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Uniqueness in inverse scattering of elastic waves by

three-dimensional polyhedral diffraction gratings
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Abstract. We consider the inverse elastic scattering problem of determining a three-dim-

ensional diffraction grating profile from scattered waves measured above the structure. In

general, a grating profile cannot be uniquely determined by a single incoming plane wave.

We completely characterize and classify the bi-periodic polyhedral structures under the

boundary conditions of the third and fourth kinds that cannot be uniquely recovered by

only one incident plane wave. Thus we have global uniqueness for a polyhedral grating

profile by one incident elastic plane wave if and only if the profile belongs to neither of the

unidentifiable classes, which can be explicitly described depending on the incident field

and the type of boundary conditions. Our approach is based on the reflection principle for

the Navier equation and the reflectional and rotational invariance of the total field.
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1 Introduction

The problem of recovering a periodic structure from knowledge of the scattered

field occurs in many applications, e.g., in diffractive optics and non-destructive

testing. We refer to the monograph [7] for the details of these applications. This pa-

per is concerned with uniqueness in inverse scattering of elastic waves by an un-

bounded bi-periodic structure. The relevant phenomena have a wide field of appli-

cation. For instance, in geophysics and seismology it is very fundamental to utilize

elastic waves to investigate earthquakes and to search for oil and ore bodies (see,

e.g., [1], [21], [22], [29] and the references therein).

Assume a time-harmonic incident plane wave is scattered by a three-dimen-

sional diffraction grating in a linear isotropic and homogeneous elastic medium.

The diffraction grating is supposed to have an impenetrable bi-periodic surface on

which normal displacement and tangential stress (resp. normal stress and tangen-
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tial displacement) vanish. This gives rise to the so-called third (resp. fourth) kind

boundary conditions for the Navier equation. We refer to the monograph [25] for

a comprehensive treatment of the boundary value problems of elasticity, including

the boundary conditions of the third and fourth kinds. Our goal in this paper is to

study the uniqueness of reconstructing a bi-periodic grating profile from near-field

data taken on a plane above the grating. The uniqueness issue is always important

for finding efficient reconstruction algorithms in practical applications.

There exist several uniqueness results for smooth periodic structures. We refer

to [3,6,10,24] for the inverse scattering of acoustic or electromagnetic waves, and

to [4] for elastic waves. With a lossy medium above the grating, global uniqueness

by one incident plane wave can be easily proved using integration by parts; see

[3, 6] for the Helmholtz or Maxwell equations. In two dimensions, if some a pri-

ori information about the height of the grating curve is known, the uniqueness by

a finite number of incident plane waves is proved under the Dirichlet boundary

condition; see [23] for acoustic waves and [4] for elastic waves, where Schiffer’s

theorem is established and the spectral properties of the Laplace and Lamé op-

erators in an infinite periodic layer are studied. For bi-periodic structures in R3,

a local uniqueness theorem is proved in [10] by deriving a lower bound of the

first Dirichlet eigenvalue of the Maxwell equations in a smooth convex domain.

In general, a grating profile can always be uniquely identified by infinitely many

quasi-periodic incident plane waves with a fixed phase-shift ([3, 24]).

It is known that global uniqueness is impossible with a single incoming plane

wave (see e.g. [13, Section 2]). However, if the grating profiles are piecewise lin-

ear, one can make use of the reflection principles for the Helmholtz and Maxwell

equations to establish global uniqueness with a finite number of incident plane

waves; see, e.g., [8, 9, 13, 18, 19] for the inverse scattering of electromagnetic

waves, including TE or TM polarization in 2D. Note that the gaps in [18,19] are in-

dicated and fixed in [13]. Relying on the reflection principle for the Navier system

developed in [20], we established in [15] the global uniqueness by a minimal num-

ber of incident elastic waves within the two-dimensional grating profiles which are

given by the graph of a piecewise linear function. Moreover, in [15] all the polyg-

onal grating profiles that cannot be uniquely identified by a single incident plane

wave are classified. The purpose of this paper is to find out and characterize all

the unidentifiable bi-periodic polyhedral gratings corresponding to one incident

pressure or shear wave in R3. Then, as a consequence, the gratings that do not

belong to any of the unidentifiable classes can always be uniquely recovered from

the near-field data corresponding to only one incident wave. It remains a challeng-

ing open problem to extend our results to the first kind (Dirichlet) or second kind

(Neumann) boundary conditions, since there seems to be no reflection principle in

these cases.
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In this paper we extend our uniqueness result in 2D ([15]) to bi-periodic poly-

hedral diffractive structures in R
3. Note that our diffraction problem can be re-

duced to a problem of plane elasticity under the additional assumptions that the

three-dimensional grating varies only in x1 and remain invariant in x3 and that all

elastic waves are propagating perpendicular to the x3-axis. Thus, it is quite natural

to view the unidentifiable grating curves in the .x1; x2/-plane as non-uniqueness

examples for the inverse scattering by bi-periodic structures in R3. Nevertheless,

we still need to consider the three-dimensional gratings which vary in two direc-

tions and the case where the incident wave is not perpendicular to the x3-axis.

Note that the direct diffraction problem has already been investigated in [16]. Us-

ing the variational method, we proved the existence of quasi-periodic solutions in

Sobolev spaces for an incoming elastic plane wave, while the uniqueness does not

hold in general.

Some of our ideas are inspired by recent papers [8, 9] of Bao, Zhang and Zou,

where the bi-periodic polyhedral structures that cannot be identified by one inci-

dent plane electromagnetic wave are classified and characterized using the dihe-

dral group theory. It is shown in [8] that there exist three classes of unidentifiable

polyhedral gratings corresponding to one incident field if Rayleigh frequencies are

excluded, and six classes in the resonance case (see [9]), including the flat gratings.

It should be remarked that the reflection principle for the Navier equation under

the fourth kind boundary conditions takes the same form as that used in [26] for the

Maxwell equations. However, the elasticity problem is more complicated because

of the coexistence of two different waves, the pressure and shear waves, propagat-

ing with different phase velocities and coupled together via the stress operator in

the boundary conditions. Moreover, the methods used and the results obtained in

paper differ from those in[8, 9] in the following aspects. (1) Our uniqueness re-

sults are not restricted to polyhedral grating profiles that are given by the graph of a

piecewise linear function. Note that the non-graph grating profiles have many prac-

tical applications in diffractive optics and optimal design of complicated grating

structures. As one example, we mention the binary grating profiles which are com-

posed of only a finite number of horizontal and vertical planar faces (see [11,17]).

(2) Instead of using the dihedral group theory (first applied to inverse scattering

problems in [8, 9]), we derive the unidentifiable classes from the reflectional and

rotational invariance of the total field, which is a direct consequence of the re-

flection principle for the Navier equation. This simplifies our proofs significantly

and can be extended to Maxwell equations. (3) Having noticed that the uniden-

tifiable classes defined in [8, 9] may be empty, we enforce explicit conditions on

the incident angles and the wave numbers in the definition of the unidentifiable

sets to guarantee their existence in the case the elastic scattering. These conditions

are derived from the quasi-periodicity of the total field. Each unidentifiable class
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does exist and is not empty as long as these conditions are fulfilled. Moreover,

non-uniqueness examples for bi-periodic structures that vary in both the x1 and x2

directions are also presented.

In this paper, we only study uniqueness in the inverse scattering of shear (resp.

pressure) waves under the third (resp. fourth) kind boundary conditions. The global

uniqueness for general incident plane elastic waves can be established analogously

and is omitted here for simplicity. In the case of a plane shear wave incidence, it

turns out that there are five classes of unidentifiable grating profiles in the res-

onance case (see Theorem 2.1), and two classes if Rayleigh frequencies are ex-

cluded (see Remark 4.22 (i)), whereas an incident plane pressure wave leads to

only one unidentifiable class which only exists in the resonance case. Moreover,

it is proved that two incident pressure waves (which is the minimal number) are

always enough to uniquely determine a bi-periodic polyhedral surface under the

fourth kind boundary conditions; see Remark 5.4.

The outline of the paper is as follows. In Section 2, we rigorously formulate the

direct and inverse scattering problems, and present our main results on the inverse

problems. A radiation condition based on Rayleigh expansion is used, and an ad-

missible class of bi-periodic grating profiles is defined. In Section 3, the reflection

principle for the Navier equation together with the reduction of the total field to a

finite number of propagating modes is presented. The aim of Section 4 is to char-

acterize all grating profiles that are unidentifiable by a single incident shear wave

under the boundary conditions of the third kind. The non-uniqueness examples for

this case are presented in Section 4.5. In the final Section 5, we extend the argu-

ments from Section 4 to the case of inverse scattering of an incident pressure wave

under the fourth kind boundary conditions.

We finish this section by introducing some notation that will be used throughout

the paper. Denote by S2 WD ¹x 2 R3 W jxj D 1º the unit sphere in R3, by a> the

transpose of a vector a D .a1; a2; a3/ 2 C
3 and by a? a column vector satisfying

a � a> D 0. As usual, a � b WD
P3

j D1 ajbj and a � b denotes the vector product

of a D .a1; a2; a3/;b D .b1; b2; b3/ 2 C
3. The symbol A# stands for the number

of elements in a set A, while jA1A2j represents the length of a line segment A1A2

with end points A1; A2 2 R
3. For C 2 C, jC j denotes its modulus; if C 2 R

N

or C 2 C
N .N D 2; 3/, jC j denotes its Euclidean norm. Finally, let x D .x0; x3/

with x0 D .x1; x2/ 2 R2.

2 Mathematical formulations and main results

We assume that the diffraction grating involves an impenetrable surfaceƒwhich is

2�-periodic with respect to x1 and x2. Let �ƒ, the unbounded domain above ƒ,
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be filled with an isotropic homogeneous elastic medium characterized by the Lamé

constants �;� satisfying � > 0, �C 2�=3 > 0. Suppose a time-harmonic plane

elastic wave uin (with time variation of the form exp.�i!t/, ! > 0) is incident on

the grating from above, which is either an incident pressure wave taking the form

uin D uin
p .x/ D O� exp.ikp

O� � x/

with O� D .sin �1 cos �2; sin �1 sin �2;� cos �1/ 2 S2;
(2.1)

or an incident shear wave of the form

uin D uin
s .x/ D O�? exp.iks

O� � x/ with O�? 2 S2; I O�? � O� D 0; (2.2)

where

kp WD !=
p

2�C �; ks WD !=
p
�

are the compressional and shear wave numbers respectively, and O� 2 S2 denotes

the incident direction with the incident angles �1 2 Œ0; �=2/; �2 2 Œ0; 2�/.
For simplicity we assume the mass density of the elastic medium is equal to

one, so that the total displacement u.x/, which can be decomposed as the sum of

the incident field uin and the scattered field usc, satisfies the Navier equation (or

system):

.�� C !2/u D 0 in �ƒ; �� WD ��C .�C �/ grad div : (2.3)

On the impenetrable surfaceƒ, the vanishing normal displacement and tangential

stress (or normal stress and tangential displacement) lead to the following bound-

ary conditions:

boundary conditions of the third kind: � � u D 0; � � T u D 0; (2.4)

or boundary conditions of the fourth kind: � � u D 0; � � T u D 0; (2.5)

where � WD .�1; �2; �3/ denotes the unit normal vector on ƒ pointing into �ƒ,

and T u stands for the stress vector or traction having the form

T u D T .�;�/u WD 2�@�uC �.div u/ � C �� � curlu: (2.6)

Here and in the following, @�u D � � r u is used, and the symbol @ju denotes

@u=@xj .

The periodicity of the structure and the form of the incident waves imply that

the solution u is ˛-quasi-periodic, i.e.,

u.x1 C 2�; x2 C 2�; x3/ D exp.i2�.˛1 C ˛2//u.x1; x2; x3/; x 2 �ƒ; (2.7)
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or equivalently, the function u.x/ exp.�i˛ � x0/ is 2�-periodic with respect to x1

and x2, where ˛ D .˛1; ˛2/ D k.sin �1 cos �2; sin �1 sin �2/ with k D kp for the

incident pressure wave (2.1), or k D ks for the incident shear wave (2.2). To en-

sure well-posedness of the boundary value problem (2.3)–(2.7), a radiation condi-

tion must be imposed as x3 ! C1. We note that the scattered field usc, which

also satisfies the Navier equation (2.3), can be decomposed into its compressional

and shear parts,

usc D 1

i
.grad ' C curl / with ' WD � i

k2
p

divusc;  WD i

k2
s

curlusc; (2.8)

where the scalar function ' and the vector function  satisfy the homogeneous

Helmholtz equations

.�C k2
p/ ' D 0 and .�C k2

s / D 0 in �ƒ: (2.9)

Applying the usual Rayleigh expansion to ' and  respectively, we finally obtain

a corresponding expansion of usc into outgoing plane elastic waves (see [16]):

usc.x/ D
X

n2Z2

°

Ap;n P>
n exp.iPn � x/C As;nS?

n exp.iSn � x/
±

; (2.10)

for x3 > ƒC WD maxx32ƒ¹x3º, where the constants Ap;n; As;n 2 C are called

the Rayleigh coefficients, and

Pn D .˛n; ˇn/; Sn D .˛n; 
n/ 2 C
3; S?

n 2 C
3; jS?

n j D 1; S?
n �Sn D 0; (2.11)

with ˛n D .˛
.1/
n ; ˛

.2/
n / WD .˛1 C n1; ˛2 C n2/ for n D .n1; n2/ 2 Z

2 and the

parameters ˇn and 
n given by

ˇn D
´

.k2
p � j˛nj2/ 1

2 if j˛nj � kp;

i.j˛nj2 � k2
p/

1
2 if j˛nj > kp;


n D
´

.k2
s � j˛nj2/ 1

2 if j˛nj � ks ;

i.j˛nj2 � k2
s /

1
2 if j˛nj > ks ;

(2.12)

respectively. The expansion in (2.10) is the radiation condition we are going to use

in the following; see also [5] and [14] for the radiation condition for plane elastic-

ity. Since ˇn and 
n are real for at most a finite number of indices n 2 Z2, only a fi-

nite number of plane waves in (2.10) propagates into the far field, with the remain-

ing evanescent waves (or surface waves) decaying exponentially as x3 ! C1.
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The above expansion (2.10) converges uniformly with all derivatives in the half-

space ¹x 2 R
3 W x3 � bº for any b > ƒC. For fixed incident angles �1 2 Œ0; �=2/,

�2 2 Œ0; 2�/, define

�p WD ¹n 2 Z
2 W ˇn.˛; kp/ D 0º; �s WD ¹n 2 Z W 
n.˛; ks/ D 0º: (2.13)

We say that a Rayleigh frequency occurs if either �p ¤ ; or �s ¤ ;, and that

Rayleigh frequencies of the compressional resp. shear part are excluded if �p D ;
resp. �s D ;.

