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Abstract. We consider the two-dimensional time-harmonic elastic wave scattering problem for
an unbounded rough surface, due to an inhomogeneous source term whose support lies within a
finite distance above the surface. The rough surface is supposed to be the graph of a bounded and
uniformly Lipschitz continuous function, on which the elastic displacement vanishes. We propose
an upward propagating radiation condition (angular spectrum representation) for solutions of the
Navier equation in the upper half-space above the rough surface, and we establish an equivalent
variational formulation. Existence and uniqueness of solutions at arbitrary frequency is proved by
applying a priori estimates for the Navier equation and perturbation arguments for semi-Fredholm
operators.
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1. Introduction. This paper is concerned with the mathematical analysis of
time-harmonic elastic wave scattering problems for unbounded rough surfaces. By
rough surface, we mean a surface which is a (usually nonlocal) perturbation of an
infinite plane surface such that the surface lies within a finite distance of the original
plane. Rough surface scattering problems for acoustic, electromagnetic, and elastic
waves have been of interest to physicists, engineers, and applied mathematicians for
many years due to their wide range of applications in optics, acoustics, radio-wave
propagation, seismology, and radar techniques (see, e.g., [1, 2, 15, 21, 22, 38, 42, 43]).
In particular, diffraction phenomena for elastic waves propagating in unbounded peri-
odic and nonperiodic structures have many applications in geophysics and seismology.
For instance, the problem of elastic pulse transmission and reflection through the earth
is fundamental to the investigation of earthquakes and the utility of controlled explo-
sions in search for oil and ore bodies (see, e.g., [1, 28, 29, 40] and the references
therein).

The mathematical analysis of acoustic and electromagnetic rough surface scat-
tering problems that can be modeled by the Helmholtz equation has mainly been
developed by Chandler-Wilde and his collaborators over the last fifteen years. Via
the integral equation method, the well-posedness of the Dirichlet boundary value
problem for an impenetrable rough surface in R? is proved by Chandler-Wilde and
Ross in [17] and by Chandler-Wilde and Zhang in [18], and the well-posedness of the
corresponding problem in R? has been established only recently by Chandler-Wilde,
Heinemeyer and Potthast [12, 13] and by Thomas [41, Chapter 5]; see also [44, 19, 36]
for the integral equation method applied to the scattering by rough interfaces and
inhomogeneous layers. Using variational methods, Chandler-Wilde and Monk [14]
are able to prove the well-posedness of the Dirichlet problem in two and three dimen-
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sions for much more general boundaries. The approach proposed in [14] is essentially
based on a priori estimates established via a Rellich-type identity (see the pioneering
paper [39]) and leads to explicit bounds on the solution. The results of [14] have been
extended to rather general acoustic scattering problems, including problems of scat-
tering by impedance surfaces and by inhomogeneous layers in a half-space; see, e.g.,
[16, 34, 41]. A recently developed variational approach in weighted Sobolev spaces
covers the problem of plane wave incidence for two-dimensional sound-soft rough sur-
faces, whereas in the three-dimensional case incident spherical and cylindrical waves
can be treated; see Chandler-Wilde and Elschner [11]. Based on the variational for-
mulation proposed in [14], rigorous numerical methods using finite elements combined
with the perfectly matched layer (PML) technique or with the finite section method
have been developed and analyzed for acoustic scattering by sound-soft rough surfaces;
see [15, 11].

Despite significant progress made for the Helmholtz equation, relatively little
analysis for the Navier and Maxwell equations in unbounded nonperiodic structures
has been carried out. A rigorous mathematical analysis on existence and uniqueness
of solutions is given by Arens in [6, 7] for C1*-smooth rough surfaces via the bound-
ary integral equation method, which generalizes the solvability results in [18, 44, 19]
for acoustic waves to the elastic case. Moreover, an upward propagating radiation
condition (UPRC) is proposed in [6] based on the elastic Green’s tensor of the Dirich-
let boundary value problem for the Navier equation in a half-space. Note that the
classical Kupradze radiation condition (see, e.g., [33]) is not appropriate in the case
of unbounded rough surfaces. Concerning the variational approach applied to elec-
tromagnetic rough surface scattering problems modeled by the full Maxwell system,
we refer the reader to the recent publications [35] by Li, Wu, and Zheng where ex-
istence and uniqueness is established for an incident magnetic or electric dipole in a
lossy medium, and to Haddar and Lechleiter [30] in the more challenging case of a
penetrable dielectric layer.

In contrast to the general case of unbounded rough surfaces, there is already a vast
literature on the variational approach applied to acoustic and electromagnetic scat-
tering by periodic diffractive structures (diffraction gratings) and locally perturbed
plane scatterers (cavities); see, e.g., Ammari, Bao, and Wood [3], Bao and Dobson
[9], Bonnet-Bendhia and Starling [10], Elschner and Schmidt [25], Elschner et al. [26],
Elschner and Yamamoto [27], and Kirsch [32]. In the case of elastic scattering by pe-
riodic surfaces, the variational approach is established by Elschner and Hu in [23, 24]
for the boundary value problems of the first, second, third, and fourth kinds as well
as for transmission problems with nonsmooth interfaces in R™ (n = 2,3). We note
that the assumptions made in all of these papers lead to a variational formulation
over a bounded domain, so that compact imbedding arguments can be applied and
the sesquilinear form that arises satisfies a Garding inequality, which considerably
simplifies the mathematical arguments. We also refer the reader to Arens [4] and [5]
for the well-posedness of the two-dimensional elastic scattering problem for smooth
(C?) diffraction gratings, where the existence proof is based on the boundary integral
equation method.

In this paper we assume that the rough surface is invariant along the x3-direction,
so that the three-dimensional elastic scattering problem can be reduced to a two-
dimensional problem in the (x1, x2)-plane. A rough surface in this sense always means
its cross section by the (x1,x2)-plane. Our aim is to study the two-dimensional elas-
tic wave scattering problem for an unbounded rough surface, due to an inhomoge-
neous source term whose support lies within some finite distance above the surface.
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This paper is closest in its methods and results to those of Chandler-Wilde and Monk
[14], Elschner and Yamamoto [27], and Elschner and Hu [23], where the well-posedness
of acoustic and elastic scattering problems for rough surfaces and diffraction gratings
is established using variational methods. Compared to the acoustic case studied in
[14], the elasticity problem appears to be more complicated because of the coexis-
tence of compressional and shear waves that propagate at different speeds. What
differs dramatically from the Helmholtz equation is that, in contrast to our previous
work [23, 24] on diffraction gratings, the Dirichlet-to-Neumann map for the Navier
equation does not have a definite real part (see Remark 3). This gives rise to essen-
tial difficulties in establishing a priori estimates of solutions via Rellich identities for
arbitrary frequency, and the approach of using the generalized Lax—Milgram lemma
in Chandler-Wilde and Monk [14] cannot be straightforwardly extended to the elastic
case. Therefore we first consider the case of small frequencies, in which the Lax—
Milgram lemma can be applied, and then study the problem at arbitrary frequency
using an a priori estimate for the Navier equation and the theory of semi-Fredholm
operators. In this paper, we suppose that the rough surface is the graph of a bounded
and uniformly Lipschitz continuous function. Such a geometric assumption imposed
on the rough surface is weaker than the condition used in [6, 7] (i.e., uniform Holder
continuity) but stronger than that in [14]. Under this assumption, we are able to es-
tablish a priori estimates for the scalar functions div u and curl u on the rough surface
and on an infinite layer of finite thickness above the surface where u denotes a solu-
tion of the Navier equation on that layer. Based on the bounds for div u and curl u,
we finally derive an a priori estimate for u that leads to uniqueness and existence of
solutions to our elastic scattering problem for arbitrary frequency.

