ 1 +

tα

Γ(α+ 1)
+

(tα)2

Γ(2α+ 1)
+ . . . ,

that is, CDα0 y(t) ∼ 1 + tα/Γ(α+ 1) near t = 0.
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An FIVP numerical example

Table: Maximum nodal errors, convergence orders and CPU times of PCM, fPCM and PCLiu for Example 2.6
with α = 0.4.

PCM fPCM PCLiu

N r errN pN CPU err
f
N

pN CPU errLiuN pN CPU

512 1 1.6747e–3 – 0.77 1.6747e–3 – 0.11 2.5478e–3 – 1.14
1024 8.8251e–4 0.9242 2.79 8.8251e–4 0.9242 0.21 9.6958e–4 1.3938 4.23
2048 4.7328e–4 0.8989 11.10 4.7328e–4 0.8989 0.39 4.7328e–4 1.0347 16.83
4096 2.5752e–4 0.8781 47.14 2.5752e–4 0.8781 0.80 2.5752e–4 0.8781 67.16
EOC 0.8 0.8 0.8

512 1+α
2α

2.8666e–5 – 0.72 2.8666e–5 – 0.14 3.3740e–3 – 1.08
1024 1.0588e–5 1.4369 2.75 1.0588e–5 1.4369 0.26 1.2830e–3 1.3950 4.21
2048 3.9484e–6 1.4231 10.98 3.9484e–6 1.4231 0.54 4.8719e–4 1.3969 16.69
4096 1.4814e–6 1.4143 43.83 1.4814e–6 1.4143 1.12 1.8485e–4 1.3981 67.29
EOC 1.4 1.4 1.4

512 2
2α

3.3281e–5 – 0.73 3.3240e–5 – 0.17 5.0311e–3 – 1.08
1024 9.1429e–6 1.8640 2.77 9.1102e–6 1.8674 0.33 1.9151e–3 1.3934 4.22
2048 2.4145e–6 1.9209 10.91 2.3823e–6 1.9352 0.68 7.2759e–4 1.3962 16.85
4096 6.2386e–7 1.9525 43.55 5.3970e–7 2.1421 1.45 2.7613e–4 1.3978 67.13
EOC 2 2 1.4

512 2.5
2α

4.8397e–5 – 0.71 4.8377e–5 – 0.19 6.5953e–3 – 1.10
1024 1.3551e–5 1.8366 2.77 1.3751e–5 1.8148 0.39 2.5126e–3 1.3923 4.22
2048 3.6150e–6 1.9063 10.97 2.6800e–6 2.3592 0.80 9.5493e–4 1.3957 16.87
4096 9.3930e–7 1.9443 43.74 6.8790e–7 1.9619 1.69 3.6247e–4 1.3975 66.89
EOC 2 2 1.4
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Second-order predictor-corrector method for a nonlinear
time-fractional Benjamin-Bona-Mahony-Burgers equation

Consider the following nonlinear time-fractional Benjamin-Bona-Mahony-Burgers (BBMB)
initial-boundary value problem:


CDα0 (u− uxx) + γ uux − λuxx = f(x, t, u) for (x, t) ∈ Ω× (0, T ],

u(x, 0) = ϕ(x) for x ∈ Ω̄

u(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T ],

(2.11)

where λ (≥ 0) and γ are constants, f satisfies the Lipschitz condition

|f(x, t, u)− f(x, t, v)| ≤ L|u− v| for L > 0, u, v ∈ R, (x, t) ∈ Ω̄× [0, T ]. (2.12)

We assume that (2.11) has a unique solution which satisfies the following bounds for
(x, t) ∈ Ω̄× (0, T ]:

∣∣∣∣∣ ∂
lu

∂xl
(x, t)

∣∣∣∣∣ ≤ C for l = 3, 4; (2.13a)

u(·, t) ∈ C[0, T ] ∩ C2
(0, T ],

∣∣∣∣∣ ∂
l+ku

∂xl∂tk
(x, t)

∣∣∣∣∣ ≤ C(1 + t
α−k

)for l = 0, 1, 2, k = 0, 1, 2. (2.13b)
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Remarks

• For notational simplicity we assume that Ω = (xL, xR) ⊂ R1; our method and
its analysis can be extended without difficulty to rectangular domains Ω ⊂ Rd
with d > 1 whose sides are parallel to the coordinate planes.