Now, our direct diffraction problem can be formulated as the following bound-

ary value problem.

Direct problem (DP). Given a grating profile surfaceƒ � R3 (which is 2�-peri-

odic in x1 and x2) and an incident field uin of the form (2.1) or (2.2), find a vector

function u D u.xI �1; �2/ D uin C usc 2 H1
loc.�ƒ/

3 that satisfies the Navier

equation (2.3), one of the boundary conditions in (2.4) and (2.5), the ˛-quasi-peri-

odicity (2.7) and the radiation condition (2.10).

If ƒ is a Lipschitz surface in R3, there always exists a solution u to (DP),

while the uniqueness can be guaranteed only for small frequencies ! or for all

frequencies excluding a discrete set; see Elschner & Hu [16] for a proof using the

variational method. Since the surface waves are exponentially decaying and thus

can hardly be measured far away from the grating, our inverse problem involves

near-field measurements u.x0; b/ for some fixed b > ƒC.

Inverse problem (IP). Given an incident pressure wave of the form (2.1) or an

incident shear wave of the form (2.2), determine the grating profile ƒ from the

knowledge of the near-field data u.x1; x2; b/ for all x1; x2 2 .0; 2�/ and some

b > ƒC, where u.x/ is a (not necessarily unique) solution of (DP) corresponding

to the incident field.

Note that the formulation of (IP) makes sense if there only exists a solution u

of (DP). In this paper we are mainly interested in the following uniqueness ques-

tions about (IP):

Let the incident angles �1; �2 be fixed, and let A be an admissible class of grat-

ing profiles. Suppose that the two gratingsƒ1,ƒ2 2 A produce the total fields uj

.j D 1; 2/ for an incident pressure resp. shear wave of the form (2.1) resp. (2.2).

Does the relation

u1.x
0; b/ D u2.x

0; b/; 8x1; x2 2 .0; 2�/; for some b > max¹ƒC
1 ;ƒ

C
2 º (2.14)

imply ƒ1 D ƒ2‹ If not, what kind of geometric characteristics do ƒ1 and ƒ2

share in order to generate the same total field on x3 D b?
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In this paper, a grating profile ƒ 2 A is required to be a bi-periodic polyhedral

Lipschitz surface, consisting of a finite number of planar faces in one periodic

cell .0; 2�/ � .0; 2�/. Without loss of generality, we always assume that ƒ is not

constant in x1 and is allowed to be invariant in x2. Thus, we define the admissible

class A by

A D
®

ƒ W ƒ is a polyhedral surface in R
3 which is 2�-periodic

in x1 and x2, and ƒ is not constant in x1-direction
¯

:
(2.15)

Note that a flat grating of the form ¹x3 D cº for some c 2 R, which is constant

in both x1 and x2, is excluded from the admissible class A. We do not consider

such flat gratings because they cannot be uniquely identified from the near-field

data corresponding to a finite number of incident plane waves. This can be readily

deduced from the explicit solutions of (DP) for flat gratings under the third or

fourth kind boundary conditions; see [15] for the non-uniqueness examples in 2D

and [16] for the explicit direct solutions to the homogeneous problem (DP) (with

uin D 0) in 3D. By [16, Section 4.3], we know that there always exists a solution

to (DP) for anyƒ 2 A.

Concerning the admissible class A, we distinguish its two subclasses A1 and

A2 by defining

A1 WD ¹ƒ 2 A W ƒ is constant in x2º;
A2 WD ¹ƒ 2 A W ƒ is not constant in x2º:

The grating profiles from A1 vary only in x1 and remain invariant in x2, whereas

those from A2 vary in both x1 and x2. By the definition of A, we have

A D A1 [ A2:

In this paper, it is supposed for simplicity that

either ƒ1;ƒ2 2 A1, or ƒ1;ƒ2 2 A2. (2.16)

Throughout the paper we assume without loss of generality that one of the two

grating profiles, sayƒ1, contains the origin O of the coordinate system in the fol-

lowing way. Ifƒ1 2 A1, the origin O is supposed to be located at the intersection

line l of two neighboring faces of ƒ1, so that l coincides with the x2-axis. If

ƒ1 2 A2, the origin is supposed to coincide with one corner point of ƒ1, where

at least three faces of ƒ1 meet together.

Now we present the main uniqueness theorems of this paper as follows.

Theorem 2.1. Assume the incident wave is an incident shear wave of the form

(2.2). Let the total fields uj .x/ .j D 1; 2/ satisfy the direct problem (DP) corres-

ponding to the grating profiles ƒj 2 A under the boundary conditions of the third
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kind. Then, under the assumption (2.16), the relation (2.14) implies that

either ƒ1 D ƒ2; or ƒ1;ƒ2 2 Uj for some j 2 ¹1; 2; 3; 4; 5º; (2.17)

where Uj � A1 for j D 1; 2; 3; 4 and U5 � A2, which are defined respectively

in Sections 4.3 and 4.4, are five classes of unidentifiable grating profiles corres-

ponding to the incident shear wave of the form (2.2). Moreover, for each index

j 2 ¹1; 2; 3; 4; 5º, the different grating profiles from Uj generate the same total

field of the specific form presented in Lemmas 4.10, 4.12, 4.14, 4.16 and 4.21

respectively.

Theorem 2.2. Assume the incident wave is an incident pressure wave of the form

(2.1). Let the total fields uj .x/ .j D 1; 2/ satisfy the direct problem (DP) corres-

ponding to the grating profiles ƒj 2 A under the boundary conditions of the

fourth kind. Then, under the assumption (2.16), the relation (2.14) implies that

either ƒ1 D ƒ2; or ƒ1;ƒ2 2 U2.�1; �2; kp/:

Furthermore, if we have ƒ1;ƒ2 2 U2.�1; �2; kp/ and ƒ1 ¤ ƒ2, then the total

field u D u1 D u2 takes the form

u D O� exp.ikpx � O�/C Rot�. O�/ exp.ikpx � Rot�. O�//
� .1=kp/P exp.ix � P/ � .1=kp/Rot�.P/ exp.ix � Rot�.P//;

where Rot�. � / denotes the rotation around the x2-axis by the angle � , P and

Rot�.P/ are defined in Lemma 5.3 (1).

3 Auxiliary lemmas

In this section we present some auxiliary lemmas which play an import role in

the proof of our uniqueness results. The following one is elementary (see [8] for a

proof).

Lemma 3.1. Let aj 2 C
3, and let �j 2 R be distinct numbers .j D 1; 2; : : : ;m/.

If

m
X

j D1

aj exp.i�j t / D 0; 8 t 2 R;

then aj D .0; 0; 0/> , j D 1; 2; : : : ;m.

Definition 3.2. Let … be a two-dimensional plane in R3 and let u be a solution

to (2.3). A non-void open connected component ‚ of … \ �ƒ will be called a

perfect set of u if u satisfies the third resp. fourth kind boundary conditions on ‚.
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Denote by Ref…. � / the reflection with respect to a plane … in R
3, and by

Ref0
…. � / the reflection with respect to the plane …0 that passes through the origin

O and is parallel to…. In this paper a reflection or rotation operator is also applied

to a complex-valued function or vector by acting on its real and imaginary parts

respectively. Analogously, we say that a plane … passes through a complex vector

a D bC ic 2 C3 (i.e., a 2 …) for b; c 2 R3 if… passes through both of the points

b; c 2 R3.

The following reflection principle for the Navier equation is the main tool for

proving uniqueness in our inverse diffraction problems.

Lemma 3.3 (Reflection principle for the Navier equation). Assume that � � R
3

is a symmetric domain with respect to a perfect set ‚ � … of u, and that the

function u satisfies the Navier equation .4� C !2/u D 0 in �.

(1) If Q‚ is another perfect set of u in �, then Ref…. Q‚/ � � is also a perfect set

of u.

(2) There holds

u.x/˙ Ref0
….u.Ref….x/// D 0 in �; (3.1)

where C resp. � is taken corresponding to the fourth resp. third kind boundary

conditions on ‚.

The first assertion of Lemma 3.3 is proved by Elschner & Yamamoto in [20],

where the identities (3.1) are implicitly contained. Note that the reflection prin-

ciple under the fourth kind boundary conditions takes the same form as that for

Maxwell’s equations proved in [26]; see also [8] and [27]. If… passes through the

origin O , then the identities in (3.1) take the form

Ref….u.x//˙ u.Ref….x// D 0 in �; (3.2)

which will be frequently used in the subsequent analysis; see Figure 1.

In the following, we denote by uj WD uj .xI �1; �2/ the corresponding total fields

produced by the grating profiles ƒj 2 A .j D 1; 2/. Assume

u1.x
0; b/ D u2.x

0; b/; x0 D .x1; x2/ 2 .0; 2�/ � .0; 2�/ (3.3)

for some b >max¹ƒC
1 ;ƒ

C
2 º. Denote �b WD ¹x 2 R

3 W x3 > bº, �b WD ¹x3 D bº.

Next, based on the reflection principle for the Navier equation, we prove that,

under the condition (3.3), the total fields uj .j D 1; 2/ can be reduced to a finite

number of propagating modes. To do this, we employ the arguments used in [2,20]

to find an unbounded perfect set which extends to�b . We first recall a fundamen-

tal property for a connected set (see [12, Theorem 3.19.9]) which will be used in

our subsequent analysis.
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Figure 1. If .4� C!2/u D 0 in R
3 and u satisfies the third resp. fourth kind bound-

ary conditions on the plane…, then the relation (3.2) holds in R
3. In particular, if u

satisfies the third resp. fourth kind boundary conditions on both… and…1, then the

same boundary conditions hold on …2 WD Ref….…1/.

Lemma 3.4. Let A;B be two subsets of R
3, and assume that B is connected such

that B \ A ¤ ; and B \ .R3nA/ ¤ ;. Then @A \ B ¤ ;.

Lemma 3.5. If relation (3.3) holds for two different grating profiles ƒ1;ƒ2 2 A,

then

(1) Under the boundary conditions of the third (fourth) kind, there always exists

a perfect set ‚ of both u1 and u2 such that ‚ \�b ¤ ;.

(2) Both of the total fields uj D uin C usc
j , j D 1; 2, can be reduced to a finite

sum of propagating waves,

u1 D u2 D uin C
X

j˛nj�kp

Ap;nP>
n e

ix�Pn C
X

j˛nj�ks

As;nS?
n e

ix�Sn (3.4)

in x3 > max¹ƒC
1 ;ƒ

C
2 º, where Pn and Sn are defined in (2.11).

Proof. (1) It follows from the standard elliptic regularity theory that the solution

uj 2 H1
loc.�ƒj

/3 to the corresponding problem (DP) is infinitely smooth up toƒj

except for vertices and edges, and uj is real-analytic in�ƒj
. By assumption (3.3)

and the uniqueness of the Dirichlet problem in �b [16], we see that u1 D u2 for

x3 > b. Then, applying the unique continuation of solutions to the Navier equa-

tion gives u1 D u2 in�, where� denotes the unbounded connected component of
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�ƒ1
\�ƒ2

which contains the plane �b . It follows fromƒ1 ¤ ƒ2, the connected-

ness of �ƒ1
and�ƒ2

and Lemma 3.4 that @� ª ƒ1 \ƒ2 (see [26, Theorem 1]).

Thus, by periodicity we may assume without loss of generality that

S WD Q�ƒ1
\ @� ¤ ; with Q�ƒ1

WD ¹x 2 �ƒ1
W x1; x2 2 .0; 2�/º:

Then there is an open connected subset F � S of a plane… satisfying F � �ƒ1
,

and thus a perfect set‚ of u1 in�ƒ1
such that F � ‚ � …. If‚ can be extended

to ¹x3 > bº, we already have the desired perfect set; otherwise, the set „ defined

by

„ WD
®

‚ W ‚ is a perfect set of u1 in �ƒ1
with ‚ \ Q�ƒ1

¤ ; and ‚ \�b D ;
¯

is not empty. Proceeding similarly to the case of scattering by polygonal and poly-

hedral bounded obstacles (see, e.g., [2,20,26,28]), we now combine the reflection

principle for the Navier equation with a path argument to obtain the desired perfect

set which can be extended to �b .

Choose a point P 2 F � @� \ Q�ƒ1
and a continuous and injective path 
.t/,

t � 0, starting at P D 
.0/ and leading to infinity in the unbounded connected

component Q� of�\ ¹x 2 R
3 W �2� < x1; x2 < 4�º, for t > 0. Let M be the set

of intersection points of 
 with all perfect set of u1 from the class„. Then M ¤ ;,

and M is obviously bounded. Furthermore, the set „ is closed, and hence com-

pact. In fact, let ¹xnº be a sequence of intersection points of perfect sets ‚n 2 „,

xn 2 ‚n, with the path 
 , such that xn converges to a point Qx 2 
 . Choosing a

unit normal �n to ‚n and passing to a convergent subsequence �n ! Q�, we can

prove (see the proof of [28, Lemma 2]) that the plane Q… through Qx with unit nor-

mal Q� contains a perfect set Q‚ of u1 such that Qx 2 Q‚. We can assume that ‚ 2 „
since, otherwise, we already have a perfect set that extends to�b . Thus there exists

t0 � 0 such that 
.t0/ 2 M and no perfect set of „ can intersect 
.t/ for t > t0.

Let‚0 � …0 be a perfect set of„ passing 
.t0/ and lying on a plane…0. We now

apply the reflection principle of Lemma 3.3 to prove the existence of a perfect set

‚� of u1 intersecting 
.t/ at some t� > t0, which gives the desired unbounded

perfect set or a contradiction to the assumption that ƒ1 ¤ ƒ2.

Let xC D 
.t0C�/ for some sufficiently small � > 0, and let x� D Ref…0
.xC/.

Denote by G˙ the connected component of �ƒ1
n‚0 containing x˙, and let E�

be the connected component of Ref…0
.G�/ \ G˙ containing x˙. Defining E

by E D EC [‚0 [E�, we see that E is a connected open set whose boundary

consists of faces of ƒ1 and Ref…0
.ƒ1/. By Lemma 3.3, u1 satisfies the boundary

condition (2.4) resp. (2.5) on @E and E \…0.

Next we claim that the projection of the setE on the x3 axis, pr.E/, is bounded.

