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Why study the factional calculus?

» Fractional derivative characterizes the evolution of system
depending on the history information.

» It is better to describe the experiment data using less parameters for
certain phenomena.

» Abnormal diffusion, also known as non-brownian motion (Lévy
process)
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We consider the computation for reaction-(sub)diffusion problem,

6D = Au+flx,t,u) forxe Qand0<t<T,
u = up(x) for x € Q whenr =0, 1)
u=20 forxe 0Qand 0 <t < T.

SD;)‘ denotes the Caputo fractional derivative by

C 1 /’ Osu(x, s)
Dy = d
05 ¥ T—a) )y (-9

t
= / Wi—a(t —5)0su(x,s)ds, 0<a<l,
0

where the kernel wg (1) =

6D = 9, withaw = 1



Regularity of the solution (fF ) 1E I {4)

» For f = f(x, 1), Sakamoto and Yamamoto in J. Math. Anal. Appl., 2011,
show ¢ ‘)“ — O(1 + ")y ast— 0 for more general initial data ug



Regularity of the solution (fF ) 1E I {4)

» For f = f(x,t), Sakamoto and Yamamoto in J. Math. Anal. Appl., 2011,
show as t — 0 for more general initial data u

» For nonlinear equation SDtau = Au + f(u): if fis Lipschitz continuous,
Jin, Li and Zhou in SIUNM 2018, prove that the solution satisfies



Blows-up or global existence of the solution (fRIEMF. 4
JRAFENE)

» Let us begin with a simple equation

W' (1) = u?, t>0,

u(0) = up > 0.
» The unique solution is given by

u 1
-0 fort < —.
1 — upt Ug

u(t)

» The solution blows up at the blow-up time T}, = i
up



» Consider the following differential equation,
u' (1) = flu), t>0,
u(O) =uy >0,

where ug > 0 is an initial value. To describe the blow-up behavior,
we exchange the dependent and independent variables

dr 1
du — flu)’
and the solution u(t) satisfies

u(t) q
t= ——du.

w S



Theotem 1
Assume that f(u) is positive for all u > 0. Then all solutions blow up in
finite time if and only if

/ —dx<oof0rallu>0 2

which is the Osgood’s condition found in 1898.



» Lietal 2018 and Yang and Zhang, Zhao, 2019 show that
fractional ODEs and PDEs have a finite time blow-up if and only if

[ () e



Why adaptive time steps?

» The weak regularity of the solution at ¢t = (;

» The solution may grow fast far away from ¢ = 0, such as blowup for
nonlinear case.
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Recent progress

» Numerous schemes are developed as .1 scheme (SW06, 1.X07),
L2-type scheme (1.X16,CXW14,K14-MC), Alikhanov’s scheme
(A15,1.M7.21), and convolution quadrature (CQ) method
(L88JL.Z18JL.Z19).
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Recent progress

» Numerous schemes are developed as .1 scheme (SW06, 1.X07),
L2-type scheme (1.X16,CXW14,KK14-MC), Alikhanov’s scheme
(A15,1.M7.21), and convolution quadrature (CQ) method
(L88JL.Z18JL.Z19).

» Also, there has been an explosive growth in the numerical analysis

» Among the analysis, the error bounds generally contain a factor
1/(1 — ), which will blow up as v — 1.

» Jin-Li-Zhou-19-SINUM :“This phenomenon does not fully agree
with the results for the continuous model ...and it is of interest to
further refine the estimates to fill in the gap.”
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Recent progress

» Recently, a refined error estimate has been presented by:

» Chen and Stynes. Blow-up of error estimates in time-fractional
initial-boundary value problems. IMA J. Numer. Anal., 2021.

» Huang and Stynes. a-robust error analysis of a mixed FEM for a
time-fractional biharmonic equation. Numer. Alogr., 2021.

» Huang, Stynes, and Chen. An a-robust FEM for a multi-term
time-fractional diffusion problem. JCAM, 2021.

» Wang and Stynes. An o-robust finite difference method for a
time-fractional radially symmetric diffusion problem. CMA, 2021.

» One of the main defects in the existing analysis is the mesh
restriction for the consistence error arose from the discrete scheme

of the Caputo derivative, i.e., the analysis depends on the precise
form of graded mesh 7, = (k/N)7 with v > 1.

» But, the a-robust analysis of various schemes on general
nonuniform meshes still remains incomplete.



Part 1

The q-error estimate for I.1 scheme
on general nonuniform time step



General nonuniform time steps

» The time steps should be nonuniform because it fits for more
general problems.

» Consider the time-step size 74, = f;, — f;_1 for nonuniform time
mesh)=f< - <fh_ 1< <--<ty=T.
Let g = g(#;) and difference operator V, gk = gk — gk=1.

v

» The nonuniform L1 formula' of Caputo derivative with
V(s) =~ V,vK/7; is given by

40 mo_ L[
(D) = A vk with A == [ wi (- s)ds, )
k=1 Tk Jna

with (Liao et al 18" SINUM)

A S AW S AW S s AW S0 fori<n <N, @)

n—1

'Sun and Wu, 06 and Lin & Xu, 07’



The nonuniform 1.1 scheme

One has a nonuniform L1 scheme for the problem (1)

(D2u;)" — Apu! =rul!, 1 <n <N,

u;
?:uo(x) X,‘EQ;,.

u! =up(xi ty), x; €0, 1 <n<N,

®)



Stability analysis for subdiffusion equation (1)

S’D/O‘u = Au + Ku.
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Stability analysis for subdiffusion equation (1)
(C)D,au = Au + Ku.
P Stability analysis by using the inequality
o

2 ~ CHha
1 < D
2”2 Hut < H”Z Uy

lc 2 2
Eon)‘HuH < wllull”.