• The BBMB equation is a mathematical model of the propagation of small amp-
litude long waves in certain nonlinear dispersive media system that improves the
Korteweg-de Vries (KdV) equation.

• For efficient numerical methods for BBMB solution, see [Benjamin et al., Philos.
Trans. Roy. Soc. London Ser. A, 1972; Dehghan Mehdi et al., Comput. Math.
Appl., 2014; Qifeng Zhang and Lingling Liu, J. Sci. Comput., 2021] and their
references.
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Useful notations

• BBMB equation can be rewritten as the following integro-differential equation:

u(x, t)− uxx(x, t) = G(x, t) +
1

Γ(α)

∫ t

s=0
(t− s)α−1F (x, s, u) ds

for (x, t) ∈ (xL, xR)× (0, T ], (2.14)

where
G(x, t) := u(x, 0)− uxx(x, 0) = ϕ(x)− (ϕxx)(x),

F (x, t, u) := λuxx(x, t)− γ (uux)(x, t) + f(x, t, u(x, t)).

• Introduce the following notations:

h = (xR − xL)/M, xi = xL + ih for 0 ≤ i ≤M,

δxvi =
vi − vi−1

h
, ∆xvi =

vi+1 − vi−1

2h
,

δ2
xvi =

vi+1 − 2vi + vi−1

h2
, J(vi, wi) = vi∆xwi.
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Second-order predictor-corrector method

Predictor-corrector method for (2.11):



(uP )n+1
i − δ2

x(uP )n+1
i = G(xi, tn+1) +

1

Γ(α)

[
n−1∑
j=0

(
an+1
j,0 F ji + an+1

j,1 F j+1
i

)
+bn+1

n,0 Fn−1
i + bn+1

n,1 Fni

]
,

un+1
i − δ2

xu
n+1
i = G(xi, tn+1) +

1

Γ(α)

[
n−1∑
j=0

(
an+1
j,0 F ji + an+1

j,1 F j+1
i

)
+an+1

n,0 Fni + an+1
n,1 (FP )n+1

i

]
,

u0
i = ϕ(xi) for 0 ≤ i ≤M, uj0 = ujM = 0 for 0 ≤ j ≤ N,

(2.15)
and

F ji := λ δ2
xu
j
i − γ J

(
uji , u

j
i

)
+ f(xi, tj , u

j
i ) for 1 ≤ j ≤ n,(

FP
)n+1

i
:= λ δ2

x(uP )n+1
i − γ J

(
(uP )n+1

i , (uP )n+1
i

)
+ f

(
xi, tn+1, (u

P )n+1
i

)
.
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Fast second-order predictor-corrector method

Fast predictor-corrector method for (2.11):



(ūP )n+1
i − δ2

x(ūP )n+1
i = G(xi, tn+1) +

1

Γ(α)

(
Nexp∑
i=1

$iQ
n
i + bn+1

n,0 F̄n−1
i + bn+1

n,1 F̄ni

)
,

ūn+1
i − δ2

xū
n+1
i = G(xi, tn+1) +

1

Γ(α)