In fact, if …0 is parallel to the .x1; x2/-plane, then pr.E/ is obviously bounded
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since E is symmetric with respect to…0. It remains to consider the case when…0

is not parallel to the .x1; x2/-plane. Then we may assume that pr.E \ …0/ and

pr.@E/ are both bounded; otherwise …0 already contains a perfect set extending

to �b , or a face of @E can be extended to such a perfect set. Therefore, if pr.E/

were unbounded, then E would contain a half-space ¹x3 > aº for some a > 0

sufficiently large, which contradicts the boundedness of pr.E \…0/.

Since pr.E/ is bounded and the connected set � WD ¹
.t/ W t � t0º extends to

infinity in Q�, it follows from Lemma 3.4 with A D E and B D � that there exists

t� > t0 such that 
.t�/ 2 @E. Consequently, there is a perfect set ‚� … „ of u1

passing 
.t�/, so that ‚� \ �b ¤ ;. Finally, it is seen from u1 D u2 in � that

‚� is also a perfect set of u2. This completes the proof of the first assertion.

(2) We will prove the second assertion under the fourth kind boundary condi-

tions. The proof under the third kind boundary conditions is analogous. Let ‚ be

the perfect set involved in assertion .1/ lying on a plane …. We consider the fol-

lowing two cases.

Case (i): … is parallel to ¹x3 D 0º.

We can assume … D ¹x3 D dº � � for some d > b and that the fourth kind

boundary conditions are fulfilled on…. In this case of a flat grating, the non-trivial

solutions to the homogeneous scattering problem (DP) (with uin D 0) are known

explicitly [16]. Therefore we obtain that

u.x/ D 1

kp

 

˛>

�ˇ

!

ei.˛�x0�ˇx3/� 1

kp

 

˛>

ˇ

!

ei.˛�x0Cˇ.x3�2d//Ce>
3

X


nD0

Cne
i˛n �x0

for the incident pressure wave of the form (2.1), and

u.x/ D

0

B

@

q1

q2

q3

1

C

A
ei.˛�x0�
x3/ �

0

B

@

q1

q2

�q3

1

C

A
ei.˛�x0C
.x3�2d// C e>

3

X


nD0

Cne
i˛n �x0

for the incident shear wave of the form (2.2) with O�? D .q1; q2; q3/
> 2 S2, where

Cn 2 C are arbitrary constants and e3 D .0; 0; 1/. Thus, the total field indeed takes

the form (3.4).

Case (ii): … is not parallel to ¹x3 D 0º.

Following [15, 18] in spirit, we shall study this case using properties of almost-

periodic functions. From the beginning part of the proof of assertion (1) and by

(2.10) and (3.3), we can write

u.x/ D u1.x/ D u2.x/ D I.x/C
X

j˛nj>kp

Ip;n.x/C
X

j˛nj>ks

Is;n.x/
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in x3 > max¹ƒC
1 ;ƒ

C
2 º, where

Ip;n.x/ WD Ap;nP>
n e

ix�Pn ;

Is;n.x/ WD As;nS?
n e

ix�Sn;

I.x/ WD uin.x/C
X

j˛nj�kp

Ip;n.x/C
X

j˛nj�ks

Is;n.x/:

Thus I.x/ consists of a finite number of propagating waves of the compressional

and shear parts, including the incident wave uin, whereas u.x/ � I.x/ consists of

infinitely many surface waves decaying exponentially as x3 ! C1. It suffices to

prove that Ap;n D 0 for all j˛nj > kp and As;n D 0 for all j˛nj > ks .

Defining

A� D min
°

inf
j˛nj>kp

¹jˇnjº; inf
j˛nj>ks

¹j
njº
±

and

‡ WD ¹n 2 Z
2 W 
n D iA� or ˇn D iA�º;

we first prove that Ap;n D As;m D 0 if ˇn D iA� or 
m D iA�.

It follows from the existence of the perfect set ‚ in the first assertion that there

always exists a ray l � ‚ starting from some point z D .z1; z2; z3/ 2 �b such

that the third Cartesian components of the points of l tend to C1. Without loss

of generality the ray l takes the form

l D
²

x.t/ W x1 � z1

a
D x2 � z2

b
D x3 � z3

c
D t; t � 0

³

;

for some a; b 2 R; c > 0 such that
�!
l D .a; b; c/ 2 S2 is orthogonal to the normal

direction � of the perfect plane ‚. Since the set ‡ consists of a finite number of

indices, we may assume further that ˛n � .a; b/> ¤ ˛m � .a; b/> for any n ¤ m,

n;m 2 ‡ ; otherwise we may replace the ray l � ‚ by another ray l 0 � ‚ with

the unit direction �!
l 0 D .a0; b0; c0/ 2 S2; c0 > 0;

such that the third components of l 0 also tend to C1 and the norm k�!
l � �!

l 0k is

as small as we like. We then have

0 D ��ujl D
�

��I.x/C
X

j˛nj>kp

��Ip;n.x/C
X

j˛nj>ks

��Is;n.x/

�
ˇ

ˇ

ˇ

ˇ

xDx.t/

(3.5)

for all t � 0. Noting that � � I.x/jxDx.t/ is an almost periodic function in t , and

that ��Ip;n.x/jxDx.t/ for j˛nj > kp, ��Is;n.x/jxDx.t/ for j˛nj > ks are exponen-
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tially decaying functions as t ! C1, we obtain from (3.5) that (see [18, p. 784]

for the 2D case)

max
x2 l

j� � I.x/j

D lim sup
t!C1

j� � I.x/jxDx.t/j

D lim sup
t!C1

²
ˇ

ˇ

ˇ

ˇ

X

j˛nj>kp

� � Ip;n.x/jxDx.t/ C
X

j˛nj>ks

� � Is;n.x/jxDx.t/

ˇ

ˇ

ˇ

ˇ

³

D 0;

which implies that � � I.x/ � 0 for all x 2 l . Using (3.5) again, we arrive at
X

j˛nj>kp

Ap;n� � P>
n e

ix�Pn C
X

j˛nj>ks

As;n� � S?
n e

ix�Sn D 0; x 2 l: (3.6)

Multiplying (3.6) by exp.A�.ct C z3// and letting x 2 l , jxj ! C1, we obtain

by recalling the definitions of Pn and Sn in (2.11) that

0 D
X

ˇnDiA�

Ap;n� � .˛n; i jˇnj/ exp.i˛n � Qx.t//

C
X


nDiA�

As;n� � S?
n exp.i˛n � Qx.t//; t > 0;

where Qx.t/ WD .at C z1; bt C z2/
> 2 R2. Then, it follows from Lemma 3.1 that

Ap;n � � .˛n; i jˇnj/ D 0 for ˇn D iA�;

As;m � � S?
m D 0 for 
m D iA�:

Since the normal � to the plane … is not parallel to e3 and the third components

of Pn D .˛n; i jˇnj/ for j˛nj > kp and Sn D .˛n; i j
nj/ for j˛nj > ks are purely

imaginary, by simple calculations one may check that

� � .˛n; i jˇnj/ ¤ O; � � S?
n ¤ O; with O D .0; 0; 0/;

which leads to Ap;n D As;m D 0 for ˇn D 
m D iA�.

Setting

A�� D min

²

inf
j˛nj>kp

¹jˇnj W jˇnj > A�º; inf
j˛nj>ks

¹j
nj W j
nj > A�º
³

and repeating the argument above, we finally conclude that

Ap;n D 0 for all j˛nj > kp and As;n D 0 for all j˛nj > ks:

This implies that the total fields uj .j D 1; 2/ take the form (3.4) and completes

the proof of the second assertion.
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4 Inverse scattering of an incident shear wave under the

boundary conditions of the third kind

We make the following assumptions throughout this section.

(A1) The incident wave is the incident shear wave defined in (2.2), i.e.,

uin WD O�? exp .iksx � O�/

with the incident direction O� D .sin �1 cos �2; sin �1 sin �2;� cos �1/ and the

incident angles �1 2 Œ0; �
2 /, �2 2 Œ0; 2�/.

(A2) The total fields uj .x/ .j D 1; 2/ satisfy problem (DP) corresponding to the

different grating profiles ƒj under the boundary conditions of the third kind

and fulfill the relation (3.3).

Under the above assumptions (A1) and (A2), it follows from Lemma 3.5 (2) that

u D u1 D u2 can be reduced to a finite sum of propagating modes in �. Thus,

each uj .j D 1; 2/ can be extended to an analytic function in the whole space by

(3.4) and u D u1 D u2 in R3. Let ƒ denote one of the profiles ƒj .j D 1; 2/,

and define .˛; 
/ WD .˛0; 
0/ D ks.sin �1 cos �2; sin �1 sin �2; cos �1/.

The remaining part of this section is organized as follows. In Sections 4.1–4.2,

we derive the reflectional and rotational invariance of the total field using the re-

flection principle for the Navier equation. The unidentifiable grating profiles from

A1 and A2 are characterized and classified in Sections 4.3 and 4.4, respectively,

which would lead to Theorem 2.1 directly. The corresponding non-uniqueness ex-

amples will be presented in Section 4.5.

4.1 Reflectional invariance

By (3.4), we can write the total field u D u1 D u2 as

u D
X

n2P

Ap;nP>
n exp.ix � Pn/C

X

n2S

As;nS?
n exp.ix � Sn/ in R

3; (4.1)

where

P WD ¹n 2 Z
2 W j˛nj � kp; Ap;n ¤ 0º;

S WD ¹n 2 Z
2 W j˛nj � ks; As;n ¤ 0º [ ¹�º;

and S� WD .˛;�
/>, As;� D 1, the vectors Sn for n ¤ � and Pn for all n 2 Z
2

are defined in (2.11).

Define

P D ¹Pn W n 2 P º; S D ¹Sn W n 2 Sº:



Uniqueness in inverse scattering of elastic waves 17

We observe that P consists of a finite number of upward propagating directions

of the compressional part, whereas SnS� consists of finitely many upward prop-

agating directions of the shear part and S� denotes the downward incident direc-

tion. By the definitions of ˛n; ˇn and 
n (see (2.12)), we have P � Bkp
.O/ and

S � Bks
.O/, where Br.O/ WD ¹x 2 R

3 W jxj D rº denotes the sphere centered

at the origin O with radius r .

Remark 4.1. Since a plane shear wave of the form uin D As;�S?
� exp.ix � S�/

is taken as the incident wave, the incident direction S� is the only element in S

whose x3-component is negative, while the third components of the elements in P

and SnS� are all non-negative. Furthermore, if �p D ;, then each element of P

has a positive x3-component, and if �s D ;, the x3-components of the elements

in SnS� are all positive; see Figure 2. Recall that �p and �s are defined in (2.13).

Figure 2. Pn 2 P � Bkp
.O/, Sn 2 S � Bks

.O/. The incident direction S� is the

only direction propagating downward.

A two-dimensional plane will be called a perfect plane of u if u satisfies the

third kind boundary conditions on the whole plane. Since both the normal and

tangential vectors of a plane are constant vectors and u is analytic in R
3, each face

of ƒ can be extended to a perfect plane in R
3. By our assumption on the choice

of the origin, we may always assume O 2 l D …1 \…2, where …1 and …2 are

two perfect planes of u extending two faces of ƒ1. Define

Dl WD ¹… W… is a perfect plane of u that passes through the straight line lº: (4.2)

Then we know that …1;…2 2 Dl , or equivalently, D#
l

� 2. Moreover, using the

reflection principle one can verify that

Lemma 4.2. Dl consists of a finite number of perfect planes which form an equi-

angular system of planes in R
3.
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For the proof of Lemma 4.2, we refer to [8] in the case of Maxwell’s equations

and to [13] in the case of the Helmholtz equation. Note that this result is already

implicitly contained in [18] and [19] in the 2D case. By Lemma 4.2, we know that

D#
l
< 1 and each dihedral angle formed by two neighboring planes in the set Dl

is �=D#
l
.

Since O 2 …, for any … 2 Dl , we may write the relation (3.2) as

0 D
X

n2P

Ap;n

h

P>
n exp.ix � Pn/� Ref….P

>
n / exp.ix � Ref….Pn//

i

C
X

n2S

As;n

h

S?
n exp.ix � Sn/ � Ref….S

?
n / exp.ix � Ref….Sn//

i

;

under the boundary conditions of the third kind. Applying Lemma 3.1 to the above

identity, we obtain the reflectional invariance of the propagating directions in P

and S , which is stated in the following lemma.

Lemma 4.3 (Reflectional invariance). Assume … is a perfect plane from Dl . We

have

(1) Ref….P / D P , Ref….S/ D S .

(2) If Ref….Pn/ D Pm for some n;m 2 P , then Ap;n D Ap;m.

(3) If Ref….Sn/ D Sm for some n;m 2 S , then As;n Ref….S
?
n / D As;m S?

m.

Define Un.x/ WD P>
n exp.ix �Pn/, Vn.x/ WD S?

n exp.ix �Sn/. As a consequence

of Lemma 4.3, we obtain

Corollary 4.4. (1) If Ref….Sn/ D Sn for some plane … 2 Dl , then it holds that

S?
n D Ref….S

?
n /, i.e., Sn 2 … implies that S?

n 2 ….

(2) Two different perfect planes from the set Dl cannot pass through the same

point Sn 2 S .

(3) The function Un.x/ for j˛nj � kp satisfies the third kind boundary conditions

on … 2 Dl if and only if Pn 2 …, i.e., the perfect plane passes through P.

The function Vn.x/ for j˛nj � ks satisfies the third kind boundary conditions

on… 2 Dl if and only if Sn, S?
n 2 …, i.e., the perfect plane … passes through

both Sn and S?
n .

Proof. Since As;n ¤ 0 for any n 2 S , the first assertion follows directly from

Lemma 4.3 (3), and the second assertion follows from the first one. Using Lem-

ma 4.3 in combination with the definition of the stress operator T in (2.6), one can

easily prove the third assertion.
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4.2 Rotational invariance

Let the straight line l and the perfect planes …1;…2 2 Dl be given as in Sec-

tion 4.1. We need the following notation to prove the rotational invariance of P

and S .

(1) Rot'. � /: The rotation around the x2-axis by the angle ' 2 Œ0; 2�/. We assume

that Rot�=2 rotates the positive x1-axis towards the positive x3-axis so that the

rotation direction of Rot'. � / is determined. Rotl;'. � /: The rotation around

the straight line l by the angle ' 2 Œ0; 2�/ with some specified direction.

(2) �l : The unit vector parallel to l . The third component of �l is supposed to be

non-negative.

(3) …�: The plane perpendicular to l and passing through the origin.