»  The semigroup property of RL integral that
TOTPy = By implies
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Stability analysis for subdiffusion equation (1)
(C)D,au = Au + Ku.

P Stability analysis by using the inequality

2 _ C.
lCpa,2 < D
2”2, u® < ugD/ u,

Le a2 2
S0 D llull™ < wllul ™
2
»  The semigroup property of RL integral that
TOTPy = By implies
I'\:;D’f‘u:: TeTl Y = u’ (s) ds.
0

It is easy to have

2 2 ! 2
llull® < lluoll +ﬁ_/0wcx(7*S)HM|| (s)ds.



Stability analysis for subdiffusion equation (1)
(C)D,au = Au + Ku.
P Stability analysis by using the inequality
gt -

1 2 < DA
50D u” <ugD;u,

lc 2 2
Eon)‘HuH < wllull”.

»  The semigroup property of RL integral that
TOTPy = By implies
IoED M u =TT =% = [ W/ (s)ds.
0

It is easy to have
2 2 ! 2
[lull™ < fluoll™ + fi_/0 wa (1 = $) [|ull” (s)ds.

» If k < 0, wearrive at
2 2
[l = < Nuo 17
»  For k > 0, standard integral-type Gronwall
inequality produces

2 2
llull < Ea(26:%)[luo | ”



Stability analysis for subdiffusion equation (1) Stability analysis for L1 scheme (5)

Cya
D u = Au+ Ku.
0 (Dgu,‘)n — Ahu? :Iiu?.

P Stability analysis by using the inequality 1. 5

A . . n a o~ 1 a 2\n g kyn
»Tupr”“_ \7”;’13’(\“7 The inequality " (D )" = S (Du™)", V{u'}]_ holds

) ifand onlyif AT > 4{) > ... >4 >0
C 2 2
EOD,OLHMH < wlfull”.

1
— @ 2.\n 2
»  The semigroup property of RL integral that ad 5 (D Null™)" < sljull”. ©)

TOTPy = By implies
IoED M u =TT =% = [ W/ (s)ds.
It is easy to have

2 2 ! 2
llull® < lluoll +ﬁ_/0wcx(7*3)H”H (s)ds.

» If k < 0, wearrive at
2 2
flull™ < luo ™
»  For k > 0, standard integral-type Gronwall
inequality produces

2 2
llull < Ea(26:%)[luo | ”



Stability analysis for subdiffusion equation (1)

(C)D,au = Au + Ku.

P Stability analysis by using the inequality
s0DXu” < ugDu
200 S ugDu,

lc 2 2
EOD,O‘HMH < wllull”.

»  The semigroup property of RL integral that
TOTPy = By implies
'7"(‘/—7'\1/ — fl (\“/ .

0~

It is easy to have

2 2 ! 2
llull® < lluoll +ﬁ_/0wcx(7*3)H”H (s)ds.

» If k < 0, wearrive at
2 2
flull™ < luo ™
»  For k > 0, standard integral-type Gronwall
inequality produces

2 2
llull < Ea(26:%)[luo | ”

Stability analysis for L1 scheme (5)
(DS )" — Ap! =k

. . < o, 2yn kyn
The inequality i (D )" > %‘\D Put)" V) holds

, O RSN @
ifandonlyif Ag"” > A7 > ... >4" >0

1
= SO ul®)" < wlu®. ©

Challenges:

P The discrete RL integral generally does not hold the
semi-group property.

P What and how to establish the discrete Grénwall
inequality?



Discrete complementary convolution (DCC) kernels

The semigroup property of RL derivative is derived by the fact that
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Discrete complementary convolution (DCC) kernels

The semigroup property of RL derivative is derived by the fact that
Wa * WE = Wart s i.e.,

TOTPv(t) = wo * (W * V) = Warp ¥ v =T(1), VYa,3>0, ()

In analogy of w, * wi_, = 1, the DCC kernels pfl'i)j is defined by

n
Z/);I“—]/'A;/—)m =1 forl<m<n<N. ®)

j=m
The DCC kernels may be calculated by [Liao, li and Z.’18, SINUM]

1, k=n,

n 1 .
P = ® ) 0\ () ©)
Ay § : (Ajfk—l - Ajfk)pn—jw 1<k<n-1

J=k+1



» From (9), the DCC kernels p’(fl_)j > () if the coefficients are
monotonous A(n) > A(”) > > A(") > 0.

» the definition of DCC kernels p (8) implies

= ZV kapfl"JAj(/)k =" n>1.



» From (9), the DCC kernels p’(fl_)j > () if the coefficients are
monotonous A(n) > A(”) > > A(") > 0.

» the definition of DCC kernels p (8) implies

= ZV kapfl"JAj(/)k =" n>1.

» which is in analog of

(11)



Stability analzsis for linear reaction-subdiffusion
equation (1) (D u = Au + ku.)