(
Nexp∑
i=1

$iQ
n
i + an+1

n,0 F̄ni + an+1
n,1 (F̄P )n+1

i

)
,

Q0
i = 0, Qni = e−siτn+1Qn−1

i +An+1
i,0 F̄n−1

i +An+1
i,1 F̄ni

for 1 ≤ i ≤ Nexp, 1 ≤ n ≤ N − 1,

ū0
i = ϕ(xi) for 0 ≤ i ≤M, ūj0 = ūjM = 0 for 0 ≤ j ≤ N,

(2.16)
where

F̄ ji := λ δ2
xū
j
i − γ J

(
ūji , ū

j
i

)
+ f(xi, tj , ū

j
i ) for 1 ≤ j ≤ n,(

F̄P
)n+1

i
:= λ δ2

x(ūP )n+1
i − γ J

(
(ūP )n+1

i , (ūP )n+1
i

)
+ f

(
xi, tn+1, (ū

P )n+1
i

)
.
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Error analysis of the predictor-corrector method

Lemma 2.7
Let the sequences

{
kθ,j

}N
j=0

for θ = 1, 2, . . . , 6 satisfy kθ,j ≥ 0 for all θ and j. Let d0 ≥ 0. Assume that

the sequences {φn}Nn=0 and
{
φPn

}N
n=0

satisfy



0 ≤ φ0 ≤ d0,

0 ≤ φPn+1 ≤ d0 +
n∑
j=0

(
k1,jφj + k2,jφ

2
j

)
for 0 ≤ n ≤ N − 1,

0 ≤ φn+1 ≤ d0 +
n∑
j=0

(
k3,jφj + k4,jφ

2
j

)
+ k5,n+1φ

P
n+1 + k6,n+1(φPn+1)2

for 0 ≤ n ≤ N − 1.

(2.17)

For n = 0, 1, . . . , N − 1, define

C
n
0 := max

{
1 + k3,0 + k4,0d0 + k5,1(1 + k1,0 + k2,0d0) + k6,1d0(1 + k1,0 + k2,0d0)

2
,

(
1 + k5,n+1 + k6,n+1

)
exp

[ n∑
j=0

(
k3,j + k4,j

)
+
(
k5,n+1 + k6,n+1

) n∑
j=0

(
k1,j + k2,j

)]}
,

Ĉ
n
0 := 1 +

(
max

0≤i≤n−1
C
i
0

) n∑
j=0

(
k1,j + k2,j

)
.

Assume that Cn0 d0 ≤ 1 and Ĉn0 d0 ≤ 1 for 0 ≤ n ≤ N − 1. Then one has

φn+1 ≤ C
n
0 d0 for 0 ≤ n ≤ N − 1. (2.18)
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Error analysis of the predictor-corrector method

Theorem 2.8
Recall that u and {uni } are the solutions of (2.11) and (2.15), respectively. Assume
that (2.12) and (2.13) hold true. Then for all sufficiently large N and all sufficiently
small h ∥∥∥u(·, tj)− u

j
∥∥∥
H1
≤ Ch2

+ C


N−2rα for rα < 1,

N−2 lnN for rα = 1,

N−2 for rα > 1.

1 ≤ j ≤ N.

Theorem 2.9
Recall that u and {ūni } are the solutions of (2.11) and (2.16), respectively. Assume
that (2.12) and (2.13) hold true. Then for all sufficiently large N and all sufficiently
small h

∥∥∥u(·, tj)− ū
j
∥∥∥
H1
≤ Cε + Ch

2
+ C


N−2rα for rα < 1,

N−2 lnN for rα = 1,

N−2 for rα > 1.

1 ≤ j ≤ N.

Remark:

〈v, w〉 = h

M−1∑
i=1

viwi, ‖v‖ =
√
〈v, v〉, |v|1 =

√
〈δxv, δxv〉, ‖v‖H1 =

√
‖v‖2 + |v|21.
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Numerical example

Example 2.10

Consider the following nonlinear time-fractional BBMB equation

CDα0 (u− uxx) + uux − uxx − u(1− u) = f(x, t) for x = (x1, x2) ∈ Ω, t ∈ (0, 1],

where Ω = (0, π)× (0, π); the function f and the initial-boundary value conditions are
determined by the analytical solution u(x1, x2, t) = 1

2
(tα + t2α)(sinx1)(sinx2), which

has the weakly singular behaviour assumed in (2.13). One can check that

CDα0 (u− uxx)(x, t) =
3

2

[
Γ(α+ 1) +

2αΓ(2α)

Γ(α+ 1)
tα
]

(sinx1)(sinx2);

that is, CDα0 (u− uxx)(x, t) behaves like C(1 + tα) near t = 0 for each fixed x.
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Numerical example

Table: Global errors, convergence orders and CPU times of PCM, fPCM and PCLiu for Example 2.10 with
α = 0.4 and M = N .