(4) Rot�'. � /: The rotation around O by the angle ' defined on the plane …�. The

rotation direction of Rot�' coincides with that of Rotl;' . Ref�
l1
. � /: The reflec-

tion with respect to the straight line l1 � …� defined on …�.

(5) H. � /: The projection operator from R3 to …�.

Lemma 4.5. The rotation Rotl;2�=D#
l

can be written as

Rotl;2�=D#
l
.x/ D Ref Q…1

Ref Q…2
.x/; x 2 R

3;

where Q…1; Q…2 are two neighboring planes from Dl .

Proof. For x 2 R
3, there holds the decomposition x D .x � �l /�l CH.x/. Thus

Rotl;2�=D#
l
.x/ D .x � �l/�l C Rotl;2�=D#

l
.H.x//

D .x � �l/�l C Rot�
2�=D#

l

.H.x//;

and for any two neighboring planes Q…1; Q…2 2 Dl ,

Ref Q…1
Ref Q…2

.x/ D .x � �l/�l C Ref Q…1
Ref Q…2

.H.x//

D .x � �l/�l C Ref�
l1

Ref�
l2
.H.x//;

where lj D Q…j \…� for j D 1; 2. It is seen from Lemma 4.2 that the angle formed

by l1 and l2 is 2�=D#
l
. This implies that either

Rot�
2�=D#

l

.H.x// D Ref�
l1

Ref�
l2
.H.x//

or

Rot�
2�=D#

l

.H.x// D Ref�
l2

Ref�
l1
.H.x//;

which completes the proof.
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Lemma 4.6 (Rotational invariance). We have that

Rotl;2�=D#
l
.u.x// D u.Rotl;2�=D#

l
.x//;

Rotl;2�=D#
l
.P / D P ;

Rotl;2�=D#
l
.S/ D S :

Proof. Combining (3.2) and the above Lemma 4.5 gives

Rotl;2�=D#
l
.u.x// D Ref Q…1

Ref Q…2
.u.x// D Ref Q…1

�

u.Ref Q…2
.x//

�

D u
�

Ref Q…1
Ref Q…2

.x/
�

D u
�

Rotl;2�=D#
l
.x/
�

;

where Q…1 and Q…2 are two neighboring perfect planes fromDl . This together with

Lemma 3.1 implies the other two equalities in Lemma 4.6 for P and S .

From Lemma 4.6, we see that the multiple action of the rotation Rotl;2�=D#
l

on a

propagating direction of the compressional (resp. shear) part produces a propagat-

ing direction that still belongs to the compressional (resp. shear) part. Therefore,

we obtain

Corollary 4.7. We have

Gl;P WD ¹Rotl;2j�=D#
l
.P/ W j D 1; 2; : : : ;D#

l º � P ; 8 P 2 P ;

Gl;S WD ¹Rotl;2j�=D#
l
.S/ W j D 1; 2; : : : ;D#

l º � S ; 8 S 2 S :
(4.3)

Note that the set Gl;P (resp. Gl;S) consists of the vertices of some D#
l
-sided

regular polygon centered at a point O 0 2 l , where the line segment O 0P (resp.

O 0S) is perpendicular to the straight line l in R
3. In addition, using Lemma 4.3

one can prove that, for 1 � j � D#,

Ap;m Pm D Ap;n Rotl;2j�=D#
l
.Pn/ if Rotl;2j�=D#

l
.Pn/ D Pm;

As;m S?
m D As;n Rotl;2j�=D#

l
.S?

n / if Rotl;2j�=D#
l
.Sn/ D Sm:

4.3 Unidentifiable grating profiles which remain invariant in x2-direction

The main task of this subsection is to find all the grating profiles in A1 that cannot

be uniquely identified by one incident shear wave under the boundary conditions

of the third kind. We make the additional assumption that

(A3) ƒ1;ƒ2 2 A1,
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so that both ƒ1 andƒ2 remain invariant in the x2-direction. We may suppose that

the x2-axis coincides with the intersection line of the perfect planes …1, …2 ex-

tending two neighboring faces ofƒ1. For simplicity, we use the symbols Rot' ,D,

GP, GS to denote Rotl;' , Dl , Gl;P, Gl;S, respectively, with the straight line l re-

placed by the x2-axis. Then …1;…2 2 D, and by Lemma 4.2, 2 � D# < 1. Re-

calling the incident direction S� D ks
O� , with the incident angle O� defined in (2.1),

by (4.3) we have that GS�
� … WD ¹x2 D ks sin �1 sin �2º.

Lemma 4.8. Under the assumptions (A1)–(A3), we have

(1) 2 � D# � 4.

(2) If D# D 2, then setting Qs WD ¹.˙˛.1/
n ; ˛

.2/
n ; 0/ W j˛nj2 D k2

s º we have

¹S� ;Rot�.S�/º � S � ¹S� ;Rot�.S�/º [Qs; P � Qp: (4.4)

Moreover, if there exists some Pn 2 P n¹˙kpe2º or Sn 2 Qs \ S , then we

have ˛1 D ks sin �1 cos �2 D 0 and D D …1 [ …2 with …1 D ¹x1 D 0º,

…2 D ¹x3 D 0º.

(3) If D# D 3, then

S D ¹S�;Rot2�=3.S�/;Rot4�=3.S�/º; P � ¹˙kpe2º:

(4) If D# D 4, then

S D ¹S�;Rot�=2.S�/;Rot�.S�/;Rot3�=2.S�/º; P � ¹˙kpe2º:

Proof. (1) By Corollary 4.7, we observe that GS�
� S consists of the D# ver-

tices of some regular polygon centered at .0; ks sin �1 sin �2; 0/ 2 … and that the

x2-axis is perpendicular to the plane …. If D# � 5, then there are at least two

elements in GS�
, each of them has a negative x3-component. However, this is im-

possible by Remark 4.1. Since …1;…2 2 D, we arrive at 2 � D# � 4.

(2) AssumeD# D 2 withD D ¹…1;…2º. From Lemma 4.2 above, we see that

…1?…2, i.e., the dihedral angle between…1 and …2 is the right angle. Applying

the rotational invariance gives the relation Rot�.Sn/ 2 S for all Sn 2 S , and in

particular Rot�.S�/ 2 S . Thus

¹S�;Rot�.S�/º � S :

Since Rot�.x/ D .�x1; x2;�x3/ for x D .x1; x2; x3/ 2 R
3, all the points in

Sn¹S� , Rot�.S�/º are located on the circleBks
.O/\¹x3 D 0º and are symmetric

with respect to the x2-axis. This implies that the elements of S satisfy the relation

(4.4). The relation (4.4) for the elements of P can be proved similarly.
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If there exists some n 2 Z
2 such that Pn D .˛

.1/
n ; ˛

.2/
n ; 0/ 2 P n¹˙kpe2º, then

by the rotational invariance,

Rot�.Pn/ D .�˛.1/
n ; ˛.2/

n ; 0/ 2 P n¹˙kpe2º:

Note that ¹˙kpe2º is a subset ofQp. As…j .j D 1; 2/ passes through the x2-axis,

the reflectional invariance applied to P yields that one plane in D, say …1, coin-

cides with ¹x1 D 0º, while the other plane can be written as …2 D ¹x3 D 0º.

Since

Rot�.S�/ D ks.� sin �1 cos �2; sin �1 sin �2; cos �1/ 2 S ;

by the reflectional invariance it holds that

Ref…2
.Rot�.S�// D ks.� sin �1 cos �2; sin �1 sin �2;� cos �1/ 2 S

with a negative x3-component, � cos �1. However, recalling that S� is the only el-

ement in S whose x3-component is negative, we obtain

Ref…2
.Rot�.S�// D S� D ks.sin �1 cos �2; sin �1 sin �2;� cos �1/;

which implies that ˛1 D ks sin �1 cos �2 D 0. The case of Sn 2 Qs \ S ¤ ; for

some n 2 S can be proved similarly.

(3) If D# D 3, it is seen from (4.3) that

GS�
D ¹S� ;Rot2�=3.S�/;Rot4�=3.S�/º � S :

If Sn 2 SnGS�
for some n 2 S , then one element inGSn

� S must have a negative

x3-component, contradicting Remark 4.1. ThusGS�
D S . In addition, one further

obtains that S� must lie on one perfect plane from D, say …1, while Rot2�=3.S�/

and Rot4�=3.S�/ belong to the other two perfect planes …3 2 D and …2 2 D,

respectively; see Figure 3. In fact, if S� does not belong to any perfect plane inD,

a contradiction to Remark 4.1 can be derived by employing the reflectional invari-

ance.

If P 2 P , then by equation (4.3) we getGP � P . However, this is possible only

if P 2 ¹˙kpe2º, because the x3-components of the elements in P are all non-neg-

ative and the perfect planes inD all pass through the x2-axis. Thus P � ¹˙kpe2º.

(4) The case of D# D 4 can be proved analogously to that of D# D 3.

We remark that all the possible propagating directions of the total field, indi-

cated in Lemma 4.8, are determined by the form of the incident shear wave. Em-

ploying the reflectional and rotational invariance of these directions and the per-

fect planes that pass through the origin, we can determine each perfect plane inD,

while the perfect planes that do not pass through the origin can be determined via

a coordinate translation. This will be carried out in the following sections. Since
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Figure 3. S D ¹S� ;Rot�=3.S�/;S;Rot2�=3.S/º if D# D 3.

each face of ƒ1 [ ƒ2 can be extended to a perfect plane, all the unidentifiable

grating profiles can be characterized. We next proceed by considering the possible

number of elements in D separately.

Unidentifiable grating profiles in the case D
#

D 2

Lemma 4.9. Suppose that (A1)–(A3) hold, D# D 2 and that one plane from D,

say …1, passes through S� . Then D D ¹…1;…2º with …1?…2, and the normal

directions �…j
corresponding to …j .j D 1; 2/ are given by

�…1
D O� � e2 D .cos �1; 0;� sin �1 cos �2/;

�…2
D e2 � �…1

D .sin �1 cos �2; 0;� cos �1/;
(4.5)

so that the plane …j is defined by �…j
�x D 0 for j D 1; 2. In addition, �…1

? O�?.

Proof. ThatD D ¹…1;…2º with…1?…2 follows from Lemma 4.2 applied to the

caseD# D 2. Since Ref…1
.S�/ D S� and �…1

?�…2
, we may write �…1

D O� � e2

and �…2
D e2 ��…1

, noting that S� D ks
O� and that both…1 and…2 pass through

the x2-axis. It is seen from Corollary 4.4 (1) that O�? 2 …1 and thus �…1
? O�?.

Since D# D 2, using Rot�. � / D Ref…1
Ref…2

. � / D Ref…2
Ref…1

. � / we ob-

tain that (see Figure 4, left)

Ref…2
.S�/ D Rot�.S�/;

Ref…1
.S�/ D S�;

Ref…1
.Rot�.S�// D Rot�.S�/:

(4.6)
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Figure 4. The elements of S in the case of D D ¹…1;…2º with S� D ks
O� 2 …1.

Left figure: S D ¹S�;Rot�.S�/º if ˛1 D ks sin �1 cos �2 ¤ 0; Right figure: S �
¹S� ;Rot�.S�/º [Qs , with Sn 2 Qs for some n 2 �s , if ˛1 D ks sin �1 cos �2 D 0.

We next introduce the first classU1 WD U1.�1; �2; ks ; O�?/ of unidentifiable grat-

ing profiles. Let �…j
2 R

3 .j D 1; 2/ be defined by (4.5). If �…1
� O�? D 0 and

2ks sin �1 cos �2 2 Z, U1 is defined as

U1 D
®

ƒ 2 A1 W each face of ƒ lies on a plane defined by �…1
� x C C D 0

for some C 2 R, or on a plane given by �…2
� x Cm�=ks D 0

for some m 2 Z, where �…j
are defined in (4.5)

¯

:

If �…1
� O�? ¤ 0 or 2ks sin �1 cos �2 … Z, the set U1 is defined as the empty set.

Lemma 4.10. Under the assumptions of Lemma 4.9, we have ƒ1;ƒ2 2 U1, and

the total field u D u1 D u2 takes the form

u D O�? exp.iksx � O�/C Rot�. O�?/ exp.iksx � Rot�. O�//
C ŒCC exp.ikpx2/� C� exp.�ikpx2/�e2

C
X

n2 Q�p

h

.n1; ˛
.2/
n ; 0/> exp.in1x1 C i˛.2/

n x2/

C .�n1; ˛
.2/
n ; 0/> exp.�in1x1 C i˛.2/

n x2/
i

Ap;n

C
X

n2�s

h

.�˛.2/
n ; n1; 0/

> exp.in1x1 C i˛.2/
n x2/

C .˛.2/
n ; n1; 0/

> exp.�in1x1 C i˛.2/
n x2/

i

As;n;

where Q�p D ¹n 2 �p W .˛n; 0/ … ¹˙kpe2ºº, and C˙; Ap;n; As;n 2 C are deter-

mined as follows. If ˙kp � ks sin �1 sin �2 2 Z and ks sin �1 cos �2 2 Z, then C˙
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is an arbitrary constant; otherwise C˙ D 0. For nD .n1; n2/ 2 Q�p .resp. �s/, the

Rayleigh coefficient Ap;n .resp. As;n/ is an arbitrary constant if sin �1 cos �2 D 0

and C
� cos �1

n1 2 Z for each C involved in the definition of U1; otherwise, we have

Ap;n D 0 .resp. As;n D 0/.