P Stability analysis by using the inequality

= [)’D"“ u? < ui’ D’,” u,

, holds if

Stability analysis for L1 scheme (5)
(D))" — Apul! = rufl.)
P The inequality )
"(DXu)" > 5 (DYu)", V{u}]
le a2 2 A 2 T L
S0P ™ < wlul™ andonlyif AJY > 4 > ... >4 >0
2 = 24, 2
»  The semigroup property of Riemann-Liouville that
79784 = 79 implies
796D =77 % = [V (s)ds. (12)
0
It is easy to have

1 2 2
= E(Df\lul\ )< wlull®.
2 2 & 2
llull® < fluoll +~/Owa(f*S)Hull (s)ds.
» Ifx < 0, wearrive at
2 2
[[ull < fluoll”-

For k < 0, using the DCC kernels p’(ln)k, one has
n 0
For k > 0, standard integral-type Gronwall el < A=l
inequality produces
2 2
lull® < Ea(26%) llug ||

For k > 0, the discrete Grénwall inequality can be
established as follows.



Lemma 2 (Liao, Li and Z. 18, SINUM)
The discrete coefficient pfl"_) « With property 27:,” p(") AY =1 holds:

n—j‘tj—m
6) ()<p,(l"_)k§1‘(2—a)7',?, 1<k<n.
(ii) For any nonnegative integer 0 < m < |1/«],
an_j Wi4+ma— O{(tj) < w1+ma(tn) , n=>1l

(iii) For any integer m > 1,

an—] Witma—a(ty) < Witma(ta), n>1.



Properties of discrete convolution kernel

Recalling the Mittag-Leffler function

k ko o

S S T
E(\(/[f ) Zl(l+/\(l Z L W/u

k= k=(

where the series is absolutely convergent for any ) < o < 1.

Lemma 3 (Liao, Li and Z. ’18, SINUM)
Let ;1 > 0 be a constant. It holds that

“Zl’n—J ) <Eq(pty) =1, n>1, p>0. (13)



Stability anal(\{sis for linear reaction-subdiffusion
equation (1) (OD[O‘u = Au+ Ku.)
P Stability analysis by using the inequality
L ¢ D u? < Hi’ D u,

20

lc 2 2
EOD,(‘HMH < Kllull”.

P The semigroup property of Riemann-Liouville that
778y = 748 implies

796D =77 % = [V (s)ds. (14)
0

It is easy to have

t
lal® < fluol® + ~/0 wa (t = ) lull* (s)ds.

» Ifx < 0, wearrive at
2 2
[leell ™ < fluo 17
»  For k > 0, standard integral-type Gronwall
inequality produces

2 2
lull® < Ea(266™) |lug ||

Stability analysis for L1 scheme (5)
(DEu)" — Apu} = rufl.)

P The inequality )
W"(DEu)" > L DXu v{u'}_ ) holdsif

andonlyif AJY > A > ... >4 >0

2

1
= SO l®)" < slal®. 09

P> For k < 0, using the DCC kernels pr(zn—)k’ one has

0
lla" (| < {lu” ]l
P> For k > 0, the discrete Gronwall inequality produces

[«"|| < CuEa(ariS)]u]. (16)



Convergence analysis

To analyze the convergence of the scheme (5), we introduce the error
function e = U — u} for x; € ), 0 < n < N, which satisfies the initial

0 — () and governing equation

error ei =

(Dg — Ah — H) 6? = + (Rs)fa Xi € Qha

where (R;)" and (Ry)! represent the truncation errors in time and space
as

(Rs)} = Au(xi, ty) — Apuf.



Theorem 4 (Discrete fractional Gréonwall inequality, SINUM 2018)
For any finite time ty = T > 0 and k > 0, the error satisfies

D2 < 2nl |+ 2| (R |+ |RP]) . w21

If the maximum time-step size Ty < ¢/ m and k > 0, it holds

).

J

He”H < C,,E(},<4Hf,?> ( 112/%[ IZ]]?/U)/‘(Rr)I’ + OJl-Hx,(f/z) l?ﬁg]




Theorem 4 (Discrete fractional Gréonwall inequality, SINUM 2018)
For any finite time ty = T > 0 and k > 0, the error satisfies

D2 < 2nl |+ 2| (R |+ |RP]) . w21

If the maximum time-step size Ty < ¢/ m and k > 0, it holds

] (}(4/4{3)(11’210%\”219(/ Rt ’+Wl+(1(rll> m/9<\{,7| R n!)

It can be proved by mathematical induction!!!



Local consistency error

» Under the regularity assumption H&E“)u(z) HL2 < C,, the spacial
truncation error satisfies |((Rs))"‘ < C,h%.



Local consistency error

» Under the regularity assumption H&E“)u(z) HL2 < C,, the spacial
truncation error satisfies |((Rs))"‘ < C,h%.

» Rewrite the definition of L1 scheme as

n—1
(D?V)n = A(n)vn - Z (A,(lnf)kfl - A,(;i)k)vk - Afzn—)lvo ’
k=1

» The temporal mesh grid information is unknown.



Local consistency error

>

>

Under the regularity assumption Hc‘))gzl)u(t) < C,, the spacial

.2

truncation error satisfies |((Rs))"‘ < C,h%.
Rewrite the definition of 1.1 scheme as
n—1
(D2v)" = A(()")v” — Z (A,(l ") — A( ") )v — Afl"_)lv0 ,
k=1

The temporal mesh grid information is unknown.