PCM fPCM PCLiu

N r E(M,N) pt CPU E(M,N)f pt CPU E(M,N)Liu pt CPU
12 1 2.4709e–2 – 0.04 2.4709e–2 – 0.04 1.8042e–2 – 0.04
24 1.3372e–2 0.8859 0.45 1.3372e–2 0.8859 0.39 6.0026e–3 1.5877 0.45
48 7.0795e–3 0.9175 25.72 7.0795e–3 0.9175 25.33 5.2572e–3 0.1913 25.95
96 3.7852e–3 0.9033 1351.18 3.7852e–3 0.9033 1384.25 3.7096e–3 0.5030 1391.36
EOC 0.8 0.8 0.8

12 1+α
2α

9.8060e–3 – 0.03 9.8057e–3 – 0.03 2.6408e–2 – 0.03
24 2.6098e–3 1.9097 0.41 2.6098e–3 1.9097 0.40 8.0697e–3 1.7104 0.40
48 8.3609e–4 1.6422 22.58 8.3609e–4 1.6422 22.38 2.5415e–3 1.6668 22.13
96 3.2204e–4 1.3764 1376.02 3.2204e–4 1.3764 1345.20 8.2799e–4 1.6180 1385.82
EOC 1.4 1.4 1.4

12 2
2α

8.1472e–3 – 0.02 8.1469e–3 – 0.03 3.6417e–2 – 0.02
24 2.3802e–3 1.7752 0.41 2.3798e–3 1.7754 0.40 1.1454e–2 1.6687 0.40
48 6.3484e–4 1.9066 22.15 6.3441e–4 1.9074 21.75 3.6840e–3 1.6365 21.59
96 1.6359e–4 1.9564 1282.64 1.6313e–4 1.9594 1272.54 1.2202e–3 1.5942 1351.20
EOC 2 2 1.4

12 2.5
2α

5.8548e–3 – 0.03 5.8545e–3 – 0.03 4.5929e–2 – 0.03
24 2.0454e–3 1.5172 0.42 2.0451e–3 1.5174 0.40 1.4753e–2 1.6384 0.40
48 5.8051e–4 1.8170 22.61 5.8008e–4 1.8178 22.28 4.7998e–3 1.6199 22.31
96 1.5361e–4 1.9180 1388.66 1.5316e–4 1.9212 1381.92 1.6015e–3 1.5835 1395.45
EOC 2 2 1.4
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Numerical example

Table: Global errors, convergence orders and CPU times of PCM, fPCM and PCLiu for Example 2.10 with
α = 0.8, r = 2/(2α) and N = 10000.

PCM fPCM PCLiu

M E(M,N) px CPU E(M,N)f px CPU E(M,N)Liu px CPU
6 9.0018e–2 – 101.41 9.0017e–2 – 5.65 9.0018e–2 – 159.01
8 2.4275e–2 1.8907 114.83 2.4274e–2 1.8908 12.00 2.4275e–2 1.8907 178.08
16 6.3393e–3 1.9371 177.68 6.3380e–3 1.9373 47.99 6.3393e–3 1.9371 259.29
32 1.6196e–3 1.9686 788.40 1.6183e–3 1.9695 548.89 1.6197e–3 1.9686 862.69
EOC 2 2 2
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Third-order predictor-corrector method