Proof. We first check that the total field u indeed takes the form as indicated

above. Noting that ¹˙kpe2º � Qp, by Lemma 4.8 (2), we may write the com-

pressional part of u as

up D ŒCC exp.ikpx2/ � C� exp.�ikpx2/�e2

C
X

n2 Q�p

h

AC
p;n.˛

.1/
n ; ˛.2/

n ; 0/> exp.i˛.1/
n x1 C i˛.2/

n x2/

C A�
p;n.�˛.1/

n ; ˛.2/
n ; 0/> exp.�i˛.1/

n x1 C i˛.2/
n x2/

i

;

where Q�p D ¹n 2 �p W .˛n; 0/ … ¹˙kpe2ºº, and C˙; A˙
p;n 2 C. If AC

p;n ¤ 0,

then

.˛.1/
n ; ˛.2/

n ; 0/ 2 P n¹˙kpe2ºI

if A�
p;n ¤ 0, then

.�˛.1/
n ; ˛.2/

n ; 0/ 2 P n¹˙kpe2º:

Using Lemma 4.8 (2) and Lemma 4.3 (2), we see that A�
p;n D AC

p;n DW Ap;n ¤ 0

and ˛1 D ks sin �1 cos �2 D 0 if either AC
p;n ¤ 0 or A�

p;n ¤ 0. On the other hand,

if C˙ ¤ 0, the ˛-quasi-periodicity (2.7) of up gives the relations

˙kp � ks sin �1 sin �2 2 Z and ks sin �1 cos �2 2 Z:

Analogously, using the relations in (4.6) and Lemma 4.3 (3), we obtain that the

shear part us takes the form

us D O�? exp.iksx � O�/C Rot�. O�?/ exp.iksx � Rot�. O�//

C
X

n2�s

h

.�˛.2/
n ; n1; 0/

> exp.in1x1 C i˛.2/
n x2/

C .˛.2/
n ; n1; 0/

> exp.�in1x1 C i˛.2/
n x2/

i

As;n

and that ˛1 D ks sin �1 cos �2 D 0 if As;n ¤ 0 for some n 2 �s . In addition, it is

seen from

Rot�. O�/ D .� sin �1 cos �2; sin �1 sin �2; cos �1/

and the ˛-quasi-periodicity of us that it holds 2ks sin �1 cos �2 2 Z, and from Cor-

ollary 4.4 (1) that �…1
� O�? D 0.
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In summary, the total field u D up C us indeed takes the form given in Lem-

ma 4.10, and

� �…1
� O�? D 0, 2ks sin �1 cos �2 2 Z,

� AC
p;n ¤ 0 or A�

s;n ¤ 0 implies sin �1 cos �2 D 0,

� C˙ ¤ 0 implies ˙kp � ks sin �1 sin �2 2 Z, ks sin �1 cos �2 2 Z.

Next we shall prove that ƒ1;ƒ2 2 U1. To this end, we need to determine the

planes containing a face of ƒ1 [ƒ2 that do not pass through the origin.

Let

…0 W �0 � x C �0 � y D 0 with some fixed y 2 R3, �0 2 R3

be another perfect plane of u, extending some face of ƒ1 [ƒ2 on which the total

field u defined in Lemma 4.10 satisfies the boundary conditions of the third kind.

Define v.x/ WD u.x � y/. Then, the shear part of v, vs.x/ D us.x � y/, can be

decomposed into the sum Vs C
P

n2�s
As;nVs;n, where

Vs.x/ D O�? exp.iksx � O�/ exp.�iksy � O�/

C Rot�. O�?/ exp.iksx � Rot�. O�// exp.�iksy � Rot�. O�//;
(4.7)

Vs;n.x/ D .�˛.2/
n ; n1; 0/

> exp.in1x1 C i˛.2/
n x2/ exp.�in1y1 � i˛.2/

n y2/

C .˛.2/
n ; n1; 0/

> exp.�in1x1 C i˛.2/
n x2/

� exp.in1y1 � i˛.2/
n y2/;

(4.8)

while the compressional part of v, vp.x/ D up.x � y/, can be written as

vp D Vp C
X

n2 Q�p

Ap;nVp;n;

where

Vp.x/ D e2ŒC
C exp.ikpx2/ exp.�ikpy2/

� C� exp.�ikpx2/ exp.ikpy2/�;
(4.9)

Vp;n.x/ D .n1; ˛
.2/
n ; 0/> exp.in1x1 C i˛.2/

n x2/ exp.�in1y1 � i˛.2/
n y2/

C .�n1; ˛
.2/
n ; 0/> exp.�in1x1 C i˛.2/

n x2/

� exp.in1y1 � i˛.2/
n y2/:

(4.10)

The function v.x/ satisfies the Navier equation in R
3 with the third kind boundary

conditions on the plane …0
0 W �0 � x D 0. One may further observe that v has the

same propagating directions as u. Since ƒj 2 A1, j D 1; 2, we know that …0
0

passes through the x2-axis, and that either …0
0 D …2 or …0

0 D …1 holds.
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Case (i) …0
0 D …2.

In this case, we have �0 D �…2
, and by (4.6), Ref…0

0
.S�/ D Rot�.S�/. Apply-

ing Lemma 4.3 (3) to Vs gives the relation

exp.�iksy � O�/ D exp.�iksy � Rot�. O�//;
which implies that

ksy � . O� � Rot�. O�// D 2m�

for some m 2 Z. Since O� � Rot�. O�/ D 2�…2
, we obtain that y � �…2

D m�=ks

for some m 2 Z. If As;n ¤ 0 for some n 2 �s , then by Lemma 4.8 (2), we have

˛1 D 0, …0
0 D ¹x3 D 0º and �0 D �…2

D .0; 0;� cos �1/. Thus Qs � …0
0.

By Corollary 4.4 (3), this implies that the function Vs;n defined in (4.8) always

satisfy the Navier equation and the boundary conditions of the third kind on …0
0.

We obtain the same for the function Vp;n defined in (4.9) since Qp � ¹x3 D 0º
using similar arguments and Lemma 4.8 (2) above. Therefore, …0 can be written

as ¹x 2 R
3 W �…2

� x Cm�=ks D 0º for some m 2 Z, and…0 coincides with…2

if m D 0.

Case (ii) …0
0 D …1.

In this case, we have S�;Rot�.S�/ 2 …0
0 and �0 D �…1

. Since …0
0 passes

through the x2-axis and both S� and Rot�.S�/ belong to …0
0, the functions Vp

and Vs , defined by (4.9) and (4.7) respectively, both satisfy the boundary condi-

tions of the third kind on the plane ¹�…1
� x C C D 0º, where C D �…1

� y for

some y D .y1; y2; y3/ 2 R3.

If Ap;n ¤ 0 for some n 2 Q�p (resp. As;n ¤ 0 for some n 2 �s), it is seen from

Lemma 4.8 (2) that …0
0 D …1 D ¹x1 D 0º, �…1

D .cos �1; 0; 0/, and thus

Ref…0

0
¹.n1; ˛

.2/
n ; 0/º D ¹.�n1; ˛

.2/
n ; 0/º:

Together with Lemma 4.3 (2) applied to (4.10) (resp. Lemma 4.3 (3) applied to

(4.8)), this gives the identity

exp.�in1y1 � i˛.2/
n y2/ D exp.in1y1 � i˛.2/

n y2/;

which implies that n1y1 D m� for some m 2 Z. Therefore,

C D y � �…1
D y1 cos �1 D m�

n1
cos �1; for some m 2 Z,

8n D .n1; n2/ 2 Q�p [ �s:

It means that if Ap;n ¤ 0 for some n D .n1; n2/ 2 Q�p or if As;n ¤ 0 for some

n D .n1; n2/ 2 �s , then

C

� cos �1
n1 2 Z; for each C involved in the definition of U1.

The proof of Lemma 4.10 is thus complete.
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Lemma 4.11. Suppose that (A1)–(A3) hold, D# D 2, and that each plane from D

does not pass through S� . Then

(1) S D ¹S�;Rot�.S�/;S;Rot�.S/º, where S� is the incident direction, and S,

Rot�.S/ are given by

S D ks

�

q

1� sin2 �1 sin2 �2; sin �1 sin �2; 0
�

;

Rot�.S/ D ks

�

�
q

1� sin2 �1 sin2 �2; sin �1 sin �2; 0
�

:

(4.11)

(2) D D ¹…1;…2º with …1?…2. Moreover, the normal directions �…j
corres-

ponding to …j .j D 1; 2/ are given by

�…1
D
�

q

1 � sin2 �1 sin2 �2 � sin �1 cos �2; 0; cos �1

�

;

�…2
D
�

�
q

1� sin2 �1 sin2 �2 � sin �1 cos �2; 0; cos �1

�

:

(4.12)

(3) We have

ks

�

sin �1 cos �2 �
q

1 � sin2 �1 sin2 �2

�

2 Z;

ks

�

sin �1 cos �2 C
q

1 � sin2 �1 sin2 �2

�

2 Z:

(4) P � ¹˙kpe2º.

Proof. (1) Since D# D 2, by Lemma 4.2 we have D D ¹…1;…2º with …1?…2.

Noting that S� … …j .j D 1; 2/, without loss of generality we may assume (see

Figure 5)

Ref…1
.S�/ D .˛.1/

n ; ˛.2/
n ; 0/ WD S;

Ref…1
.Rot�.S�// D .�˛.1/

n ; ˛.2/
n ; 0/

(4.13)

for some n 2 �s . We claim that S D ¹S�;Rot�.S�/; .˙˛.1/
n ; ˛

.2/
n ; 0/º. To prove

this, we suppose there exists some m D .m1;m2/ 2 �s such that n ¤ m and

¹.˙˛.1/
m ; ˛

.2/
m ; 0/º � S . It follows from Corollary 4.4 (3) that ¹.˙˛.1/

m ; ˛
.2/
m ; 0/º

does not coincide with ¹˙kse2º and from equation (4.13) that …1 ¤ ¹x3 D 0º.

Thus the elements in Ref…1
¹.˙˛.1/

m ; ˛
.2/
m ; 0/º � Ref…1

¹x3 D 0º do not belong to

the set Qs defined by (4.4). In view of Lemma 4.9 (2), we have

Ref…1
¹.˙˛.1/

m ; ˛.2/
m ; 0/º D ¹S�;Rot�.S�/º:

However, this contradicts (4.13) and the fact that n ¤ m. Thus

S D ¹S�;Rot�.S�/;S;Rot�.Sº:
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We see from S 2 Bks
.O/ that ˛

.1/
n and ˛

.2/
n satisfy

.˛.1/
n /2 C .˛.2/

n /2 D k2
s and ˛.2/

n D ks sin �1 sin �2;

which together with (4.13) yields the first assertion.

Figure 5. S D ¹S� ;Rot�.S�/;S;Rot�.S/º if D# D 2 and S� … …j for j D 1; 2.

(2) The identities in (4.13) lead to Ref…1
.S�/ D S and Ref…2

.S�/ D Rot�.S/,

from which we obtain that the normal directions �…j
corresponding to …j are

given by

�…1
D 1

ks
.S � S�/ D

�

q

1 � sin2 �1 sin2 �2 � sin �1 cos �2; 0 cos �1

�

;

�…2
D 1

ks
.Rot�.S/ � S�/ D

�

�
q

1� sin2 �1 sin2 �2 � sin �1 cos �2; 0 cos �1

�

:

(3) The relations in the third assertion follow from the ˛-quasi-periodicity con-

dition (2.7) applied to the four propagating directions of the shear part S indicated

in Lemma 4.11 (1).

(4) If P n¹˙kpe2º ¤ ;, it follows from Lemma 4.9 (2) that sin �1 cos �2 D 0

and…1 D ¹x1 D 0º. This implies that S� 2 …1, contradicting the assumption that

no plane from D passes through S� . Thus P � ¹˙kpe2º.

Now we introduce the second class U2 D U2.�1; �2; ks/ of unidentifiable grat-

ing profiles by setting

U2 WD
®

ƒ 2 A1 W each face of ƒ lies on a plane defined by �…j
� x C 2m� D 0

for some m 2 Z, j D 1; 2, with �…j
given by (4.12)

¯

if �ks.sin �1 cos �2 ˙
p

1� sin2 �1 sin2 �2/ 2 Z, and by U2 WD ; otherwise.
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Lemma 4.12. Under the assumptions of Lemma 4.11, we have ƒ1;ƒ2 2 U2, and

the total field u D u1 D u2 takes the form

u D O�? exp.iksx � O�/C Rot�. O�?/ exp.iksx � Rot�. O�//

C Ref…1
. O�?/ exp.ix � S/C Ref…2

. O�?/ exp.ix � Rot�.S//

C ŒCC exp.ikpx2/ � C� exp.�ikpx2/�e2;

where …j D ¹x W �…j
� x D 0º .j D 1; 2/ with �…j

defined in equation (4.12),

S D ks Ref…1
. O�/ and the constants C˙ 2 C are determined as in Lemma 4.10.

Since Lemma 4.12 (and also the following Lemmas 4.14 and 4.16) can be

proved analogously to Lemma 4.10, we omit the details for the sake of brevity.

Unidentifiable grating profiles in the case D
#

D 3

Lemma 4.13. Assume that (A1)–(A3) hold and D# D 3. Then we have

(1) P � ¹˙kpe2º and

S D ¹S� ;Rot2�=3.S�/;Rot4�=3.S�/º D ks¹ O�;Rot2�=3. O�/;Rot4�=3. O�/º

with

Rot2�=3. O�/ D
�

�1
2

sin �1 cos �2 �
p
3

2
cos �1; sin �1 sin �2;

�
p
3

2
sin �1 cos �2 C 1

2
cos �1

�

;

Rot4�=3. O�/ D
�

�1
2

sin �1 cos �2 C
p
3

2
cos �1; sin �1 sin �2;

p
3

2
sin �1 cos �2 C 1

2
cos �1

�

:

(2) D D ¹…1;…2;…3º and

S� 2 …1; Rot2�=3.S�/ 2 …2; Rot4�=3.S�/ 2 …3:

Moreover,

…j D ¹x W �…j
� x D 0º;
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where the normal directions �…j
corresponding to …j are given by

�…1
D O� � e2 D .cos �1; 0; sin �1 cos �2/;

�…2
D e2 � Rot2�=3. O�/

D
�

�
p
3

2
sin �1 cos �2 C 1

2
cos �1; 0;

1

2
sin �1 cos �2 C

p
3

2
cos �1

�

;

�…3
D e2 � Rot4�=3. O�/

D
�

p
3

2
sin �1 cos �2 C 1

2
cos �1; 0;

1

2
sin �1 cos �2 �

p
3

2
cos �1

�

:

(3) �3
2 sin �1 cos �2 ˙

p
3

2 cos �1 2 Z; j
p
3 sin �1 cos �2j � cos �1; �…1

� O�? D 0.

Proof. The first assertion follows from Lemma 4.8 (3), while the second assertion

can be derived from the proof of Lemma 4.8 (3) in combination with the fact that

each …j passes through the x2-axis. To prove the third assertion, making use of

the ˛-quasi-periodicity we see that

Rot2�=3. O�/ D Sn D .˛1 C n1; ˛2 C n2; 
n/ for some n 2 Z
2; with 
n � 0;

Rot4�=3. O�/ D Sm D .˛1 Cm1; ˛2 Cm2; 
m/ for some m 2 Z
2; with 
m � 0:

In view of the components of Rot2�=3. O�/;Rot4�=3. O�/ indicated in the first asser-

tion, we arrive at

�3
2

sin �1 cos �2 ˙
p
3

2
cos �1 2 Z; j

p
3 sin �1 cos �2j � cos �1:

Finally, the relation

�…1
� O�? D 0

is a consequence of O� 2 …1 and Corollary 4.4 (1).