The paper is organized as follows. In section 2 we present the formulation of our
scattering problem. Moreover, based on the Helmholtz decomposition of the elastic
displacement, we derive the radiation condition for elastic waves in a half-space above
the rough surface. This condition is proved to be equivalent to the UPRC proposed
by Arens in [6] and extends the UPRC for acoustic waves (see [8, 14, 17]) to elas-
tic scattering. These radiation conditions are often used in a formal manner in the
literature (see, e.g., [20, 21]) that, above the rough surface and the support of the
source term, the solution can be represented in integral form (the angular spectrum
representation) as a superposition of upward traveling and evanescent plane waves.
In section 3 we establish an equivalent variational formulation involving the Dirichlet-
to-Neumann map and present our main solvability result (Theorem 1). In section 4
we prove the coercivity of the sesquilinear form corresponding to the variational for-
mulation for small frequencies. Together with a perturbation result on semi-Fredholm
operators (Lemma 3) and our main a priori estimate for the Navier equation (Lemmas
5 and 8), this leads to the unique solvability of our scattering problem at arbitrary
frequency. This a priori estimate will be first justified for a smooth rough surface in
section 5.1 and then extended to a Lipschitz surface in section 5.2 by approximation
arguments.

We finish this section by introducing some notation that will be used throughout
the paper. Denote by (-)T the transpose of a 1 x 2 vector in C2. For a € C, let |al
denote its modulus, and for a € C2, let |a| denote its Euclidean norm. For a matrix
M = (m;;) € C**2] ||M]|| denotes the norm defined by ||M]|| := max; ;|m;|. The
symbol a- b stands for the inner product a;b; +azbs of a = (a1,a2) ", b= (by,b2)" €
C2. Standard L2-based Sobolev spaces defined in a domain Q or on a surface I' are
denoted by H*(2) or H*(T") for s € R.
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1.

x=h

Fic. 1.1. Geometrical setting of the scattering problem.

2. The boundary value problem and radiation condition. In this sec-
tion, we present the mathematical formulation of the two-dimensional elastic wave
scattering problem for rough surfaces. Let D C R? be an unbounded connected open
set such that, for some constants f_ < fi,

U, €D CUyp, Up:={x=(x1,22):22>h}.

For h > fy,let 'y, := {x € R? : 25 = h} and S}, :== D\U},. The variational problem
will be posed on the open set .Sj, which lies between the rough surface I' := 9D and the
line T'y, (cf. Figure 1.1). Throughout the paper we fix the constants f_, fi and assume
that T is the graph of a uniformly Lipschitz continuous function f (f € C%1), i.e.,

I'={zcR?*: 2y = f(z1), z1 € R},
and that there exists a constant L > 0 such that
(2.1) [f(xz1) — f(ax2)| < L|xy —ax2| forall =, xs €R.

Given an inhomogeneous source term g € L?(D)? whose support lies within a finite
distance above I', we wish to seek the elastic displacement u = (u1,us)' such that

(2.2) (A*4+wPu=g in D, A*:=pA+ (\+pu)grad div,
(2.3) u=0 on I,

with (2.2) understood in a distributional sense, and such that u satisfies an appro-
priate radiation condition. Here w > 0 denotes the angular frequency, and the Lamé
constants A and p are fixed throughout the paper and satisfy 4 > 0, A + p > 0.
Note that in (2.2) we have assumed for simplicity that the mass density of the elastic
medium in D is equal to one. In the following paragraphs we will derive a new up-
ward propagating radiation condition (UPRC) for elastic waves based on the UPRC
for acoustic waves in [14].
Let Fv denote the Fourier transform of v defined by

(€)= Folt) = \/% /Rexp(—z'tg)v(t) dt, €cR,

with the inverse transform given by
1
v(t)=F 1o ::—/e ite)o(€)de, teR.
(t) €) 7z ] xp(it€) 0(£) d§

Note that F is an isometry of L?(R) onto itself. Since the support of g is bounded
in the xo-direction, we can choose a number h > fi such that supp (g) is contained
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in Sp,., We want to derive a representation for v in Uy in terms of u|r,, . Define the
compressional and shear wave numbers by

kp:=w/+/2u+ X, ks =w//L,

respectively. Since u satisfies the homogeneous Navier equation in Uy, it can be
decomposed into a sum of its compressional and shear parts:

1 ; )
(24) wu=-=(grad o +curlvp) with ¢:= —% divu, ¢:= é curl u,
2 D s

where the two curl operators in R? are defined by
S
curl u := d1ug — Gou;  u = (ul,ug)T, and curl v := (0qv, —alv)T ,

with 0; := 0/0z;, j = 1,2. The scalar functions ¢ and ¢ satisfy the homogeneous
Helmholtz equations

(2.5) (A+k)e=0 and (A+k})yp=0 in U,.

Applying the Fourier transform to (2.5) with respect to 1, we obtain, for (£, z2) € Uy,
\/ kg - 62 )

VEkZ—E&2.