• The proposed method is analyzed under the following regularity assumptions on
the solution:

y ∈ C[0, T ]∩C3(0, T ] with |y(k)(t)| ≤ C(1+tα−k) for k = 0, 1, 2, 3, t ∈ (0, T ].
(3.1)

• Then, z := CDα0 y satisfies that

z ∈ C[0, T ]∩C3(0, T ], |z(k)(t)| ≤ C(1 + tα−k) for k = 0, 1, 2, 3, t ∈ (0, T ].
(3.2)

Yongtao Zhou 12th August 2022 Fast predictor-corrector methods 28 / 40



1 Introduction 2 Second-order predictor-corrector method 3 Third-order predictor-corrector method 4 Concluding remarks

Third-order predictor-corrector method
At each mesh point t = tn+1, one can rewrite (1.3) as

y(tn+1) = y0 +
1

Γ(α)

n−1∑
j=0

∫ tj+1

s=tj

(tn+1 − s)
α−1

g(s, y(s)) ds

+
1

Γ(α)

∫ tn+1

s=tn

(tn+1 − s)
α−1

g(s, y(s)) ds. (3.3)

The prediction stage:
• When n = 0, we use gy(t0) to approximate gy(t) on the interval [t0, t1];
• When n = 1, we use Π1,0gy(t) to approximate gy(t) on the intervals [t0, t1] and

[t1, t2];
• When n ≥ 2, we use Π1,0gy(t) to approximate gy(t) on the first small in-

terval [t0, t1], Π2,jgy(t) to approximate fy(t) on each interval [tj , tj+1] (j =
1, 2, . . . , n− 1) and Π2,n−1gy(t) to approximate gy(t) on the last small interval
[tn, tn+1].

y
P
n+1 = y0 +

1

Γ(α)

(
n∑
j=0

d
n+1
j gj + c

n+1
n,−1gn−2 + c

n+1
n,0 gn−1 + c

n+1
n,1 gn

)
. (3.4)

The correction stage: we use Π1,0gy(t) to approximate gy(t) on the first small interval
[t0, t1] and Π2,jgy(t) to approximate gy(t) on the intervals [tj , tj+1] (j = 1, 2, . . . , n).

yn+1 = y0 +
1

Γ(α)

(
n∑
j=0

d
n+1
j gj + b

n+1
n,−1gn−1 + b

n+1
n,0 gn + b

n+1
n,1 g

P
n+1

)
. (3.5)
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Error analysis of the third-order predictor-corrector method

Lemma 3.1

Let w ∈ C[0, T ]∩C3(0, T ]. Suppose that |w(k)(t)| ≤ C(1+tα−k) for k = 0, 1, 2, 3, t ∈
(0, T ]. For n ≥ 0, we define

I
n+1
3 =

∣∣∣∣∣∣
∫ t1
s=t0

(tn+1 − s)
α−1

(w − Π1,0w)(s) ds +
n∑
j=1

∫ tj+1

s=tj

(tn+1 − s)
α−1

(w − Π2,jw)(s) ds

∣∣∣∣∣∣ ,

I
n+1
4 =

∣∣∣∣∣∣
∫ t1
s=t0

(tn+1 − s)
α−1

(w − Π1,0w)(s) ds +

n−1∑
j=1

∫ tj+1

s=tj

(tn+1 − s)
α−1

(w − Π2,jw)(s) ds

+

∫ tn+1

s=tn

(tn+1 − s)
α−1

(w − Π2,n−1w)(s) ds

∣∣∣∣∣ .
Then

I
n+1
3 + I

n+1
4 ≤ C


N−2rα for 1 ≤ r < 3

2α
,

N−3 lnN for r = 3
2α
,

N−3 for r > 3
2α
.

0 ≤ n ≤ N − 1.
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Error analysis of the third-order predictor-corrector method

We can now prove an error bound for our predictor-corrector solution.