Define the third class U3 D U3.�1; �2; ks ; O�?/ of unidentifiable grating profiles

by

U3 WD
®

ƒ 2 A1 W each face of ƒ lies on a plane given by �…j
� x C 4�

ks

p
3
m D 0

for some m 2 Z, where �…j
.j D 1; 2; 3/ are defined

in Lemma 4.13 (2)
¯

if the conditions of Lemma 4.13 (3) are all satisfied, and by U3 WD ; if one of the

conditions of Lemma 4.13 (3) is not satisfied.
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Lemma 4.14. Under the assumptions of Lemma 4.13, we have ƒ1;ƒ2 2 U3, and

the total field u D u1 D u2 takes the form

u D O�? exp.iksx � O�/C Rot2�=3. O�?/ exp.iksx � Rot2�=3. O�//

C Rot4�=3. O�?/ exp.iksx � Rot4�=3. O�//
C ŒCC exp.ikpx2/ � C� exp.�ikpx2/�e2;

where the constants C˙ 2 C are determined as in Lemma 4.10.

Unidentifiable grating profiles in the case D
#

D 4

Lemma 4.15. Assume that (A1)–(A3) hold and D# D 4. Then

(1) P � ¹˙kpe2º, S D ks¹ O�;Rot�=2. O�/;Rot�. O�/;Rot3�=2. O�/º with

O� D .0; sin �1 sin �2;� cos �1/;

Rot�=2. O�/ D .� cos �1; sin �1 sin �2; 0/;

Rot�. O�/ D .0; sin �1 sin �2; cos �1/;

Rot3�=2. O�/ D .cos �1; sin �1 sin �2; 0/:

(2) sin �1 cos �2 D 0, O�? 2 ¹x3 D 0º and ks cos �1 2 Z.

(3) D D ¹…1;…2;…3;…4º with

…1 D ¹x1 D 0º; …2 D ¹x1 D x3º;
…3 D ¹x3 D 0º; …4 D ¹x1 D �x3º:

Proof. By Lemma 4.8 (4), we have P � ¹˙kpe2º and

S D ¹S� ;Rot�=2.S�/;Rot�.S�/;Rot3�=2.S�/º

D ks¹ O�;Rot�=2. O�/;Rot�. O�/;Rot3�=2. O�/º:
Analogously to the proof of Lemma 4.13 (2), one can verify that each element from

S lies on some perfect plane inD. This implies that S�;Rot�.S�/ 2 ¹x1 D 0º and

Rot�=2. O�/;Rot3�=2. O�/ 2 ¹x3 D 0º. By Lemma 4.2, without loss of generality, we

may assume that

…1 D ¹x1 D 0º; …2 D ¹x1 D x3º; …3 D ¹x3 D 0º; …4 D ¹x1 D �x3º:

The relations sin �1 cos �2 D 0 and O�? 2 ¹x3 D 0º follow from S� 2 ¹x1 D 0º
and Corollary 4.4 (1), while ks cos �1 2 Z is derived from the ˛-quasi-periodicity

of u.
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Define the fourth class U4 D U4.�1; �2; ks ; O�?/ of unidentifiable grating pro-

files by

U4 D
®

ƒ 2 A1 W each face of ƒ lies on a plane defined by x3 C �
ks
m D 0,

x3 C �
ks
m D 0, or x3 ˙ x1 C 2�

ks
m D 0 for some m 2 Z

¯

if ks cos �1 2 Z, sin �1 cos �2 D 0 and O�? 2 ¹x3 D 0º, and by U4 WD ; if one of

the relations in Lemma 4.15 (2) is not satisfied.

Lemma 4.16. Under the assumptions of Lemma 4.15, we have ƒ1;ƒ2 2 U4, and

the total field u D u1 D u2 takes the form

u D O�? exp.iksx � O�/C Rot�=2. O�?/ exp.iksx � Rot�=2. O�//

C Rot�. O�?/ exp.iksx � Rot�. O�//

C Rot3�=2. O�?/ exp.iksx � Rot3�=2. O�//
C ŒCC exp.ikpx2/ � C� exp.�ikpx2/�e2;

where the constants C˙ 2 C are determined as in Lemma 4.10.

4.4 Unidentifiable grating profiles which vary in both

the x1 and x2 directions

Throughout this section we assumeƒ1;ƒ2 2 A2, that is, ƒj is not constant in x2

and varies in x1 and x2 2�-periodically. In this case, there always exists a corner

point of ƒ1 where at least three faces of ƒ1, ‚1;‚2; : : : ;‚N .N � 3/, meet to-

gether. This corner point is supposed to coincide with the origin O without loss of

generality. Let …j .j D 1; 2; : : : ; N / be the perfect planes obtained by extending

the faces‚j . These planes form at leastN intersection lines that pass through O ,

which we denote by l1; l2; : : : ; lN respectively. Without loss of generality, we as-

sume

l1 D …1 \…2; l2 D …2 \…3; l3 D …3 \…1:

Furthermore we suppose that lj .j D 1; 2; 3/ are three non-coplanar lines in R3.

Recalling the set Dl defined in (4.2), we obtain three equiangular systems of per-

fect planes Dlj .j D 1; 2; 3/. Define

D D ¹… W … 2 Dl1
[Dl2

[Dl3
º;

L D ¹l W 9…; Q… 2 D such that l D … \ Q…º:
The set D consists of all perfect planes passing through l1; l2 or l3, whereas L

consists of all intersection lines of any two planes from D . Evidently, each element

in D and L passes through the origin O .
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Lemma 4.17. (1) In the case of the boundary conditions of the third kind, the

incident direction S� D ks
O� satisfies S� … l for all l 2 L.

(2) Ref….S/ D S and Ref….P / D P for all … 2 D .

Proof. See Corollary 4.4 (2) and Lemma 4.3.

We proceed to determine the finite number of the propagating directions of the

total field and the perfect planes passing through O , relying on the above Lemma

4.17, and the reflectional and rotational invariance of the total field (Lemma 4.3

and Lemma 4.6). As one would expect, the arguments in this section will be more

complicated than those in Section 4.3, because the grating profiles from A2 vary

in both the x1 and x2 directions. Analogously to Lemmas 4.9,4.11,4.13 and 4.15,

we establish the following lemma for ƒ1;ƒ2 2 A2, from which the fifth class of

unidentifiable grating profiles can be derived (see Lemma 4.21).

Lemma 4.18. Under the assumptions (A1)–(A2) and ƒ1;ƒ2 2 A2, we have:

(1) All points of S lie on one perfect plane in D . Without loss of generality, we

may assume that S � …3.

(2) S D ¹˙ks
O�;˙Sº with S D .y1; y2; 0/ 2 R3, where y1; y2 2 R satisfy

y2
1 C y2

2 D k2
s ; . O� � O�?/ � .y1; y2; 0/ D 0:

(3) D D ¹…1;…2;…3º with…1?…2;…2?…3;…3?…1. Furthermore, the nor-

mal directions �…j
corresponding to …j .j D 1; 2; 3/ are given by

�…3
D O� � O�?; �…1

D S � S�; �…2
D S C S� :

(4) ˙y1 � ks sin �1 cos �2 2 Z, ˙y2 � ks sin �1 sin �2 2 Z.

(5) If O� � O�? is parallel to the plane ¹x3 D 0º, then

P � ¹˙kp. O� � O�?/=k O� � O�?kºI

otherwise P D ;.

Proof. We decompose the proof into three steps.

Step 1. Prove Lemma 4.18 if one of the lines lj .j D 1; 2; 3/ is parallel to the

plane ¹x3 D 0º.

Without loss of generality, we may assume l1k¹x3 D 0º. Two cases need to be

considered.

Case (i): l1 coincides with the x2-axis.
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Since lj .j D 1; 2; 3/ are non-coplanar straight lines and l1 D …1 \ …2, the

plane …3 cannot pass through the x2-axis. Recall that in this case the sets Dl1

and Gl1;S�
(defined in (4.2) and (4.3)) are denoted by D and GS�

, respectively,

and that GS�
� … WD ¹x2 D ks sin �1 sin �2º. It is seen from Lemma 4.8 (1) that

2 �D# � 4. Based on Lemmas 4.8, 4.9, 4.13 and 4.15, we shall prove thatD# D 2

and that each plane from D does not pass through S� .

We first exclude the casesD# D 3 andD# D 4. In either of the cases, by Lem-

ma 4.8, we have S D GS�
� …. As Ref…3

.S/ D S , we know that either…3 D …

or …3?… holds. However,…3 D … together with Lemmas 4.13 and 4.15 would

lead to the fact that each element of GS�
belongs to two different perfect planes

of D , one of which is …3 and the other one belongs to D, contradicting Corol-

lary 4.4 (2). Moreover,…3?… in combination withO 2 l1, l1?…,O 2…3 would

result in l1 � …3, contradicting the assumption that l1 does not lie on …3.

Thus D# D 2, and consequently S D ¹S� ;Rot�.S�/º [ Qs by Lemma 4.8.

We claim that Qs ¤ ;. In fact, if Qs D ;, then S would only consist of two ele-

ments, S� and Rot�.S�/. Since Ref…j
.S/ D S for j D 1; 2; 3, there exist a point

in S lying on two planes from ¹…1;…2;…3º, which is impossible due to Corol-

lary 4.4 (2).

Next, we exclude the case that one plane of D passes through S� whenD# D 2.

Clearly, D D ¹…1;…2º with …1?…2. Assume S� 2 …1 without loss of gener-

ality. Since Qs ¤ ;, it follows from Lemma 4.8 (2) that

…1 D ¹x1 D 0º; …2 D ¹x3 D 0º and sin �1 cos �2 D 0:

Now we consider the straight line l2 D …2\…3, which lies on the plane ¹x3 D 0º.

We deduce from the previous argument in case .i / that D#
l2

D 2, which leads to

Dl2
D ¹…2;…3º with …2?…3. Since O 2 …j .j D 1; 2; 3/, it follows that the

straight line l3 D …3 \…1 coincides with the x3-axis. Thus, by Lemma 4.6 and

equation (4.3), the elements in Gl3;S�
have the same x3-component �
 as S� .

However, this only happens if the set Gl3;S�
consists of one element S� , or equiv-

alently, S� 2 l3 2 …1 \…3, which contradicts Corollary 4.4 (2).

Therefore, we have proved that D D ¹…1;…2º with …1?…2, and that neither

…1 nor …2 goes through S� . It follows from Lemma 4.11 that

S D ¹S� ;Rot�.S�/;S;Rot�.S/º � …;

where S is defined in Lemma 4.11 (1). We claim that… D …3. Actually, it is seen

from Ref…3
.S/D S that Ref…3

.…/D…. Thus, either…3?… or…3 D … holds.

If …3?…, then l1 � …3 since O 2 l1, l1?… and O 2 …3. This is impossible
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because l1 does not lie on …3. Thus it holds that … D …3, leading to

S � …3; S?
� 2 …3; …3 D ¹x2 D 0º; ˛2 D ks sin �1 sin �2 D 0;

O� � O�?ke2; …1?…3; …2?…3:

In view of Lemma 4.11, we conclude from the above analysis that

(I) S D ks¹.sin �1 cos �2; 0;� cos �1/; .� sin �1 cos �2; 0; cos �1/;˙e1º � …3,

…3 D ¹x2 D 0º.

(II) D D ¹…1;…2;…3º with …1?…2;…2?…3;…3?…1. Moreover, the nor-

mal directions �j corresponding to …j are given by

�…1
D .1 � sin �1 cos �2; 0; cos �1/;

�…2
D .1C sin �1 cos �2; 0;� cos �1/;

�…3
D O� � O�?:

(III) ks.sin �1 cos �2 ˙ 1/ 2 Z, sin �1 sin �2 D 0, O�? 2 …3, P � ¹˙kpe2º.

This completes the proof of Lemma 4.18 when l1 coincides with the x2-axis.

Case (ii): The line l1 � ¹x3 D 0º does not coincide with the x2-axis.

Via a coordinate rotation around the x3-axis, one can carry over the argument

from case .i / to this case. Note that the third component of each point x 2 R
3 re-

mains invariant under such a rotation.

Step 2. Prove Lemma 4.18 if none of the lines lj .j D 1; 2; 3/ is parallel to the

plane ¹x3 D 0º.

Let �l1
D .�1; �2; �3/ 2 S2 be a vector parallel to the line l1 D…1 \…2. Since

�l1
¬ ¹x3 D 0º, we may assume �3 > 0. Define

…�
j WD ¹the plane passing through the origin that is orthogonal to lj º

and

Tl1;S�
WD
®

Sn 2 S W Sn can be obtained by applying one or several

reflections from the set ¹Ref… W … 2 Dl1
º to S�

¯

:

By Lemma 4.5, we have Gl1;S�
� Tl1;S�

. Let H1 be the projection operator from

R
3 to …�

1 . Then

S� D � �l1
CH1.S�/ with � D S� � �l1

;

Sn D �n �l1
CH1.Sn/ with �n D Sn � �l1

:
(4.14)

The following lemma has been proved in [9] using the dihedral group theory. Here

we present another proof using the reflectional and rotational invariance of S for

the reader’s convenience.
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Lemma 4.19. We have �n D � for all Sn 2 Tl1;S�
, �n � 0 for all Sn 2 SnTl1;S�

,

and

�C
X

n2S; n¤�

�n D 0:

Proof of Lemma 4.19. Since the perfect planes inDl1
form an equiangular system

of planes in R3 (see Lemma 4.2), there holds �n D � for all Sn 2 Tl1;S�
. Then we

see that

Gl1;Sn
D ¹�n �l1

CH1.Rotl1;2m�=D#
l1

.Sn// W m D 1; 2; : : : ;D�
l1

º;

where the set

¹H1.Rotl1;2m�=D#
l1

.Sn// W m D 1; 2; : : : ;D�
l1

º

consists of the D#
l1

vertices of some regular polygon lying on …�
1 centered at the

origin. Thus, if we have �n < 0 for some Sn 2 SnTl1;S�
, then there exists at least

one element in Gl1;Sn
whose x3-components are negative, which is impossible

since S� … Gl1;Sn
. Thus �n � 0 for all Sn 2 SnTl1;S�

. To verify the last assertion,

we let A D
P

n2S Sn. Then, by Lemma 4.6, we see that

Rotlj ;2�=D#
lj

.A/ D A for j D 1; 2; 3:

Since lj .j D 1; 2; 3/ are three different non-coplanar straight lines, we obtain

A D 0, and thus

�l1
�A D �C

X

n2S; n¤�

�n D 0:

To proceed with the proof of Lemma 4.18, it suffices to consider the following

cases:

Case (a) S� belongs to one of the planes …�
j .j D 1; 2; 3/,

Case (b) S� … …�
j for all j D 1; 2; 3.