Our finding: (R,Y is bounded by a discrete convolution form,
(ECS estimate)  |(R,)"| < A" Gl + Z A = A6,
where G] = G}, with

23
Gl = / (4 —tie1) |¢"(w)] dp, 1<k<n—1.

Ir—1



Global consistency error

» Global consistency error (Liao, Li, Z., SINUM, ’18)

an—] ’ < Zp(”> A l()L + ZP(”) A(k—)] 1 7A/Ek—)j)G]hls
j=1
< Z Py k IOL + ZGj}us Z Al(ck—)]—l - A/E’k—)])pr(tn—)k
j=1 k=j+1 .
S Z I()L Z (" A(k Ghls
k=1
<

n k
2 Z l<1 )kA(() )Gl()g
k=1



Global consistency error

» Global consistency error (Liao, Li, Z., SINUM, ’18)

an—] Z " A() Gl()L + ZP(”) (k—)j 1 IEk—)j)G{us

k=1 j=1

< an” k Ok> Glm + ZGhm Z Al(ck)] 1 A/E’k—)])pfln—)k
j=1 k=j+1

n n—1

Zp< " ( >GI()L (") A(k)Ghls

n—k

k=1 k=1

9 Z ,<7”)kA<k) Gh)L

k=1

IA

IN

Note that, the cyan term denotes the global consistency errotr of
local partin 7,1, 1], and the red term is the global consistency
error of historical part over [fg, 1j_1].



Global convergence

Lemma 5 (Liao, Li, Z., SINUM, ’18)
Assume u € C*((0,T)) and there exists a constant C,, > 0 such that

W' ()] < C(14+1777), 0<t<T, 17)

where o € (0,1) U (1,2) is a regularity parameter. Then

max (f, — ¢ at0'727_27o¢>‘
170[299(1« ) 5T

Zpl(’ln—)j [(RY| < Cu(Tf/O' +

J=1



Global convergence (Liao, Li, Z., SINUM, "18)

» Uniform mesh: Taking 7 = TN~! and #, = k7, we have

n o 1 —min{o,2—a min{o,2—q
ZP( <Cq< e M e }>.

n—j
Jj=1
> As expected, the convergence order increases when the initial

regularity of solution improves for 0 < 2 — o

» but the accuracy barrier is of order O(727%).



Global convergence (Liao, Li, Z., SINUM, ’18)

» Nonuniform mesh (Graded mesh): , = T (k/N)” with the
parameter v > 1, we have

247—

Zpﬂ”)} R’ ‘ < C T{T( Nfﬁq + mem{naz a})

11—«

» The accuracy batrier is O(N*~2)
» The accuracy is Q(N~™in (77:2=2))
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The a-blow-up phenomenon

» The most error bounds contain a factor ﬁ —ooasa— 17,

» This is the so-called o-blowup phenomenon

» Jin, Li and Zhou, SINUM 2019 :

“This phenomenon does not fully agree with the results for the
continuous model ...and it is of interest to further refine the
estimates to fill in the gap.”
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» Howevet, the existing analysis depends on the precise form of
graded mesh 1, = (k/N)7 with v > 1.

» Although efforts have been made to avoid the factor blow-up

phenomenon, a robust analysis of error estimates still remains
incomplete for with general nonuniform time steps.



The a-robust error estimate on general nonuniform mesh

Lemma 6 (Z., Zhang and Zhao, 20222)
Assume u € C*((0,T]) and there exists a constant C,, > 0 such that

W] < Cu(1+1772), 0<t<T, (18)

where o € (0,1) U (1,2) is a regularity parameter. Then

n o n
(n) j 1 1,0-2 92—

27., Zhang and Zhao, a-robust etror estimates of general non-uniform time-step
numerical schemes for reaction-subdiffusion problems, 2022
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Typical widely-used meshes

» Uniform mesh: Taking the time step: 7 = TN~ ! and t;, = k7

» Graded mesh: = T'(k/N)” with the parameter v > 1

» The general graded mesh
M1. There is a constant Cy, C, such that 7y > C;77 and
7 < Cyrmin{l, 6l 7} for 1 <k <N, < Cyty_y and
Tk < CyTp—y for 2 <k < N.



Convergence of L1 scheme

Theorem 7 (Z., Zhang and Zhao, *22)
The error estimate in L*>-norm with C = E, (4 max{1, p}x 1<) is that:
» if graded mesh is used, then it holds that

1
leh]l < CuC <H€2H +(>+ G )TON™ mextor2mal 4 tf:h2> L o<1,

» if M1 holds, then it holds with n* = (;—"l)% that

,0
€

¢

1 (o e .
‘ S C,,C( 4+ (; + SI[l‘*”\')}v—mu\{a,.27(1} + [’?hz> e < 1.



Convergence of L1 scheme

Theorem 7 (Z., Zhang and Zhao, *22)
The error estimate in L*>-norm with C = E, (4 max{1, p}x 1<) is that:
» if graded mesh is used, then it holds that

1
leh]l < CuC <H€2H +(>+ G )TON™ mextor2mal 4 t,‘:h2> L o<1,

» if M1 holds, then it holds with n* = (;—"1)% that

,0
€

¢

1 (o e .
‘ S C”C< 4+ (; + S,[,‘*’,\JNimu\{a"-270} + f,(,\/72> e < 1.

» By choosing ~y,p = max{1, (2 — «)/c’}, one can achieve the
(quasi-)optimal convergence O(N“2log N) as o — 17



L1 scheme oy<2—a oy=2-a oy>2-«

Uniform mesh (y = 1) 1_por+a—2 Inn l_p2—a—oy
Graded mesh (y > 1) 2—a—oy a—2+o7

—() T ()5

General graded mesh (y > 1) 27—1@7—07 In ;—'1 0;_1274_(”

Table: ¢ € (0, 1):The formula of factor <an, for 1.1 w.r.t. fractional order

«, regularity parameter o, the grading parameter v and time step n.