Throughout the paper the branch cut of a complex square root is always chosen such
that its imaginary part is nonnegative, i.e., \/k2 — €2 = i\/€2 — k2 if |¢| > k. As the
field u above the support of g should be the superposition of outgoing plane waves,
we seek solutions to the above equations in the form

P(&) exp (i(x2 — h) 1 (£)),
B(&,w2) = S(§) exp (iwa = h) %5(€)),  (&,2) € Un,
for some P(£), S(€) € L?(R). Note that, for fixed x3 > h, the exponential functions

in (2.6) are rapidly decaying as || — oco. Taking the Fourier transform of (2.4) with
respect to x; gives

822(15(571:2) + 7;27 @(ga 372) = 07 with Yo = Up

(&) =
8221;(53 372) + 7312)(571:2) = Oa with Vs = 75(6) =

(2.6) P(&,2)

(27) 1(6,22) = £9(6,22) + 7 00 (6,72),
i2(6,72) = 3 Bap(E,w) — E(E ), (€,32) € Un,

Inserting (2.6) into (2.7) and setting xzo = h yields

e () =(5 %) (59) - eere m= (1) =u.

which implies that

I V) B o () R
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Note that the function in the denominator in (2.9) satisfies the bounds
(2.10) CrL<IE+7(E) 5@ <Ca, EER,

where the constants C7, Co > 0 depend only on w (for fixed Lamé parameters A and

1). More precisely, we have £2 4 7, (€) 75 (€) ~ (k2 4+ k2)/2 as |§| — 00, and it follows
from the proof of Lemma 2 below that (2.10) holds with C; = k , Cy = k2. Inserting
(2.9) into (2.6) and then inserting the representations of ¢(¢, xg), P(€, x2) into (2.7),
we finally obtain the Fourier transform of u with respect to z; in U}, given by

(€ w2) = (' WO My (&) + 21O M(€) an(€),  (6,22) € Un,
with the matrices M, (€) and M,(€) defined by

—_ 1 (€ m) ._;@p% —S%)
M, (&) = EE— (5% ) Ma(©) = E s \—&y, € )

Taking the inverse Fourier transform of 4(&, z2), we arrive at the following represen-
tation for u in terms of the Fourier transform of u(xy, h):

(2.11)
u(z1,22)

\/ﬂ/ l(wz R (&) pf (&) + ei(@2=h)7s(8) Ms(ﬁ)) Gp(€) e™EdE,  xy > h,
Formula (2.11) is just the UPRC that we are going to use in the following sections.
The right-hand side of (2.11) can be interpreted as a superposition (in integral form) of
upward propagating plane compressional and shear waves corresponding to |{| < k)
and |£] < ks, respectively, and evanescent plane waves corresponding to [£| > k,
and |¢] > ks, respectively. Since each element of M, (&) exp(i(xa — h)v,(§)) and
M,(€) exp(i(ze — h)7ys(€)) is uniformly bounded in £ € R, the integral (2.11) exists in
the Lebesgue sense for all z € Uy, when uy, € L?(T';)? so that 4y, € L?(R)2.

Taking into account the relations (2.8) and (2.9) between 4, and (P(£),S(€)) T,
we may rewrite the UPRC (2.11) as

(212)  u() = \/LQ_W /R {(%f@) ()¢t M) 1 ©

+ ('YS_(E)) S(g)ei(z2—h)’>’s(f)} et®1€ d¢, x9>h,

in terms of the Fourier transforms P(§) and S(§) of the functions
o(x1,h) = (—z/klz,) div u(xy,h), Y(x1,h) = (i/k2) curl u(zy,h),

respectively; see (2.6).

Remark 1. (i) The equivalence of the UPRC (2.11) with that proposed in [6]
can be seen as follows. Let Fy, _¢ denote the Fourier transform with respect to
the variable yi1, and let Wy (x,y) denote the free space fundamental solution of the
Helmholtz equation (A +k%)u = 0 given by Wy (z,y) := (i/4)Hél)(k|a:—y|), with Hél)
being the Hankel function of the first kind of zero order. Since

Fyie <M ) = (2v2r1) " Lexp(i(za — h) k2 — €2 + iz, &),
692 y2=h
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the UPRC (2.12) can be rewritten as
(2.13)

{gradz/ei(wzh)%(f)ﬂmf P(&)d¢

R

+ curl, / T2 (& +ime g (g) dg}
R

_ 2 3\11kp(a:,y) e a\I/kS(!E,y)
=2 {amna, [ P o asty) + et [ LD ) st |

u(z) =

1
2T

for o > h, which is equivalent to the UPRC proposed by Arens; see [6, Theorem
3.7 (if)).
(ii) We say that u is a-quasiperiodic with the phase-shift « if

u(zy + 27, 29) = exp(i2wa) u(z1,22), (x1,22) € D.

If w is quasi-periodic and the profile function f is 27-periodic, the UPRC (2.13) for a
bounded solution « is equivalent to the commonly used Rayleigh expansion radiation
condition in Uy; see [6, Remark 3.8]. Moreover, it can be proved that the condition
(2.11) makes sense for all up, € L>(R) so that 4, must be interpreted as a tempered
distribution; compare [8, 11] in the case of the Helmholtz equation. Therefore our
UPRC (2.11) also generalizes the Rayleigh expansion in the case of a periodic surface
I". For the uniqueness and existence of quasi-periodic solutions in grating diffraction
problems, we refer to [23, 24] concerning the variational approach in R™ (n = 2,3),
and to [6, 7] where the integral equation method and the Rayleigh expansion radiation
condition are used for the Navier equation in R2.

To state the boundary value problem, for i > f, we introduce the energy space
Vi, as the closure of C§° (S, UT,)? in the norm

1/2
lullvi, = (I19ullEeqs,e + lullFags,)z)

Boundary value problem (BVP). Given g € L?*(D)?, with supp (g) C S, for some
h > fi, find u € H} (D)? such that uls, € V, for every a > f; (implying u = 0 on
I'), the Navier equation (A* 4+ w?)u = g in D holds in a distributional sense, and the
radiation condition (2.11) is satisfied with uy, := u|p, € H'Y/?(I',)? (from the trace
theorem).

Remark 2. We note that the solutions of (BVP) do not depend on the choice of
h since the arguments of [14, Remark 2.1] for the Helmholtz equation can be easily
adapted to our elastic case. More precisely, if u is a solution to (BVP) for one value
h > fy for which supp(g) C Sj, then u is a solution for all H > f, having this
property. Note that if the UPRC (2.11) holds for some h > f,, then it holds for all
larger values of h; see Lemma 1 below. To show that (2.11) also holds for every H < h
such that H > f, and supp(g) C Sg, the uniqueness result of Theorem 1 below can
be applied.

3. The Dirichlet-to-Neumann map and variational formulation. We now
derive an equivalent variational formulation of the boundary value problem (BVP)
in the space V},, which involves the Dirichlet-to-Neumann operator on the artificial
boundary I',. We introduce the generalized stress (or traction) operator on 95y =
T'U Ty, defined by

(3.1) Topuw = (1t +a) Opu~+bdbndiv u —a7curl u,
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where n = (n1,m2) " denotes the unit normal directed into the exterior of Sy, 7 :=
(—ng2,n1) " is the tangential vector, and a and b are real numbers satisfying a 4+ b =
A+ p. Throughout this paper we choose a =0, b = A + p, so that

(3.2) Tu:=Tortptt = o+ A+ p)ndive on 95.