We finish this step by studying case (a) and exclude case (b) in the next step. As

we will see in the following, case (a) leads to the desired results in Lemma 4.18.

Without loss of generality, we assume S� 2 …�
1 . Since l1?…�

1 , we have � D 0,

and thus by Lemma 4.19, �n D 0 for all Sn 2 Tl1;S�
. Furthermore, we obtain

from the last assertion of Lemma 4.19 that �n D 0 for all Sn 2 S , which leads to

S � …�
1 . Thus Lemma 4.18 (1) is proved in case (a).

Lemma 4.20. D D ¹…1;…2;…3º, and the planes …j .j D 1; 2; 3/ are perpen-

dicular to each other.
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Proof of Lemma 4.20. Since Gl1;S�
� S 2 …�

1 , using the fact that S� is the only

component in S whose x3-component is negative, one can readily prove that

2 � D#
ll

� 4 and that Gl1;S�
D S if D#

ll
D 3 or D#

ll
D 4; see the proof of Lem-

ma 4.8 above. However, both of the cases D#
ll

D 3 and D#
ll

D 4 can be excluded,

since either of them would imply that …3 D …�
1 and that each point from S lies

on two different perfect planes in Dl1
(see the arguments in Step 1, case (i)). This

contradicts Corollary 4.4 (2). Thus we have D#
l1

D 2, leading to Dl1
D ¹…1;…2º

with …1?…2. By the rotational invariance, we further obtain that

Rotl1;� .Sn/ D �Sn 2 S for Sn 2 S .

This implies that

S � ¹˙ks
O�º [ QQs � …�

1 ;
QQs D ¹˙.˛.1/

n ; ˛.2/
n ; 0/ W j˛nj2 D k2

s º: (4.15)

Using an argument similar to case (i) of Step 1, we see that QQs ¤ ;, which to-

gether with Ref…3
.S/ D S and S � …�

1 yields Ref…3
.…�

1/ D …�
1 . Hence, either

…3?…�
1 or…3 D …�

1 holds. However, the orthogonality …3?…�
1 in combination

with O 2 …3 \…�
1 , l1?…�

1 would lead to l1 � …3. This implies that

…1 \…2 \…3 D l1;

which is impossible since lj are three non-coplanar lines. Thus …3 D …�
1 and…3

is perpendicular to both …1 and …2.

From…�
1 D …3 and Corollary 4.4 (1), we see that O� 2 …3 and O�? 2 …3. Thus

we may write the normal direction to …3 as

�…3
D O� � O�?:

Moreover, using Corollary 4.4 (2), we have O� … …j for j D 1; 2, which allows us

to assume (see Figure 6)

Ref…1
.S�/ D S;

Ref…1
.�S�/ D �S;

Ref…2
.S�/ D �S; for some S 2 QQs:

(4.16)

We claim that S D ¹˙ks
O�;˙Sº holds. In fact, if there exists some n 2 Z

2 such

that ¹˙Snº � . QQs \ S/ n ¹˙Sº � …3, then the plane …3 passes through at

least four points ˙S;˙Sn, all of which lie on the plane ¹x3 D 0º. This implies

that …3 D ¹x3 D 0º, and that the lines l2 D …2 \…3, l3 D …3 \…1 are both

parallel to ¹x3 D 0º, contradicting our assumptions in Step 2.
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Figure 6. S D ¹˙S� ;˙Sº, D D ¹…1;…2;…3º, l1 D …1 \…2.

Assuming S D .y1; y2; 0/, we know from S 2 S � Bks
.O/ and S 2 …3 that

y2
1 C y2

2 D k2
s ; . O� � O�?/ � .y1; y2; 0/ D 0:

This finishes the proof of Lemma 4.18 (2). The third assertion follows directly

from equation (4.16), while the fourth one can be easily derived from the ˛-quasi-

periodicity.

Next we shall prove that P D ;. The elements in P can be written as

Pn D �n �l1
CH1.Pn/ with �n D Pn � �l1

for n 2 P ;

where �l1
2 S2 is defined at the beginning of Step 2. In contrast to S , all the ele-

ments in P are located in Bkp
.O/\¹x3 � 0º. Similar to Lemma 4.19, it holds that

�n � 0 for all Pn 2 P and
P

n2P �n D 0, leading to �n D 0 for all Pn 2 P .

Hence, P � …�
1 . Arguing similarly, one obtains P � …�

j for j D 2; 3. Since

…�
1 \…�

2 \…�
3 D O

and jPnj D k2
p , we arrive at P D ;.

In summary, Lemma 4.18 holds in case (a). It only remains to exclude case (b).

Step 3. To prove that case (b) cannot happen.

Assume none of the lines lj .j D 1; 2; 3/ is parallel to ¹x3 D 0º and S� … …�
j

for each j D 1; 2; 3. From Lemma 4.19 we see that � D S� � �l1
< 0, since if this

were not true, there would hold that �n D 0 for all Sn 2 S leading to S� � …�
1 .
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We claim that S� must belong to some perfect plane in Dl1
. Otherwise, the set

Tl1;S�
would contain at least four elements obtained by reflecting and rotating S�

with respect to the perfect planes in Dl1
; note that D#

l1
� 2. Using the decom-

position (4.14), the first assertion of Lemma 4.19 and � < 0, we see that then at

least two elements of Tl;S�
would have negative x3-components. This contradicts

Remark 4.1.

Thus we may assume S� 2 Q…1 for some Q…1 2 Dl1
. For the same reason, one

obtains that S� 2 Q…j for some Q…j 2 Dlj , j D 2; 3. Therefore,

S� 2 Q…1 \ Q…2 \ Q…3:

However, recalling that lj � Q…j for j D 1; 2; 3 and that lj are three non-coplanar

lines passing through O , we see that the set ¹ Q…1; Q…2; Q…3º contains at least two

different perfect planes which both pass through the direction S� . This contradicts

Corollary 4.4 (2). The proof of Lemma 4.18 is thus complete.

Introduce the fifth class U5 D U5.�1; �2; ks ; O�?/ of unidentifiable grating pro-

files by setting

U5 D
®

ƒ 2 A2 W each face of ƒ lies on a plane defined by

�…j
� x C 2m�=ks D 0 for some m 2 Z; j D 1; 2,

or on a plane given by �…3
� x C C D 0 for some C 2 R,

where �…j
.j D 1; 2; 3/ are defined in Lemma 4.18 (3)

¯

if ˙y1 � ks sin �1 cos �2 2 Z and ˙y2 � ks sin �1 sin �2 2 Z, and by U5 WD ;
otherwise. Here yj .j D 1; 2/ satisfy the relations of Lemma 4.18 (2).

The following lemma can be derived in a way similar to the proof of Lemma 4.8.

Lemma 4.21. Assume that (A1)–(A2) hold andƒ1;ƒ2 2 A2. Thenƒ1;ƒ2 2 U5,

and the total field u D u1 D u2 takes the form

u D O�? exp.iksx � O�/ � O�? exp.�iksx � O�/

C Ref…1
. O�?/ exp.ix0 � y0/ � Ref…1

. O�?/ exp.�ix0 � y0/

C c
�

. O� � O�?/ exp.ikpx � . O� � O�?//

� . O� � O�?/ exp.�ikpx � . O� � O�?//
�

;

where c 2 C is an arbitrary constant if O� � O�? is parallel to the plane ¹x3 D 0º
and the functions exp

�

˙ikpx � . O� � O�?/
�

are ˛-quasi-periodic in both x1 and x2;

otherwise c D 0. Here y0 D .y1; y2/ and …1 are given by Lemma 4.18 (2) and

(3) respectively.
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4.5 Proof of Theorem 2.1 and non-uniqueness examples

Combining Lemmas 4.10, 4.12, 4.14, 4.16 and 4.21 yields Theorem 2.1 for the

incident shear wave under the boundary conditions of the third kind. We present

an additional remark concerning Theorem 2.1.

Remark 4.22. (i) The unidentifiable grating classes U2, U4 and U5 are empty

if the Rayleigh frequencies of the shear part are excluded. Thus, under the

additional assumption that �s D ;, the assertion (2.17) of Theorem 2.1 takes

the form

either ƒ1 D ƒ2 or ƒ1;ƒ2 2 Uj for some j 2 ¹1; 3º:

(ii) All the unidentifiable grating profile classes Uj .j D 1; 2; 3; 4; 5/ are deter-

mined by the incident shear wave of the form (2.2). More precisely, the sets

Uj for j D 1; 3; 4; 5 depend on the incident angles �1; �2, the shear wave

number ks and the vector O�>, while the setU2 only depends on �1; �2 and ks .

Each set Uj is not empty and contains at least two elements provided the corre-

sponding conditions imposed on �1; �2; kp and O�? are fulfilled. The grating pro-

files from U3 2 A1 will be presented in the following Example 3, which then gen-

erate the corresponding three-dimensional non-uniqueness examples. The grating

profiles from Uj 2 A1 .j D 1; 2; 4/ and their corresponding counterexamples can

be constructed analogously. We remark that, in the 2D case, there only exists one

unidentifiable class D2 for the incident shear wave under the third kind of bound-

ary conditions (see [15, Theorem 7]). This class can be also derived from the set

U2.�1; �2; ks/ by assuming that all elastic waves are propagating perpendicular to

the x2-axis, where the three-dimensional problem can be reduced to a problem of

plane elasticity in the .x1; x3/-plane. Such a reduction is impossible for the other

classes Uj .j D 1; 3; 4; 5/, because the incident direction O� and the vector O�?

would both belong to some perfect plane in any of these cases (see Corollary 4.4),

contradicting the fact that O�? lies on the .x1; x3/-plane.

Next we shall present two counterexamples for illustrating that one incident

shear wave cannot uniquely determine a bi-periodic structure in the case of the

boundary conditions of the third kind. Moreover, we will construct grating profiles

from the unidentifiable set U5 which vary in both the x1 and x2 directions with

period 2� .

Example 1. Set �1 D �=6, �2 D 0, ks D 4, so that the incident shear wave uin is

given by

uin
s D .

p
3; 0; 1=2/> exp.i2.x1 �

p
3x3//:



42 J. Elschner and G. Hu

Define seven planes �j .j D 1; 2; : : : ; 7/ by (see Figure 7 for their cross sections

in the .x1; x3/-plane)

�1 D ¹x W x3 D f1.x1/ WD
p
3x1º;

�2 D ¹x W x3 WD f2.x1/ D �.x1 � 2�/
p
3=3º;

�3 D ¹x W x3 D f3.x1/ WD �x1

p
3=3º;

�4 D ¹x W x3 WD f4.x1/ D
p
3.x1 � �/º;

�5 D ¹x W x3 D f5.x1/ WD �x1

p
3=3C

p
3�º;

�6 D ¹x W x3 WD f6.x1/ D
p
3.x1 C �/º;

�7 D ¹x W x3 D f7.x1/ WD �x1

p
3=3C 4

p
3�=3º;

four truncated prisms L1; L2; T1; T2 by

L1 D ¹x W f3.x1/ < x3 < f5.x1/; x1 2 .0; 3�=4/; x2 2 Œ��;��º;
L2 D ¹x W f4.x1/ < x3 < f1.x1/; x1 2 .3�=4; �/; x2 2 Œ��;��º;
T1 D ¹x W f1.x1/ < x3 < f6.x1/; x1 2 .0; �=4/; x2 2 Œ��;��º;
T2 D ¹x W f2.x1/ < x3 < f7.x1/; x1 2 .�=4; �/; x2 2 Œ��;��º;

and two polyhedral surfaces F1; F2 (consisting of four faces) by

F1 W x3 D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

f5.x1/; x0 2 .0; 3�=4/ � .0; �/;
f1.x1/; x0 2 .3�=4; �/ � .0; �/;
f3.x1/; x0 2 .0; 3�=4/ � .��; 0/;
f4.x1/; x0 2 .3�=4; �/ � .��; 0/;

F2 W x3 D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

f6.x1/; x0 2 .0; 3�=4/ � .0; �/;
f7.x1/; x0 2 .�=4; �/ � .0; �/;
f1.x1/; x0 2 .0; �=4/ � .��; 0/;
f2.x1/; x0 2 .�=4; �/ � .��; 0/:

Now let the restriction of the grating profiles to .0; �/ � .��;�/ be defined by

ƒ1j.0;�/�.��;�/ D F2 [ ¹.T1 [ T2/ \ ¹x2 D 0ºº [ ¹.T1 [ T2/ \ ¹x2 D �ºº;
ƒ2j.0;�/�.��;�/ D F1 [ ¹.L1 [ L2/ \ ¹x2 D 0ºº [ ¹.L1 [ L2/ \ ¹x2 D �ºº;

and let ƒj .j D 1; 2/ be the �-periodic resp. 2�-periodic extensions of the re-

striction ƒj j.0;�/�.��;�/ along the x1 resp. x2 direction; see Figure 7.
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Figure 7. Top: The cross sections of fj for j D 1; 2; : : : ; 7; Middle: The restriction

of ƒ1 to .0; 2�/ � .��; �/; Bottom: The restriction of ƒ2 to .0; 2�/ � .��; �/.
A D .0;��; 0/; B D .0; 0;

p
3�/.
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Then one can check that ƒ1;ƒ2 2 A2, and that the total field of the form

u.x/ D .
p
3=2; 0; 1=2/> exp.i2.x1 �

p
3x3// � e3 exp.i4x1/

C .�
p
3=2; 0;�1=2/> exp.i2.�x1 C

p
3x3//C e3 exp.�i4x1/

satisfies the ˛-quasi-periodicity condition (2.7) with ˛ D .2; 0/, the Rayleigh ex-

pansion (2.10) and the third kind boundary conditions on both ƒ1 and ƒ2 as well

as the Navier equation

.�� C !2/u D 0 in R
3; with !=

p
� D 4:

In fact, the above defined total field only consists of propagating modes of the

shear part, with four propagating directions

O�0 D O� D
�

1

2
; 0;�

p
3

2

�

; O�1 D
�

�1
2
; 0;

p
3

2

�

; O�2 D .1; 0; 0/; O�3 D .�1; 0; 0/;

lying on the perfect plane …3 D ¹x2 D 0º. The other two perfect planes which

pass through the origin are given by

…1 D
®

x3 D
p
3x1

¯

; …2 D
²

x3 D �
p
3

3
x1

³

:

One may check that the set S WD ¹ O�j W j D 0; 1; 2; 3º remains invariant under the

reflections with respect to …j .j D 1; 2; 3/ and the rotations by the angle � with

respect to the straight lines l1 WD …1 \…2, l2 WD …2 \…3 and l3 WD …3 \…1.