Noting thatc,fﬁ is uniformly bounded by (T+ 1)logn as o — 1.



The a-robust estimate for Alikhanov’s scheme



The general a-robust error estimate

Theotrem 8 (Z., Zhang and Zhao, 20223)
Assume A1-A3 holds, there exists a constant C,, > 0 such that

W' (] < C(1+1°7%), 0<t<T,0€(0,1)U(L,2). (19

For C = C,E, (4 max(1, p)makt?)

T0+a
1 a2 a o—2_2 —k
+ %0 + 1Y max A+ (p+ 1 max:)
n n2<k§nk_1 k (p )1§k§n t )

el < (el + 2

where ZF = T'(2 — a)m4 ( o Tj MAX;<k<p gk + Tf‘gl) :

7., Zhang and Zhao, a-robust error estimates of general non-uniform time-step
numerical schemes for reaction-subdiffusion problems, 2022



Theotem 9 (2., Zhang and Zhao, 20224)
The L?-error estimate is bounded by:
» for graded mesh, it holds with C = C,C, rE(20k13) that

!WHSC@&WHUJ+§QNmNm%+¢#),o<a<L

» if M1 also holds, then it holds with C = C,C , 7E«(20k41) that

0
[

eﬂgc< ‘+ﬂM+$hwﬂmwﬂhHﬂﬁ,0<o<L

_ (1
where n* = (1)

2=

*7., Zhang and Zhao, a-robust error estimates of general non-uniform time-step
numerical schemes for reaction-subdiffusion problems, 2022



The dependence of factor ¢ on « in error bounds >

Alikhanov’s scheme oy<3—a oy=3-a oy>3-«
Uniform mesh (y = 1) 1_porta=3 Inn 1_pd-a=oy
Graded mesh (y > 1) 3—a—oy a3t

1 (7557 . () 7
General mesh (y > 1) 3T1 — 1n f»; (;;lgim

Table: The formula of factor ¢* for Alikhanov’s schemes w.t.t fractional
order q, regularity parameter g, the grading parameter -y and time step

n.

Again, gnLﬁ

is uniformly bounded by (T+ 1)logn as o — 1.

57., Zhang and Zhao, a-robust error estimates of general non-uniform time-step
numerical schemes for reaction-subdiffusion problems, preprint, 2022



Part II

Do we need decay-preserving error estimate for solving parabolic
equations with initial singularity?



Motivation
» Consider
Ou—Au=ru+f, xeQ, te(0,T), (20)
» Under the regularity condition
Hatu(t)HLQ(Q) < cr L
» The above q-error estimate for 1.1 scheme on uniform mesh holds

= < Cre.
el 1= ma, 1] < Cr

» But, sometimes, one is interesting in error ||eV|| at time level N.

» The point-wise error ||e"|| < CTt2~! (see Jin, Li and Zhou and Qin,
Liand Z.,JCM 23 ¢)

» One can obsetve the following interesting phenomena.

°Hongyu Qin, Dongfang Li and Jiwei Zhang, Sharp Pointwise-in-time Error
Estimate of .1 Scheme for Nonlinear Subdiffusion Equations, JCM, 23’



Example for subdiffusion equation with .1 scheme

> Assume the regularity: [|Gu(1)]|2(q) < Cr**

N
K = K = Kk = —8 K = k=0 K= —8

64 1.28 1.29 1.36 1.00 1.06 1.28
128 1.24 1.25 1.32 1.00 1.05 1.24
256 1.19 1.20 1.28 1.00 1.03 1.19
512 1.15 1.16 1.23 1.00 1.02 1.15
64 1.40 141 1.45 1.00 1.16 1.40
128 1.37 1.38 1.43 1.00 1.12 1.37
256 1.33 1.34 1.40 1.00 1.09 1.33
512 1.30 1.31 1.37 1.00 1.07 1.29




Example for subdiffusion equation with .1 scheme

> Assume the regularity: [|Ou(t)||2(q) < crl
» Set Q = (0, L) and exact solution y = t* sin(7x/L) with o = 0.5

Table: Convergence rates of L1 scheme by taking various L, k and T,.

N L=1 L=m
K = k=0 Kk = —8 K = k=0 K= —8

64 1.28 1.29 1.36 1.00 1.06 1.28
T=1 128 1.24 125 1.32 1.00 1.05 1.24

256 1.19 1.20 1.28 1.00 1.03 1.19

512 1.15 1.16 1.23 1.00 1.02 1.15

64 1.40 1.41 1.45 1.00 1.16 1.40
T=10 128 1.37 1.38 1.43 1.00 1.12 1.37

256 1.33 1.34 1.40 1.00 1.09 1.33

512 1.30 1.31 1.37 1.00 1.07 1.29
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» The above shows various convergence rates for different model
parameters (i.e., €1, T, and reaction coefficient k).
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» The above shows various convergence rates for different model
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» This elusive phenomena cannot be explained by error estimates in
previous literatures as their theory does not involve the influence of
model parameters.



Example for subdiffusion equation with .1 scheme

» The above shows various convergence rates for different model
parameters (i.e., €, T, and reaction coefficient k).