Theorem 3.2

Assume that y(tj) and {yj}Nj=0 are the solutions of (2.6) and the third-order predictor-

corrector method (3.4), (3.5), respectively. Assume also that (3.1) holds true. Then

|y(tj)− yj | ≤ C


N−2rα for 1 ≤ r < 3

2α
,

N−3 lnN for r = 3
2α
,

N−3 for r > 3
2α
.

0 ≤ n ≤ N − 1.
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Fast evaluation of the third-order predictor-corrector
method

For the history part, we replace the kernel tα−1 by its SOE approximation, Then, we
get the fast predictor-corrector method



ȳPn+1 = y0 +
1

Γ(α)

(
Nexp∑
i=1

$ip̄
n
i + cn+1

n,−1ḡn−2 + cn+1
n,0 ḡn−1 + cn+1

n,1 ḡn

)
,

ȳn+1 = y0 +
1

Γ(α)

(
Nexp∑
i=1

$ip̄
n
i + bn+1

n,−1ḡn−1 + bn+1
n,0 ḡn + bn+1

n,1 ḡ
P
n+1

)
,

p̄0i = 0, p̄1i =
∫ t1
s=t0

e
−si(tn+1−s)

(L0,0ḡ0 + L0,1ḡ1) ds for i = 1, 2, . . . , Nexp,

p̄ni = e
−siτn+1 p̄n−1

i + An+1
i,−1ḡn−2 + An+1

i,0 ḡn−1 + An+1
i,1 ḡn for i = 1, 2, . . . , Nexp, n = 2, 3, . . . , N.

(3.6)
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Fast evaluation of the third-order predictor-corrector
method

Theorem 3.3

Assume that y(tj) and {ȳj}Nj=0 are the solutions of (2.6) and the fast third-order

predictor-corrector method (3.6), respectively. Assume also that (3.1) holds true. Then

|y(tj)− ȳj | ≤ Cε+ C


N−2rα for 1 ≤ r < 3

2α
,

N−3 lnN for r = 3
2α
,

N−3 for r > 3
2α
.

1 ≤ j ≤ N.
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Numerical example

Example 3.4
Consider the following FDEs with α ∈ (0, 1):

CDα0 y(t) = −y(t), t ∈ (0, 1]; y(0) = 1. (3.7)

The exact solution of (3.7) is y(t) = Eα(−tα), where

Eα(s) =
∞∑
k=0

sk

Γ(αk + 1)

is the Mittag-Leffler function. Since

CDα0 y(t) = −1−
−tα

Γ(α+ 1)
−

(−tα)2

Γ(2α+ 1)
− . . . ,

that is, CDα0 y(t) behaves as C(1 + tα).
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Numerical example

Table: Global errors, convergence orders and CPU times of PCM and fPCM for problem (3.7) with α = 0.5.

PCM fPCM

N r errN p CPU err
f
N

p CPU

64 1 1.1732e–3 – 2.58 1.1732e–3 – 3.34
128 6.9056e–4 0.7646 9.51 6.9056e–4 0.7646 6.95
256 4.1422e–4 0.7374 39.85 4.1422e–4 0.7374 14.99
512 2.3219e–4 0.8351 162.84 2.3219e–4 0.8351 32.26
EOC 1 1

64 r = 2
2α

1.0150e–4 – 2.41 1.0150e–4 – 4.68
128 1.8584e–5 2.4493 9.61 1.8584e–5 2.4493 9.97
256 4.2737e–6 2.1205 39.23 4.2737e–6 2.1205 22.57
512 1.0898e–6 1.9715 157.12 1.0898e–6 1.9715 48.61
EOC 2 2

64 r = 3
2α

8.3324e–6 – 2.44 8.3324e–6 – 5.71
128 8.1803e–7 3.3485 9.53 8.1803e–7 3.3485 13.35
256 9.6599e–8 3.0821 39.48 9.6599e–8 3.0821 29.22
512 1.2096e–8 2.9975 159.67 1.2096e–8 2.9975 65.48
EOC 3 3