With this choice, the first Betti formula reads as

(3.3) —/Sh(A*JFWQ)w-Mx:/Sh (5(w,@)—w2w-@)dx—/ T - Twds,

asy,
w,v € H*(Sy)?,

where the bar indicates the complex conjugate, and £(+,-) is the symmetric bilinear
form defined by

S(w,v) = (/\ + 2#) (81w1 O1v1 + Dawy (92112) +u (8211)1 Oov1 + O1wa 81’()2)
(3.4) + ()\ + M) (81w1 0209 + Oowo 61v1)

in accordance with the stress operator (3.2). Note that this differs from the usual
elastic energy, and we refer the reader to Remark 4 below for the motivation. In
particular, our choice (3.2) of the generalized stress operator leads to a minimal loss
of coercivity for the corresponding Dirichlet-to-Neumann map on I',. Moreover, we
obviously have the coercivity estimate

(3.5) S5@ﬁﬁh=MHVW§wwf+M+MHHWv%a&)
h
> Vol 7egg,y2, v EH (Sn)?.

Note that the normal on I', takes the form n = ey := (0,1) 7, so that

(3.6) Tu = ((Ai‘%)al (/\+(2)u)82> <Z;) on T}.

To introduce the Dirichlet-to-Neumann map on 'y, for our scattering problem, we
further define the matrices
(3.7)
o rw(©) 0 ) o ( 175 (€) 0 )
T, (€) := . T(€) = .
=i (20 nrane) TO= (315 ot
Consider v € C§°(T',)? and extend it to a function u € C*°(Up)? using the UPRC

(2.11) with up, = v. Then, applying the stress operator (3.6) to the representation
(2.11) and using (3.7), we obtain the relation

(3.8) Tu(z1,h) :=Tu(x1,h) = \/% /M({) ap(§) exp(iz1€)dé, =z € R,
R
where the matrix M (&) = M (§,w) :=Tp(&) Mp(&) + T5(&) Ms(€) takes the form

i Wy —€w? +€p (6% + %%))
(3.9) M) =gy Vs (€w2 — & (€% + 7s) w?ys '
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Note that integration in (2.11) and differential operators in x can be interchanged
since 4y, is a rapidly decreasing function in £. The operator 7 = T (w) defined in (3.8)
can be represented as

(3.10) T(ww=F 1M w)Fo), veCrTh)?.

This operator, which will prove to be a Dirichlet-to-Neumann map on I'j,, extends to a
bounded linear map from H'/2(I',)? to H=/2(T';,)2. This follows from the definition
of the Sobolev spaces H*(I',), s € R, as the completion of C§°(I') in the norm

1/2
(3.11) lolleoyy = ( Ja+er |fv<f>|2df) ,

and the relations v,(€), 7s(&) ~ i|€] as |{] — oo and (2.10). In fact, these relations
imply the bound

(3.12) [M (&, w)zl* < ||M(Ew)* [2]* < Clw) 1+ |27,

with some C(w) > 0 uniformly in £ € R and z € C2. Moreover, the matrix M (§,w)
(and thus the operator 7 (w)) depends continuously on w € R*. Furthermore,

1M (& w) = MEw)|P/(1+€) =0 as w—w

holds uniformly in £ € R. Thus the operator 7 (w) is continuous with respect to w in
operator norm, i.e.,

(313) ||T(w) - T(Wl)||H1/2(Fh)2—>H*1/2(Fh)2 -0 as w— w;.

We next follow [14] to establish an equivalent variational formulation for the boundary
value problem (BVP). It is well known that, for H > h > f, the trace operators
vy HY(U\Ug)? — HY?(I',)? and v_ : Vj, — H'/2(I',)? are continuous such that
v+ u coincides with the restriction of u to I'y, if u is C'*°. The following lemma extends
some results of [14, Lemma 2.2] to the elastic case.

LEMMA 1. If the UPRC (2.11) holds with u, € H'/?(T',)?, then u€ H(U,\Ug)?N
C?(Up)? for every H > h, (A* +w?)u =0 in Up, v4u = up, and

(3.14)—/ E-T’eruds—i—wz/ u-vdr — E(u,v)dr =0, veC (D)2
'y Up Un

Furthermore, for all H > h, the restrictions of u and Vu to Uy are in L*(T'g)?, and
the UPRC' (2.11) holds with h replaced by H.

Since Lemma 1 can be proved analogously to [14, Lemma 2.2], we omit its proof.
Now suppose that u is a solution to the boundary value problem (BVP). Then ulg, €
Vi for every H > h and, since (2.2) holds in a distributional sense, we have

/ (9-7+Eu,v) —w?u-v) de =0, veCF(D).
D
Making use of the identity (3.14) and the fact that v u = y_wu on I',, we arrive at

(3.15) / (9- 7+ &(u,v) — w’u - D) da:—/ T-Ty_uds=0, veCF(D)?.
Sh T
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From the density of C§°(Sy, UT,)? in V), and the continuity of v_ and T, it follows
that the above equation holds for all v € V},. Thus the function w := ulg, satisfies
the variational equation

(3.16) B(w,v):—/ g-vdr, vEVy,
Sh
with the sesquilinear form B : Sy x S, — C defined by
(3.17) B(w,v) = / (E(w, ) — w?w D) d —/ V-0 - Ty_wds.
Sh Fh

Conversely, if u € V}, is a solution to the variational problem (3.16) for some h > f,,
we define u in Uy, by the right-hand side of (2.11) with uy, := y_u. Then, by Lemma
1, w € HY(U,\Ug)? N C?(Uy)? for every H > h and y4u = y_u on [y, implying
that u|g, € Vy for every H > fi. Moreover, it follows from (3.14) and (3.16) that
(2.2) holds in a distributional sense, with g extended by zero from Uj, to D. Thus the
variational problem (3.16) is equivalent to the boundary value problem (BVP).

Furthermore, we note that if u is a solution to the boundary value problem (BVP),
then (3.15) and Betti’s formula (3.3) with w = u and v € C§°(D)? imply that

(3.18) Ty-u=Tu on I},

where T is the stress operator on I'y, defined in (3.6). Thus T is actually the Dirichlet-
to-Neumann map on I'j, of our scattering problem.

Since the operator 7 : HY/2(T',)? — H~/2(T',)? is bounded, the sesquilinear
form B defined in (3.17) is bounded on the energy space V3. Thus the form B(-, ")
obviously generates a continuous linear operator B(w) : Vi, — V;* such that

(3.19) B(w,v) = (B(w)w,v)s, , w,v €V,

where V;* denotes the dual of the space V}, with respect to the duality (-, -)s, extending
the scalar product in L?(S,)?. In this paper we also consider the following more
general problem: Given h > f,, G € V}*, and a fixed frequency w > 0, find u € V},
such that

(3.20) Bw)u=gG.

Note that (3.20) covers our variational problem (3.16) when the right-hand side G €
V' is defined specifically as the functional

G(v) = —/ g-vdr, veEV,,
Sh
which satisfies the bound

14

v = sup [G(0)| <|lgllL2(s,)2

’L)H\/hzl

where g is a source term with support in Sj,.

The main theorem of this paper can now be stated as follows.