» This elusive phenomena cannot be explained by error estimates in
previous literatures as their theory does not involve the influence of
model parameters.

» This inconsistence between numerical experiments and theoretical
analysis has been puzzling us for a long time, and motivating us to
find what goes on behind scenes and to uncover the mystery.

» The similar behavior happens to the classical model?

Ou—Au=ru+f, xeQ, e (0,7, (21)



Example for classical diffusion equation with Euler scheme

Table: Convergence rates of implicit Euler with @ = 0.5 for exact

solution.
N L=1 L=m
k=1 K= K= —1 K = K = k= —1

64 1.03 1.03 1.02 0.47 0.50 0.56

T=1 128 1.00 1.01 1.01 0.48 0.50 0.54
256 0.98 0.99 1.00 0.49 0.50 0.53
512 0.96 0.98 1.00 0.49 0.50 0.52
04 1.01 1.01 1.01 0.47 1.03 1.01

T =10 128 1.01 1.01 1.01 0.48 1.01 1.01
256 1.00 1.00 1.00 0.49 1.00 1.00

512 1.00 1.00 1.00 0.49 0.99 1.00




» Again, the existing theory cannot explain why we see different
convergence rates with different model parameters.



» Again, the existing theory cannot explain why we see different
convergence rates with different model parameters.

» This motivates us to express various convergence regimes ranging
from lower order to high order.



» Again, the existing theory cannot explain why we see different
convergence rates with different model parameters.

» This motivates us to express various convergence regimes ranging
from lower order to high order.

» To the end, we first eliminate the effect of the spatial domain to
consider an ODE also with initial weak singularity:

w=ru+f, t>0 (22)

with the initial value u(0) = up.



» Uniform mesh: t, = n7,n =0,1,...,N,7 = T/N.
» Denote

Y — 4vn—1 4 vn—2

1
Vo = i(v” +v"7 Y, Dyt = o



» Uniform mesh: t, = n7,n =0,1,...,N,7 = T/N.
» Denote

3t — gyl 42

1
Vo = i(v” +v"7 Y, Dyt =

2T
» The discretizations are given by

1 0 0 .

-V, U"=rU"+f", Implicit Euler scheme (23)
-

EVTU” = HU”_% +J‘”_%, C-N scheme (24)
-

DU = xU" 4+, n>2, BDF2 scheme (25)

with initial value U9 = uq.
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» Noting BDF2 needs two starting values, we here use IE scheme to
compute U*.
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» Uniform mesh: t, = n7,n =0,1,...,N,7 = T/N.
» Denote

3t — gyl 42

1
Vo = i(v” +v"7 Y, Dyt =

2T
» The discretizations are given by

1 0 0 .

-V, U"=rU"+f", Implicit Euler scheme (206)
-

Lo 0m — w473 CN scheme 27)
-

DU = xU" 4+, n>2, BDF2 scheme (28)

with initial value U9 = uq.
» Noting BDF2 needs two starting values, we here use IE scheme to
compute U*.



A decay-preserving error estimate for ODEs

» A point-wise decay-preserving (k < 0) error estimate for ODEs:
’en| < ec’“”|eo\ + Cu (eCm,lToz + Cl‘g:llTk),

where k& = 1 indicates implicit Euler scheme and k& = 2 indicates
C-N or BDF2 scheme.
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A decay-preserving error estimate for ODEs

» A point-wise decay-preserving (k < 0) error estimate for ODEs:
’en| < eCm,, |€0‘ + Cu (eC/{r,,Ta + Cl‘g:llT/‘v),

where k& = 1 indicates implicit Euler scheme and k& = 2 indicates
C-N or BDF2 scheme.

From a theoretical point of view, 7% is the leading otrder as 7 — 0.
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» Once N is finite (i.e., 7 is not infinitesimal), the coefficients of 7¢
and 7% will play an important role to determine which is dominant.



A decay-preserving error estimate for ODEs

» A point-wise decay-preserving (k < 0) error estimate for ODEs:
’en| < eCm,,|e()‘ +C, (eCm,,Ta + Cl‘g:llT/"),

where k& = 1 indicates implicit Euler scheme and k& = 2 indicates
C-N or BDF2 scheme.

v

From a theoretical point of view, 7% is the leading otrder as 7 — 0.

» Howevet, due to limited computational resources, we can only take
a finite N in practice.

» Once N is finite (i.e., 7 is not infinitesimal), the coefficients of 7¢
and 7% will play an important role to determine which is dominant.

» As we know, exponential decay is much faster than the algebraic

decay and thus the two coefficients are two scales for some k and 7.
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We present the qualitative analysis as follows:

» A point-wise decay-preserving error estimate:

’en| < eCmn|eO| +Cu(€cm"7'a+ctg:1l7'k),

» Case 1: k > 0. Coefficient ¢€*T exponentially increases. Hence,
the convergence rate always performs as qi-order.

» Case 2: k < 0. The coefficient ¢“*T exponentially decays.
> If CFTr « T Kk for 7 > 79, it has ||eN|| < Crk.



We present the qualitative analysis as follows:

» A point-wise decay-preserving error estimate:

’en| < eCmn|eO| +Cu(€cm"7'a+ctg:1l7'k),

» Case 1: k > 0. Coefficient ¢€*T exponentially increases. Hence,
the convergence rate always performs as qi-order.

v

Case 2: k < 0. The coefficient ¢#T exponentially decays.
If eCFTr < T krk for 7 > 79, it has ||| < CT%.