Thus one incident shear wave cannot uniquely determine a bi-periodic struc-

ture in the case of the boundary conditions of the third kind. Note that the grating

profiles ƒ1 and ƒ2 contain faces vertical to ¹x3 D 0º, so that they are not poly-

hedral graphs. Next we present a non-uniqueness example for bi-periodic graphs

ƒ1;ƒ2 2 A2. To do this, the following lemma is needed.

Lemma 4.23. Let u satisfy the Navier equation .4� C !2/u D 0 in a domain

� � R3 and the boundary conditions of the third kind on � WD @�. Let R be a

rotation acting on the whole space R
3 around the origin, and write �� D R.�/,

�� WD R.�/. Then the function u�.x/ WD RŒu.Rx/� satisfies the same Navier

equation in �� and the third kind boundary conditions on ��.

Proof. See Elschner & Yamamoto [20].

Example 2. Let R denote the rotation around the x1-axis by �=3which rotates the

positive x3-axis towards the positive x2-axis. Such a rotation can be represented
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by the 3 � 3 orthogonal matrix

R D

0

B

@

1 0 0

0 cos ' sin '

0 � sin ' cos'

1

C

A
D

0

B

@

1 0 0

0 1=2
p
3=2

0 �
p
3=2 1=2

1

C

A
; with ' D �=3:

Let �1; �2; ks be given as in Example 1, so that O� D .1=2; 0;�
p
3=2/>. Now,

define a new incident direction O�� by

O�� D .sin ��
1 cos ��

2 ; sin ��
1 sin ��

2 ;� cos ��
1 / WD R. O�/ D .1=2;�3=4;�

p
3=4/;

with the incident angles ��
1 2 Œ0; �=2/, ��

2 2 Œ0; 2�/ satisfying

cos ��
1 D

p
3=4; cos ��

2 D 2
p
13=13; sin ��

2 D �3
p
13=13: (4.17)

Define two new grating profiles ƒ�
j WD R.ƒj / for j D 1; 2. Then we see that ƒ�

j

are graphs given by certain piecewise linear functions over R2. Furthermore, since

the two points A and B (as indicated in Figure 7) satisfy jABj D 2� and the angle

formed by the line segments AB and AO is �=3, we see that jR.A/R.B/j D 2�

and the line segment R.AB/ is parallel to e2 in the new coordinate system. This

implies that the profilesƒ�
j are still 2�-periodic with respect to both x1 and x2 af-

ter the rotation. Thus ƒ�
1 ;ƒ

�
2 2 A2. Using the above representation matrix for R,

by simple calculations we obtain that

RŒu.Rx/� D .
p
3=2;

p
3=4; 1=4/> expŒi.2x1 � 3x2 �

p
3x3/�

C .�
p
3=2;�

p
3=4;�1=4/> expŒ�i.2x1 � 3x2 �

p
3x3/�

� .0;
p
3=2; 1=2/> exp.i4x1/

C .0;
p
3=2; 1=2/> exp.�i4x1/:

By Lemma 4.23, we see that the function u� WD RŒu.Rx/� satisfies the Navier

equation and the third kind boundary conditions on both ƒ�
1 and ƒ�

2 . One may

further check that u� is the total field corresponding to the incident shear wave

uin�

s given by

uin�

s WD .
p
3=2;

p
3=4; 1=4/> expŒi.2x1 � 3x2 �

p
3x3/�:

In this case, ks D 4 and the incident angles ��
1 ; �

�
2 are defined by (4.17). In addi-

tion, u� �uin�

s satisfies the ˛-quasi-periodic radiation condition with ˛ D .2;�3/.

Finally, we present an example from U3 for illustrating that two incident shear

waves are not sufficient to uniquely determine a grating profile ƒ 2 A under the

boundary conditions of third kind.
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Example 3. Let ƒ1j.0;2�/�R and ƒ2j.0;2�/�R be defined by the following func-

tions:

ƒ1j.0;2�/�R W x3 D

8

ˆ

<

ˆ

:

p
3x1; x1 2 .0; �

3
/; x2 2 R;p

3�=3; x1 2 Œ�3 ;
5�
3 �; x2 2 R;

�
p
3x1 C 2

p
3�; x1 2 .5�

3
; 2�/; x2 2 R;

ƒ2j.0;2�/�R W x3 D

8

ˆ

<

ˆ

:

�
p
3x1; x1 2 .0; �

3 /; x2 2 R;

�
p
3�=3; x1 2 Œ�

3
; 5�

3
�; x2 2 R;p

3x1 � 2
p
3�; x1 2 .5�

3
; 2�/; x2 2 R;

and let ƒi be the 2�-periodic extensions of ƒi j.0;2�/�R.i D 1; 2/ along x1. Set

ks D 2, �2 D 0, and �1 D �
6 or �1 D ��

6 . Then we have two incident direc-

tions O�1 WD .1=2; 0;�
p
3=2/, O�2 WD .�1=2; 0;�

p
3=2/, both of them lying on the

.x1; x3/-plane. Set O�? WD e>
2 , where e2 D .0; 1; 0/. One can check that

ƒ1;ƒ2 2 U3.�=6; 0; 2; e
>
2 / \ U3.��=6; 0; 2; e>

2 /;

and that the finite Rayleigh expansions

u.x/ D .0; 1; 0/>
�

exp.i.x1 �
p
3x3//C exp.i.x1 C

p
3x3//C exp.�2ix1/

�

;

u.x/ D .0; 1; 0/>
�

exp.�i.x1 C
p
3x3//C exp.�i.x1 �

p
3x3//C exp.2ix1/

�

all satisfy the Helmholtz equation .�Ck2
s /u D 0 in R

3 with ks D 2 and the third

kind boundary conditions on both ƒ1 and ƒ2.

5 Inverse scattering of an incident pressure wave under the

boundary conditions of the fourth kind

The aim of this section is to establish Theorem 2.2 and to give some further re-

marks on the uniqueness in problem (IP) under the fourth kind boundary condi-

tions. We make the following assumptions throughout this section:

(A4) The incident wave is the incident pressure wave defined in (2.1), i.e.,

uin WD O� exp .ikpx � O�/

with O� D .sin �1 cos �2; sin �1 sin �2;� cos �1/, �1 2 Œ0; �
2
/, �2 2 Œ0; 2�/.

(A5) The total fields uj .x/ .j D 1; 2/ satisfy problem (DP) corresponding to

the different grating profiles ƒj under the boundary conditions of the fourth

kind and fulfill the relation (3.3).
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By Lemma 3.5 (2), we write the total field u D u1 D u2 as

u D
X

n2P

Ap;nP>
n exp.ix � Pn/C

X

n2S

As;nS?
n exp.ix � Sn/ in R

3;

where

P WD ¹n 2 Z
2 W j˛nj � kp; Ap;n ¤ 0º [ ¹�º;

S WD ¹n 2 Z W j˛nj � ks; As;n ¤ 0º;

with P� D kp
O� , Ap;� D 1=kp . Let the sets P , S , Pn (n 2 P n¹�º), Sn (n 2 S ),

�p, �s be defined as in Section 4. Then, the third components of the elements in

P n¹P�º and S are all non-negative, while that of P� is negative.

Without loss of generality, let the origin O be located at the intersection line l

of two perfect planes…1 and…2, where…j .j D 1; 2/ are obtained by extending

two faces of ƒ1 [ ƒ2. Introduce the set Dl consisting of all perfect planes of u

that pass through the line l , which is also an equiangular system of planes in R
3.

Analogous to Lemma 4.3 and Corollary 4.4, we have

Lemma 5.1. Assume … 2 Dl in the case of the boundary conditions of the fourth

kind. Then we have:

(1) Ref….P / D P , Ref….S/ D S .

(2) If Ref….Pn/ D Pm for some n;m 2 P , then Ap;n D �Ap;m:

(3) If Ref….Sn/ D Sm for some n;m 2 S , then As;n Ref….S
?
n / D �As;m S?

m.

(4) If Ref….Sn/ D Sn, then S?
n D � Ref….S

?
n /, i.e., Sn 2 … implies that S?

n ?….

(5) Two different perfect planes fromDl cannot pass through the same point of S ,

while no perfect plane from Dl can pass through a point of P .

Using the reflection principle under the boundary conditions of the fourth kind,

we see that Lemma 4.5, Lemma 4.6 and Corollary 4.3 are still true. Now we are in

a position to derive the unidentifiable grating profiles corresponding to an incident

pressure wave.

Lemma 5.2. Under the assumptions (A4) and (A5), we have ƒ1;ƒ2 2 A1 and

D# D 2.

Proof. Assume ƒ1 2 A2 or ƒ2 2 A2. Then, applying the reflectional and ro-

tational invariance to the finite number of propagating directions of the compres-

sional part and arguing as in Lemma 4.18 (1), we know that the points in P are

located on some perfect plane from Dl , which contradicts Lemma 5.1 (5). Thus
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ƒ1;ƒ2 2 A1. Analogously to Lemma 4.8 (1), we can verify that 2 � D# � 4.

Moreover, if D# D 3 or D# D 4, then P D GP�
and each perfect plane from D

goes through a point in P , which is impossible due to Lemma 5.1 (5). Thus we get

D# D 2.

Combining Lemma 5.1 (5), Lemma 5.2 and Lemma 4.11, we may determine

the elements of P ;S and D as follows.

Lemma 5.3. Suppose that the conditions in Lemma 5.2 hold. Then

(1) sP D ¹P� ;Rot�.P�/;P;Rot�.P/º, where P and Rot�.P/ are given by

P D kp

�

q

1 � sin2 �1 sin2 �2; sin �1 sin �2; 0
�

;

Rot�.P/ D kp

�

�
q

1� sin2 �1 sin2 �2; sin �1 sin �2; 0
�

:

(2) D D ¹…1;…2º with …1?…2. Moreover, the normal directions �…j
corres-

ponding to …j (j=1,2) are given by

�…1
D
�

q

1� sin2 �1 sin2 �2 � sin �1 cos �2; 0; cos �1

�

; (5.1)

�…2
D
�

�
q

1 � sin2 �1 sin2 �2 � sin �1 cos �2; 0; cos �1

�

: (5.2)

(3) kp.sin �1 cos �2 ˙
p

1� sin2 �1 sin2 �2/ 2 Z.

(4) S D ;.

Proof. The assertions (1), (2) and (3) can be proved analogously to those of Lem-

ma 4.11. In addition, it follows from Lemma 4.11 (4) that S � ¹˙kse2º. Since

both planes …1 and …2 pass through the x2-axis, by Lemma 5.1 (5) we arrive at

S D ;.

Based on Lemma 5.3 and the arguments used in the proofs of Lemma 4.8 and

Theorem 2.1, we can establish Theorem 2.2 under the boundary conditions of the

fourth kind. The following results can be obtained directly from Theorem 2.2.

Remark 5.4. Let u be a solution to (DP) for the incident pressure wave (2.1) ful-

filling the boundary conditions of the fourth kind on ƒ 2 A.

(i) Given the a priori information that we have ƒ … U2.�1; �2; kp/, the near-

field data corresponding to the incident pressure wave with the incident an-

gles �1 2 Œ0; �=2/, �2 2 Œ0; 2�/ are always enough to uniquely determineƒ.
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(ii) If the compressional wave number and the incident angles do not satisfy one

of the conditions

kp

�

sin �1 cos �2 ˙
q

1 � sin2 �1 sin2 �2

�

2 Z

(for instance, if the Rayleigh frequencies of the compressional part are ex-

cluded, i.e., �p D ;), then U2.�1; �2; kp/ D ;, and henceƒ can be uniquely

identified by one incident pressure wave.

(iii) Consider two incident pressure waves of the form

uin D . O�/ exp.ikpx � O�/; uin� D . O��/ exp.ikpx � O��/;

with the incident directions O� and O�� defined by

O� D .sin �1 cos �2; sin �1 sin �2;� cos �1/;

O�� D .sin ��
1 cos �2; sin ��

1 sin �2;� cos ��
1 /;

where �1; �
�
1 2 Œ0; �=2/, �2 2 Œ0; 2�/ satisfy �1 ¤ ��

1 . Then the grating pro-

file ƒ can always be uniquely identified by the near-field data corresponding

to these two incident pressures waves, because

U2.�1; �2; kp/ \ U2.�
�
1 ; �2; kp/ D ; for ��

1 ¤ �1:

We next construct two grating profiles from U2.�1; �2; kp/ and present a corres-

ponding non-uniqueness example for our inverse grating diffraction problem.

Example 4. One incident pressure wave is not enough to uniquely determine a

grating profile ƒ 2 A under the boundary conditions of the fourth kind.

Set �1 D ��=6, �2 D 0, kp D 2. Thus the incident pressure wave is given by

uin
p D O�> exp.i2x � O�/ with O� D .�1=2; 0;�

p
3=2/:

Let the restriction of two grating profiles ƒ1 and ƒ2 to .0; 2�/ � R be defined by

ƒ1j.0;2�/�R W x3 D
´

x1

p
3=3; x0 2 .0; 3�=2/ � R;

�.x1 � 2�/
p
3�; x0 2 .3�=2; 2�/ � R;

ƒ2j.0;2�/�R W x3 D
´

�x1

p
3; x0 2 .0; �=2/ � R;

.x1 � 2�/
p
3=3�; x0 2 .�=2; 2�/ � R;

and let ƒj be the 2�-periodic extensions of ƒj j.0;2�/�R along the x1-direction;

see Figure 8. Then we see that

ƒ1;ƒ2 2 U2.��=6; 0; 2/;
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Figure 8. ƒ1; ƒ2 2 U2.�1; �2; kp/ with �1 D ��=6, �2 D 0, kp D 2.

and the total fields

u1 D u2 D .�1=2; 0;�
p
3=2/> exp.�x1 �

p
3x3/

C .1=2; 0;
p
3=2/> exp.x1 C

p
3x3/

C .1; 0; 0/> exp.�2ix1/� .1; 0; 0/> exp.2ix1/

satisfy the Navier equation in R
3 as well as the boundary conditions of the fourth

kind on bothƒ1 andƒ2. Moreover, the scattered fields uj �uin
p satisfy the ˛-quasi-

periodic Rayleigh expansion (2.10) with ˛ D .�1; 0/.
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