THEOREM 1. For any w > 0, the variational problem (3.20) is uniquely solvable,
and the solution satisfies the bound
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lullv,, < CllGllv;:, € =Cw) >0,

where the constant C' does not depend on u and G. In particular, the boundary value
problem (BVP) is uniquely solvable, and the solution satisfies the estimate

[lullvi, < Cllgllzzsi)z -

4. Analysis of the variational problem for small frequencies. For a matrix
M € C**2 let Re M := (M + M*)/2, and we shall write Re M > 0 if Re M is positive
definite. Here M™ is the adjoint of M with respect to the scalar product (-,-)c2 in
C2. To study the form B defined in (3.17) for small frequencies, we need the following
properties of the matrix M (£, w) defined in (3.9).

LEMMA 2. (i) For €| > ks, we have Re (=M (&,w)) > 0 for every fized frequency
w > 0.

(ii) There exists a sufficiently small frequency wo > 0 such that the estimate

(41)  JReM(&w)z 2)cz| < Cwle?, 2€C?, [gf <ks, we (0,wo],

holds for some constant C > 0 independent of w, &, and z.
Proof. (i) For €| > ks > kp, we have v, = i|yp|,7s = ilys| and p([¢]) = [¢]* +
YYs = |€1* = |7pl|7s| > 0. Hence,

S W2 | —i[—Ew? + & pp(€))]
MEw) = Jray ( (€0 + € p(I€])] w?ls| ) |

To prove the first assertion, we only need to verify that det (—Re M (§,w)) > 0 for all
|€] > ks, where det(-) denotes the determinant of a matrix. By the definition of p(-),
it is easy to see that

Re(—

det (—Re M (&,w)) p(|€])* = w* [7p] Ivs| = €2 (W® — wp(l€])?
= p(I¢]) (—w* + 26 p? k2 — € p? p(I€])),

which leads to

det (~Re M(§,w)) = [~w* +26% 1 k% — € 1? p(€])] /p(I€])
= (W k2 (€% — k) + € 1 (k2 — p(I€)] /p(I€l)

> [ 2 (k2 = p(I€1))] /(€D

For €| > ks, it holds that

, 1, ul)
= 2l¢] - ¢ (22 0,
o) = 24— 16 ({2 + 221 <

implying that k2 — p(|¢]) > k2 — p(ks) = 0. Thus we have det (—Re M (§,w)) > 0 and
Re (—M(£,w)) > 0 for all [¢] > k.

(ii) We first consider the case |{| < k, < ks, where we have v, = \/ki —[¢£]2 >
0, vs = \/k2 — [€]2 > 0, and p(|¢]) := |£]? + 7,75 > 0. Then

I 0 —i[~€w? + & pp(€))]
(4.2) Re(—M(&w)) = (€D (l [—&w? + & up(€))] 0 )
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Again one can check that p'(|¢]) < 0 for 0 < [¢| < k,, implying that p(|¢]) > p(k,) =
k2 and p(|€]) < p(0) = kyp ks . Tt follows that the inequality

|[=€w? + & up(EN]/p(ED] < I€lw?/p(l€]) + 1€l < OO\ p) w

holds for some positive constant C(\, ) as w — 0F. Thus we obtain
(43) |ReM(&,w)z,2)c2] S CApwlz?, 2€C?, ¢ <ky, we (0w,

for some sufficiently small frequency wgy > 0.
We now consider the case k, < |£| < k. In this case there holds v, = \/k2Z — &2 >

0, v = iy /&2 — k2, and p(|€]) = £ + i || s, with the bounds |y,[?, |ys[* < k2 — k2

and k2 < [p(€)] < k2. It can be derived from these bounds that each element of the
matrix Re (—M (§,w)) can be bounded by C'(A, p)w for some constant C (A, u) > 0 as
w — 0. Thus inequality (4.3) remains true for k, < |¢| < ks. a

By the Plancherel identity (or rather its extension to an H'Y?2 x H='/2 pairing
using the Sobolev norms (3.11)) and the definition of the operator T, for all u € V;,
we have

(4.4) Toyu-y ds = /R F(Tun) - Flan) dé

Ty

:/ M(f)ﬁh'ahdf‘f'/ M (&), - ap dE

1€]> ks 1€1<ks

with the matrix M(§) = M(¢,w) defined in (3.9) and up, = y_u = u|p,. Together
with Lemma 2 and the trace theorem, the identity (4.4) implies that

(4.5) [ TyuyTmds > —Cw / [n (€)1 de
I‘h Iglgks

> —Cwlh-ullzr, ) = —Cwllull7,,

with C,C being some positive constants independent of u and w.

Remark 3. In contrast to the case of the scalar Helmholtz equation, the Dirichlet-
to-Neumann map 7T for the Navier equation does not have a definite real part, which
can be seen from the matrix (4.2) for |{] < k,. We note that this leads to essential
difficulties in establishing a priori estimates of solutions (see Lemma 4 below), and
that the approach of using the generalized Lax—Milgram lemma in Chandler-Wilde
and Monk [14] cannot be straightforwardly extended to the elastic case. However, in
the periodic case one can decompose Re (—7) into the sum of a positive-definite oper-
ator and a finite-dimensional operator. This decomposition, combined with compact
imbedding arguments applied to one periodic cell, leads to the strong ellipticity of the
corresponding sesquilinear form, and thus existence simply follows from uniqueness
via the Fredholm alternative. However, the compact imbedding of H' into L? does
not hold for the unbounded domain Sj,.

Remark 4. With our selection of the stress operator 1" := Ty x4,, we observe that
ks is the (explicit) lower bound of the numbers x such that Re (—M (£, w)) is positive
definite for all [¢| > k. The results of Lemma 2 can be extended to the case where
the matrix M (§,w) in (3.9) is defined via an arbitrary generalized stress operator Ty
with a +b = X+ p and a, b € R. In particular, Lemma 2 (i) then holds for || > &
with some sufficiently large k > ks; see also [23, 24|, where the usual stress operator

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/03/18 to 130.63.180.147. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ELASTIC SCATTERING BY UNBOUNDED ROUGH SURFACES 4113

T, has been used in the cases of two-dimensional and three-dimensional periodic
structures.

Moreover, defining the Dirichlet-to-Neumann map 7 via the generalized stress
operator T, and replacing (3.4) with the corresponding expression

S(w,v) = (/\ + 2#) (81w1 O1v1 + Dawy (92112) +u (8211)1 Oov1 + O1wa 81’()2)
+a (8111)1 82’()2 + 82102 81111) + b (8211)1 811)2 + (9111)2 82’()1)

in the sesquilinear form (3.17), we arrive at a variational equation that is equivalent
to (3.20).

Using Lemma 2 we can now establish the Vj-ellipticity of the sesquilinear form
(3.17) for small frequencies, which implies the existence of a unique solution to (3.20)
in this case.