» If coefficients ¢C5T and T® K are in the same scale, it has
leV)| < cr, vr > 0.

v



Numerical simulations

Table: (Example for ODEs) The convergence rates with various k > 0

and T.
N k=0 k =0.5

T=1 T=5 T=1 T=5

1E 512 0.49 0.49 0.49 0.49
1024 0.49 0.49 0.49 0.49

2048 0.50 0.50 0.49 0.49

C-N 512 0.50 0.50 0.50 0.50
1024 0.50 0.50 0.50 0.50

2048 0.50 0.50 0.50 0.50

BDF2 512 0.50 0.50 0.50 0.50
1024 0.50 0.50 0.50 0.50

2048 0.50 0.50 0.50 0.50




Numerical simulations

Error

BDF2, T =14, o =0.5, i =1

102
104 \
N —
s —
100 .
10°  GREHT
1
1010 I

10° 10t 10° 108
N

(a) BDF2 scheme

Error

C-N, T =14, 0 =05, 5 =1

102
— Slope = 0.5
\ — =~ LZerror
10 =L Slope = 2
i —
10 N
N
8 S
10 7 _
{
1010 i
1072
107
10! 102 10° 10 10° 108
N

(b) C-N scheme

Absolute errors with parameters T = 14, o« = 0.5, k = —1.

107



2. The decay-preserving error estimates for PDEs
Oou—Au=ru+f, xeQ,re(0,7],
u(x,t) =0, x €09, te[0,T],
u(x,0) = up(x), xeQ.



» The discretizations are given by

1 IE scheme

=V, U" = AU" + kU" + /",
.

Lo vm = av 4 o3 +£(t,_1),  C-Nscheme
T 2

DoU" = AU" + kU + ', n>2, BDF2 scheme



» The discretizations are given by

1
IE scheme

=V, U= AU" + rU" + /",
.

1

SV U =AU 2 + kU2 +f(t,_1),  C-N scheme
T 2

D U" = AU+ KU+ f', n>2, BDF2 scheme
» We introduce the associate eigenvalue problem

—Aw = \w, with w = 0 on 0f)



» The discretizations are given by

1 IE scheme

=V, U" = AU" + kU" + /",
.

1VTUn — AU 3 + kU3 +ft,_1), C-N scheme
T 2

DoU" = AU" + kU + ', n>2, BDF2 scheme

» We introduce the associate eigenvalue problem

—Aw = \w, with w = 0 on 0f)

» If QO = (0, L), the eigenvalues and eigenvectors are given as

Mo = (kn /L)%, wi(x) = sin(kmx/L), k=1,2,---



A decay-preserving error estimate for PDEs

» A point-wise decay-preserving error estimate:
] < ClemCCiTra g goiohy,

where k = 1 for IE scheme and k = 2 for C-N or BDF2 scheme.



A decay-preserving error estimate for PDEs

» A point-wise decay-preserving error estimate:
] < ClemCCiTra g goiohy,

where k& = 1 for IE scheme and k = 2 for C-N or BDF2 scheme.
» Given a lower bound of time steps 7y and letting 7 > 7, then
(C1) for sufficiently small \; — & (relative large k of small \;) and 7, the
convergence order is O(7%);
(C2) for sufficiently large A — & (relative small  or large \;) and T, the
convergence order is O(7%).
» Given the model parameters x, A\ and T, then

(C3) for sufficiently small 7, the convergence order is O (7).



Numerical simulations for PDEs

Table: (PDEs) Convergence rates with T = 1, L = 7 for various k.

N k=0 K= —5 k= —10 K =—15 k= —20

IE 512 0.50 0.75 1.00 1.00 1.00
1024 0.50 0.70 0.99 1.00 1.00

2048 0.50 0.66 0.98 1.00 1.00

C-N 512 0.50 0.48 1.36 2.01 2.00
1024 0.50 0.49 -0.50 2.03 2.00

2048 0.50 0.50 0.26 2.10 2.00

BDF2 512 0.50 0.48 -0.22 2.08 2.01
1024 5 0.49 0.31 224 2.04

2048 0.50 0.50 0.44 3.01 2.08

Table: (PDEs) Convergence tates with x = 0, T = 10 for various L.

N L=1 L=2 L=3 L=4 L=5

(A1 ~ 9.87) (A1 ~ 2.47) (A1 & 1.10) (A1 = 0.62) (A1 = 0.39)
E 512 .00 .00 T.00 0.7 059
1024 1.01 1.00 0.99 0.72 0.57
2048 1.01 1.00 0.98 0.67 055
N 512 98 799 18 0.48 0.49
1024 1.93 1.99 -0.45 0.49 0.50
2048 1.86 1.98 0.27 0.50 0.50
BDF2 512 05 226 015 0.48 0.49
1024 377 1.28 0.33 0.49 0.50

2048 -1.94 0.64 0.39 0.50 0.50




Numerical simulations for PDEs

Table: (PDEs) Convergence rates with k = 0, L = 7 for various T.