64 r = 4
2α

3.5974e–6 – 2.41 3.5974e–6 – 6.95
128 3.6817e–7 3.2885 8.71 3.6817e–7 3.2885 15.04
256 4.1714e–8 3.1418 35.14 4.1714e–8 3.1418 33.36
512 4.9751e–9 3.0677 142.50 4.9751e–9 3.0677 73.69
EOC 3 3
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Numerical example

Example 3.5
Consider the following Benjamin-Bona-Mahony-Burgers equation

CDα0 (u− uxx) + uux − uxx = f(x, t) for (x, t) ∈ (0, 1)× (0, 1], (3.8a)

u(x, 0) = sin(πx) for x ∈ [0, 1], u(0, t) = u(1, t) = 0 for t ∈ (0, 1], (3.8b)

the function f , the initial-boundary value conditions are determined by the exact solution
u(x, t) = (1 + tα + t2α) sin(πx). One can check that

CDα0 (u− uxx)(x, t) =

[
Γ(α+ 1) +

2αΓ(2α)

Γ(1 + α)
tα
]

(1 + π2) sin(πx)

behaves as C(1 + tα).
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Numerical example

Table: Global errors and convergence orders of PCM and fPCM for problem (3.8) with r = 3/(2α) and
M = 8000.

α = 0.4 α = 0.6 α = 0.8
Scheme N EM,N pt EM,N pt EM,N pt
PCM 12 6.4472e–2 – 3.8631e–3 – 4.8683e–4 –

24 3.1108e–3 4.3733 2.5987e–4 3.8939 4.4781e–5 3.4425
48 1.7218e–4 4.1753 2.2876e–5 3.5058 5.7787e–6 2.9541
96 1.1986e–5 3.8445 2.4634e–6 3.2151 7.9723e–7 2.8577

EOC 3 3 3

fPCM 12 6.4472e–2 – 3.8631e–3 – 4.8683e–4 –
24 3.1108e–3 4.3733 2.5987e–4 3.8939 4.4781e–5 3.4425
48 1.7218e–4 4.1753 2.2876e–5 3.5058 5.7787e–6 2.9541
96 1.1986e–5 3.8445 2.4634e–6 3.2151 7.9723e–7 2.8577

EOC 3 3 3
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Numerical example

Table: Global errors, convergence orders and CPU times of PCM and fPCM for problem (3.8) with α = 0.8,
r = 3/(2α) and N = 2000.

PCM fPCM

M E(M,N) px CPU E(M,N)f px CPU
8 8.9024e–2 1.9377 2141.30 8.9024e–2 1.9377 134.57
16 2.2690e–2 1.9722 2131.37 2.2690e–2 1.9722 133.85
32 5.7260e–3 1.9864 2164.59 5.7260e–3 1.9864 132.92
64 1.4382e–3 1.9932 2158.93 1.4382e–3 1.9933 137.41
EOC 2 2
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Concluding remarks

• The second-order and third-order predictor-corrector methods of Nguyen and Jang
[Fract. Calc. Appl. Anal., 2017, 447–476] are generalised to graded meshes to
solve nonlinear fractional initial-value problems whose typical solutions have a
weak singularity at the initial time.

• In comparison with existing predictor-corrector methods in the literature, this
new methods significantly improve the numerical accuracy while reducing the
computational cost.

• To increase its computational efficiency still further, the corresponding fast al-
gorithms based on the sum-of-exponentials approximation to the kernel of the
scheme are described.

• The methods (and its fast variant) are then extended to solve the nonlinear
time-fractional Benjamin-Bona-Mahony-Burgers (BBMB) initial-boundary value
problem, combined with a standard discretisation of the spatial derivatives on a
uniform mesh.

• Several numerical experiments show the sharpness of our theoretical error bounds
for both problems.
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Thank you for your attention!
Yongtao Zhou

yongtaozhou@csrc.ac.cn
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