THEOREM 2. Let B(w) be the operator defined in (3.19). Then there exists a
sufficiently small frequency wo > 0 such that the bounded inverse operator B(w)™!:
V¥ — Vi, of B ezists for all w € (0,w].

Proof. From inequalities (3.5), (4.5) and the definition (3.17) of the sesquilinear
form B(-,-), it follows that

(46)  Re Blu,u) > u||Vul[3a(s,y — & llulBags, > — Cwllull}, . ue Vi,
where the constant C' > 0 is independent of u and w. Recalling [14, Lemma 3.4] that
(4.7) ullZ2(s,)2 < Cilld2ullZags, )2 < CillVullte(s,):, uw€ Vi,
we arrive at the bound
1Vl 225,02 > Collullyy . € Vi,

where the constants C7, Co > 0 are independent of u and w. Therefore, combining
(4.6) and (4.7), we obtain the uniform estimate

Re B(u,u) > Og”?,b”%/h, u€Vy, we(0,wl,

for a sufficiently small frequency wy > 0. By the Lax-Milgram lemma, B(w)~! : V;¥ —
V}, exists with the bound ||B(w) ™| 1z, a

v, <Oy

5. Analysis of the variational formulation at arbitrary frequency. We
now turn to analyzing the operator equation (3.20) for an arbitrary frequency w > 0,
which covers the variational problem (3.16) as a special case. Our solvability result for
(3.20) is a direct consequence of Lemma 3 below on the perturbation of semi-Fredholm
operators, which is known but will be presented for the reader’s convenience.

Let X, Y be Banach spaces equipped with the norms ||-||x and ||-||y, respectively,
and let £(X,Y) denote the set of all bounded linear operators from X to Y. Denote
by N(B) and R(B) the kernel and range, respectively, of an operator B € L(X,Y).
Recall that B : X — Y is semi-Fredholm if it has a closed range and at least one
of the defect numbers dim N(B), codim R(B) is finite, where dim and codim stand
for the dimension and codimension of a linear set, respectively. If both of them are
finite, then B is called Fredholm. The index of a semi-Fredholm operator is defined
by ind (B) = dim N(B) — codim R(B).

LEMMA 3. Assume that {B(w): w € RT} C L(X,Y) and that the operator B(w)
is continuous with respect to w in the sense that ||B(w) — B(w1)||x—y — 0 as w — wy
for all w1 € RT. Suppose further that
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(i) ||Bw)(u)|ly > C(w) ||ul|x with some constant C(w) > 0 for each w € RY;
(ii) there is a number wy > 0 such that the bounded inverse of B(w) exists for all
w e (0, OJQ],
Then the operator B(w) is invertible for all w € R, and the norm of its inverse
operator satisfies the bound ||B(w) !|lysx < C(w)™!, w € RT.

Proof. Tt follows from condition (i) that the operators B(w), w € RT, are all
injective and semi-Fredholm. Using a classical stability results for semi-Fredholm
operators (see, e.g., [31, Theorem 19.1.5]) and the continuity of B(w) with respect to
w, we have

ind (B(w1)) = ind (B(wz)), provided |wi — ws] is sufficiently small.

This implies that the number ind (B(w)) is constant (either a finite number or —oo)
for all w € RT. However, from condition (ii), it follows that

dim N (B(w)) = codim R(B(w)) = 0,

and thus that ind (B(w)) = 0 for all w € (0,wp]. Hence ind (B(w)) = 0 for all w € R*.
Again using condition (i), we obtain codim R(B(w)) = 0 for all w € R*, which is
equivalent to the surjectivity of B(w). Therefore B(w) ™! always exists with the bound
IB@) lyx < Clw) . 0

To apply Lemma 3, we take X = V3, , Y = V;* and define B(w) as the operator in
(3.19), which is continuous with respect to w € R¥ in operator norm; see (3.13) and
(3.19). It obviously remains to verify the estimate

(5.1) [[ullv,, < C(W)||G]lv forall uweVy, G:=DBwueVy,

for each w € RT. Analogously to [14, Lemma 4.4], we establish an auxiliary lemma
which reduces the problem of justifying (5.1) to that of proving an a priori bound for
solutions of the variational equation (3.16), which is a special case of (3.20). Note
that the extension of [14, Lemma 4.4] to the elastic case is not trivial, due to the lack
of a definite real part of the Dirichlet-to-Neumann map 7.

LEMMA 4. The bound (5.1) holds if there exists Cy = Co(w) > 0 such that

(5.2) [lullv, < Collgllvi,

for allu € Vi, and § € V}, satisfying the equation B(w)u = §.

Proof. Consider the operator B, := B+ al : Vj, = V¥, where a > 0 and [ is
the identity operator. We claim that B, is invertible, provided « > 0 is sufficiently
large. To see this, we will verify that Re (Byu,u)s, > Ci|[ul[3, for some constant

C1 > 0 independent of u, where the sesquilinear form corresponding to B, is given
by (cf. (3.17))

(Bau,v)s, = / (E(u,D) + (@ — w?)u - D) do — / VT Ty-uds, u,v€Vy.
Sh Fh

Using (3.5), (4.4), and Lemma 2 (i), we find

(53) Re (Bau, U)Sh Z 1% ||Vu||iz(5h)z+(oz—w2) ||U||%2(Sh)2—/|£| M(fvw) ﬁh'ah df )

SRs

where up, := y_u. We estimate the last integral in (5.3) as follows. By (3.12),

[ MEwin Tad <Cw) [ lellmPas <) [ @leDlan de.
€] <ks 1€l<k

€] <ks

s
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Since the bound

(L+lept A+ e)
VEIE VP s

holds for all |¢] < ks, I € RT, we have

[ MEwnTade] < i) 14k [ VEFE fin(e) P
|€1<ks R
(5.4) < Cy(w) (1 + k) z—l(z? ol 2 + ||vn||§2(sh)2),

where the last inequality follows from the trace estimate in [14, Lemma 3.4]. Com-
bining (5.4) and (5.3) yields

Re (Bau,u)sh Z (u — 02 l_l) ||VU||%2(Sh)2 + (Oé — wQ — CQ l) ||U||%2(sh)2, > 0,

with Cy = Cs(w) := C1(w)(1 + ks). Choosing some | = [y > Co/p and then a >
w? 4 Cy 1y, we arrive at the Vj-ellipticity of the operator Ba,.
Now we choose a sufficiently large number « > 0 such that the problem

Bou=G, GeV
always has a unique solution u = u, € V},, which satisfies the estimate

(5:5) luallv, < Csl|G]

Vi
with some constant C's > 0 independent of G. Suppose that u € V}, is a solution of
Bu=G, GeV.
Defining w = v — u,, we then see that
(Bw,v)s, = (Bu,v)s, — (Bua,v)s, = —a(ta,v)s,, vEV,.
By the assumption (5.2) and the bound (5.5), it holds that

[lwllv;, < Coalluallv, < CoCsallG]

Vi
leading to the estimate

lullvi, < llwllvi, + [luallv, < Cw) (1G]

Vi

with some C'(w) > 0 independent of u and G. O

We turn now to establishing the crucial a priori estimate (5.2). This will be done
in subsection 5.1 when the rough surface I' is given by the graph of a bounded C'*°
function f with a uniform Lipschitz constant, and in subsection 5.2 for a bounded
and uniformly Lipschitz continuous function f.