N T=1 T=5 T =10 T=15 T =20

1IE 512 0.50 0.66 0.99 1.00 1.00
1024 0.50 0.62 0.97 1.00 1.00

2048 0.50 0.59 0.96 1.00 1.00

C-N 512 0.50 0.49 -0.63 2.03 2.00
1024 0.50 0.50 0.24 2.10 2.01

2048 0.50 0.50 0.42 2.37 2.07

BDF2 512 0.50 0.49 0.27 2.39 2.31
1024 0.50 0.50 0.43 3.53 1.37

2048 0.50 0.50 0.45 179 0.75

Table: (PDEs) Convergence rates with T = 5 and different k > \; and

L.
N k=1 k=15
L= L=4 L=m L=4
(A =1) (A =~ 0.62) (A1 =1) (A1 =~ 0.62)

IE 512 0.49 0.49 0.49 0.50

1024 0.49 0.49 0.49 0.50

2048 0.50 0.49 0.49 0.50

C-N 512 0.50 0.50 0.50 0.50
1024 0.50 0.50 0.50 0.50

2048 0.50 0.50 0.50 0.50

BDF2 512 0.50 0.50 0.50 0.50
1024 0.50 0.50 0.50 0.50

2048 0.50 0.50 0.50 0.50



Numerical simulations

Error

BDF2, T =12 k =0, L= 7 (A =k =1)
102
—
e R i
10°® >
N el 5
\ g
i =
108 i
i
1070 F | === %-error
slope =0.5
slope =2
1012
10! 102 10° 104
N

(a) BDF2 scheme for PDEs

CN, T =12 5 =0, L= 7 (A — £ =1)
102 —
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slope =0.5
slope =2
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(b) C-N scheme for PDEs

[#: Errors with fixed model parameters T, k, A1.



Subdiffusion equations

» The L1 scheme for subdiffusion equations:

DIU" = AU" + rU" 4+ f', (29)
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Subdiffusion equations

» The L1 scheme for subdiffusion equations:

DXU" = AU" + kU" + 1", (29)

» Conjecture: the decay-preserving errotr estimate is given as

le¥]| < C(EL(=C(A = K)T*)T + 7279).

» The conjecture shows that:

(E1) for sufficient small \; — x (relative large x ot small \;) and T, the
convergence order is O(7);

(E2) for sufficiently large \; — k (relative small k or large A\;) and T, the
convergence order is (777 <).



Numerical simulations for subdiffusion equations

Table: Convergence rate with 7= 1, L = 7 and various k.

N k=0 k= —=5 k= —10 Kk = —20 Kk = —50

128 105 11 126 134 22

256 1.03 115 122 1.30 1.39

512 1.02 111 118 125 1.36

Table: Convergence rate with k = 0, T = 10 and various L.

N L=1 L=2 L=3 L=14 L=5
(A1 = 9.87) (A1 = 2.47) (A1 = 1.10) (A1 = 0.62) (A1 = 0.39)

128 138 122 13 108 106

256 1.34 118 110 1.06 1.04

512 131 114 1.07 1.04 1.03




Numerical simulations for subdiffusion equations

Table: Convergence rate with x = 0, L = 7 and vatrious T.

N T=1 T=10 T =20 T = 50 7 =100
128 1.05 112 115 1.21 1.25
256 1.03 1.09 112 1.17 1.21
512 1.02 1.07 1.09 113 117

Table: Convergence rate with T = 5, k > \; and various L.

N k=1 k=15
L=m L= L=m L=4
(A =1) (A =~ 0.62) (A =1) (A1 =~ 0.62)
128 1.00 0.96 0.94 0.92
256 1.00 0.97 0.96 0.93
512 1.00 0.98 0.97 0.95
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» We provide a new decay-preserving error estimate to study
numerical behavior of widely used IE, C-N and BDF2 schemes.



Conclusion

» We provide a new decay-preserving error estimate to study
numerical behavior of widely used IE, C-N and BDF2 schemes.

» The error estimate consists of two components: ¢~ C(A1—R)Tra gnd
T %1k where \; is the minimal eigenvalue.
» The estimate shows various convergence rates are caused by the

trade-off between two components in different model parameter
regimes.

» Our decay-preserving error estimates succeed to capture the
different states of convergence rate where the traditional error
estimates fail because we take the model parameters into account
and thus retain more properties of continuous equations.

» We only present a conjectutre on the decay-preserving error estimate
of L1 scheme for sub-diffusion equations!!!



a—1" VS a— 0"



Fast algorithm

: : : 1 _ 1 oo —ts.,a—1
» Using the identity 5 = o) fO e Ss* N ds
» we use SOE to approximate the power function:

N, exp

l _ W'e_sit
1@ Z !
i=1

<eg, teloT].

(30)



Fast algorithm

» Using the identity t(ly

I'(«

)f() e IS0 1ds

» we use SOE to approximate the power function:

Table: # of exponentials needed to approximate ¢~ <.

Ne\p

§ wie —s;t S €,

€ [0,T].

a=10.06 a = 0.006
e\ o 1072 107% 107* 107° 1072 10=% 107* 10°°
1073 10 14 15 17 6 9 12 13
1073 5 7 8 10 4 6 7 7
1076 22 25 27 35 22 25 32 34
1076 11 14 18 22 10 12 14 16
1079 32 35 39 49 26 40 44 48
1079 16 21 25 30 15 19 23 28

(30)
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(a) t = 10s. (left: Elastic, midde: Qp = 100, Qs = 50, right: Qp = 32, Qs = 10).
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(b) t = 10s. (left: Elastic, midde: Qp = 100, Qs = 50, right: Qp = 32, Qs = 10).

[%]: Snapshots of the propagation of wavefield v3. The viscoelasticity
influences the amplitude and causes the lag in the first arrival time of
the seismic signals.



Thanks for your attention!
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