5.1. A priori estimate for smooth rough surfaces. Suppose that I" is the
graph of a C* function f satisfying (2.1). Let u € V}, be a solution of the variational
problem

(5.6) B(u,v) = (Bu,v)s, :—/ g-vdr, veV,,
Sh
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where h > fy, g € Vi, and B = B(w) is defined in (3.19). Then u satisfies the
inhomogeneous Navier equation

(5.7) (A* +wHu=g in S
in a distributional sense, with the boundary conditions (cf. (3.18))
u=0 on T, Tu=T~v_u on I.

The following lemma is crucial for proving Theorem 1 in the case of smooth rough
surfaces.

LEMMA 5. Assume that I' is given by the graph of a C*° function f satisfying
(2.1), and that uw € V3, is a solution of problem (5.6). Then there exists a constant
Cy > 0 depending only on w, h, and the Lipschitz constant L of f such that ||ul|y, <
Co l14l|vi, -

In the following arguments we extend a solution u of (5.6) to D by the UPRC
(2.11) with up == y_u € HY/?(T',)%. Tt follows from Lemma 1 and standard elliptic
regularity that « € H?(Sg\Sy)? for all H > h. Thus we have Vu|r, € HY/?(T})%.
Moreover, the UPRC (2.11) holds with h replaced by H; see Remark 2.

Our proof of Lemma 5 relies heavily on the use of Rellich identities for both the
Helmholtz and Navier equations in an infinite layer of finite width. Motivated by the
existence and uniqueness proofs for elastic scattering by periodic surfaces (cf. [23, 24])
and acoustic scattering by rough surfaces (cf. [14, 16, 41]), we first derive an a priori
estimate for the traces of the functions div v and curl w on the rough surface I' using a
Rellich identity for the Navier equation. Then we extend the estimates of [27, Lemma
5.2 ] for the Helmholtz equation to the case of nonperiodic rough surfaces and obtain
bounds for the L? norms of div « and curl w on Sy and I'yy for H > h. These bounds,
combined with another Rellich identity for the Navier equation, lead to the desired
estimate in Lemma 5 when f is a smooth function.

LEMMA 6. Suppose that f € C*(R) satisfies (2.1), § € Vi, and u € Vj,, is a
solution of (5.6). Then there exists a constant C > 0 only depending on w, h, and L
such that

|div ul[F2py + [leurl ul|F2y < CllGl1r2(s,2 102ul]22(s,)2-

Proof. Following the approach of [14, section 4], we first derive a Rellich identity
for the Navier equation in the unbounded domain Sj,. Since § € H'(S;)? and u
vanishes on the rough surface I" which is C*°-smooth, by standard elliptic regularity
we see that u € H} (Sp)> N H'(Sy)?. For A > 1, we choose a cut-off function
xa(r) € CP(RT) with = || such that xa(r) =1ifr < A, xa(r) =0ifr > A+1,
0<xa(r)<1lif A<r<A+1,and ||x4]lec < Ci for some fixed C; independent of
A. Using Betti’s formula (3.3) with the stress operator T' defined in (3.2), integration
by parts gives (see [14] for the details in the case of the Helmholtz equation)

2Re/ Xa(r)0ew - Afudr
Sh

= / . xA(r){2Re (Tu - 0ow) — E(u, w)ng }ds
asptt

+/S;‘+1\S;;‘ —2Re{ Z E(u, xa(r)e;) 09T} + E(u, @) Oaxa(r) | dx

j=1,2
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and

2Re/ wxa(r)u - Ogti dz :/ wxa(r)|ul*ng dx —/ w?|ul?axa(r) de,
Sh st

SRS

where Si*t! := S, N {|z| < A+ 1} and e; denotes the unit vector in the x;-direction.
Adding up the previous two equalities and letting A — +oo yields the following
Rellich identity for the Navier equation:

(5.8) 2Re [ 0o+ (A* +w?)udx
Sh

- </F+/F) {2Re(Tu - 91) — 1o (u, @) + now?|ul?} ds,

since the integrals over S;t1\ S/ converge to zero. Noting that u = 0 and d,u =
—ngdiu + n10ou = 0 on I', we have

(5.9) ni1 0ot = no A u, O1u=mn10,u, and u=mno0,u on T,
from which we derive that
(5.10) na E(u, @) = Tu - 0o = na (0 |Onu)® + (A + p) |div u|?) on T.

Hence, by (5.7), (5.8), and (5.10),
(5.11) —/ {no p|O0nul® + na (A + p) |div ul?} ds
r

:/ {2Re(Tu-62E)—5(u,ﬂ)+w2|u|2}ds—2Re/ g - Oudz.
'y Sh

Using the Fourier transform of uy,(z1) = ulr, given in (2.8) in terms of (P(£),S(€))"
and the Fourier transforms of Tw on I'y,, djulr, ,j = 1,2, and div u|p, given by (cf.

(3.8) and (2.8))
F(Tu)(€) = <Tp(€) (fp) +T1.(9) (L)) <§’((§>))
—i (wz“ 57552 wi;c“f) (1;8) ’

F(Ogulr,)(§) =i (5% j5 > <§((g> ’

’7;2; _578

Foulr)© =i (& 6) (56
F(div ule, () = 2P(E).

after some elementary calculations, we obtain

(5.12) {2Re (Ty-u - 021) — E(u, ) + w|ul*} ds
Tn

= 922 2 P 2 ) s 2y
2 </£<kp7p(§)| (5)' €+/£<ksﬂys(€)| (§)| 5)
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and

I'n

(5.13) Im [ Th-u-uds =w’ </|5|<k %(5)|P(€)|2d§+/lgl<k 75(€)|5(§)|2d§>-

Here 7 denotes the Dirichlet-to-Neumann operator (3.10). Using (5.12) and (5.13)
and taking the imaginary part of (5.6), we get

(5.14) {2Re (Ty-u- 0o1) — E(u, ) + w?|u|*} ds < 2k, Im | Ty_u-uds
Fh Fh

= 2ks Im J-udx.
Sh

Combining (5.11) and (5.14) then gives the estimates
(5.15) —/ {no p|Onul® + na (A + ) |div ul?} ds
r

< 2ks Im g-ﬂdx—2Re/ g - Oudx
Sh Sh

< O |gll2(snyz (lullLzs,)z + [102ullL2(s,)2)
< C3 |91l L2 (sp)2 [102ullL2(s,)2 5

where the last inequality follows from (4.7) and the constants Cs, C3 depend only on
w and h. Recalling that

(5.16) ng=—1+fl(x)?) V2 <-A+LHY2<0 on T,
from (5.15) we obtain
(5.17) Idiv ul|F2(py + [1Onul[Tery < C llgllr2(sn)e [102ullL2(s,)z »

with C' > 0 depending only on w, h and L. Finally, it is easy to check, using u = 0
on I' and the identities in (5.9), that

no |curl ul? = ny (|[Vul? — |div u|?) = ng (|0nul? — |div u[*) on T.

Thus [|curl u||2L2(F) can also be bounded by the right-hand side of (5.17). O

Remark 5. If g = 0 in Sy, then it follows from Lemma 6 that u = Oyu = 0 on
I'. Thus the uniqueness to (BVP) is a direct consequence of Holmgren’s uniqueness
theorem if T" is the graph of a smooth function satisfying (2.1). Furthermore, the
uniqueness can be extended to a Lipschitz graph using the approximation arguments
from Lemma 8 in subsection 5.2 below.

To continue the proof of Lemma 5, we now choose some H > h and derive
estimates for the L? norms of the scalar functions div « and curl u on the artificial
boundary 'y and the strip Sp. Define the functions (see (2.4))

(5.18) = —(l/kﬁ) div u, 1 := (i/k?)curl u,

where u denotes a solution of problem (5.6) extended to D by the UPRC (2.11). Note
that this extension is a solution of (5.7) in Sy with § = 0 in Sg\Sy. Therefore the
functions ¢ and v defined in (5.18) satisfy the inhomogeneous Helmholtz equations

(5.19) (A+k)w=g, in Sy,
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with gr =0 in SH\Sh and

w=¢, gr=—(/w>)divg in S, for k=k,,
(5.20) ¢ glf ('/ 2) g S »
w=1v, gr=(G(/w)curlg in S, for k=k,.

Moreover, for each ¢ € [h, H], it follows from (2.11) and (2.12) that w satisfies the
corresponding UPRC for the Helmholtz equation (see [14])

(5.21) w(z) = \/% /Rexp(i VE? = &2 (22 — ¢) +ix18) we(E) dE, x2 > c,

where . = Fw,. denotes the Fourier transform of w, = w|r,. Note that we have
gr € L*(Sy) and w € L*(Sy) N HE .(Sg) N H' (S \Sk) in each case of (5.20), since
u € Vg and g € Vj. On the artificial boundary 'y, the Dirichlet-to-Neumann
operator for problem (5.19)—(5.21) takes the form

(5.22) Tv=F1(iVE2 - Fv), ve HY*Ty),

and is a bounded linear map of H'/2(I'y) into H~'/?(T'y); see [14, Lemma 2.4]. Tt
follows from Lemma 6 (for the strip Sy) that we can estimate the L? norm of the
trace of w on I' as

(5.23) lwl[Z2ry < Cl1GllL2cs0)2 1102l L2(s0)2

where C' depends only on w, H, and L. The following lemma, which is an extension
of [27, Lemma 5.2] to the case of nonperiodic rough surfaces, is needed to prove
corresponding estimates for w on Sy and the trace of w on I'g.

LEMMA 7. Let H > h, and suppose that g € L*(Sg), gr = 0 in Sg\Sh, and
w € L*(Sy) N HE,(Su) N HY (Sg\Sk) is a solution of problem (5.19)-(5.21). Then
there holds

(5.24) lwllzerny < Cllwllzzisyy < C (lwllzawy + 13ell2cs)

for some constants C, C>0 depending only on w, h, H, and the Lipschitz constant
L of T.

Proof. By (5.21) and (5.22), the trace of w on I'yy satisfies the relation dyw =
7~"y,w. To estimate the L? norm of w on the strip Sy, we consider the boundary
value problem of finding v € HS#) such that

(5.25) (A+Ek)v=w in Sy, v=0 on I, dwv=Ty v on TIg.

It follows from [14, Lemma 4.6] that problem (5.25) is well-posed, with the unique
solution v satisfying the bound

(5.26) || HS™) < C1 |Jwl|p2(sy), C1= Ci(w, H) > 0.

We first prove that ||0nv|[7(ry < Co |[wl[75(s,,) for some constant Co > 0 depending
only on w, H, and the Lipschitz constant L of I". This estimate will be verified using
the following Rellich identity for the Helmholtz equation:

(5.27) 2Re Do (Av + k*v) dx
Su

_ (/+/ >{2Re(5nv525)—"2|V”|2+"2k2|”|2}d8’
r 'y
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which is just the analogue of the identity (5.8) and can be proved in the same way.
Furthermore, it holds that (see the proof of Lemma 4.6 in [14])

(5.28) {2Re (0nv 027) — na|V|* + nok?|v]?*} ds < 2kIm 7T _vds
FH I‘H

< 2kIm Twdx
Su

and that

(5.29) —/{2Re (0¥ 020) — 2| Vo|* + nok?|v]?} ds = —/n2|8nv|2ds
r r

> L 002
= Vi i

using the equalities in (5.9) and the bound for ny in (5.16). Inserting (5.28) and (5.29)
into (5.27) and then using (5.26), we get the estimates

(5.30) |0nvl[72(ry < Cs {—2 Re/s

< Cu |Jwll 2 s I H ™ < Collw]|F2s,,) -

W 02U dx + 2k Im 5@(195}
Su

H

where the constants C3 and Cy depend only on w, H, and L. We next prove the
second inequality in (5.24). Define the cut-off function x 4 as in the proof of Lemma 6.
By Green’s formula, we then have

{wxa Av —v A(xaw)} dx
Su

= /SA+1 {wxa Av—v A(xaw)} dx
— /asA“ {wxa Onv — v In(xaw)}ds

z/ {wxa Onv — VW Onxa — XAV Opw}ds
asptt

H

where the sets Sqtt, T4 T4+ A > 1, are the intersections of Sy, g7, and T with
the disk {|z| < A+ 1}, respectively. Letting A — +o00 and making use of the relations
NS H(SH), Av € L2(SH), Onv|r € LZ(F) and w € LQ(SH) N Hl(SH\Sh), Vuwlp, €
L?*(T'y)?, we obtain (see the proof of Lemma 4.6 in [14])

{w Av —v Aw}dr = {w@nv—vanw}ds—F/w@nvds

Su 'y r

:/ {w’f'v,v—v’i"y,w}ds—l—/w@nvds
Tu r

:/wﬁnvds.
r
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Note that v = 0 on I, and the Dirichlet-to-Neumann operator 7 defined in (5.22) is
symmetric (see [14, Lemma 3.2]). Thus

/ |w|2dx:/ w (Av + k*v) dx
SH SH

:/ v(Aw+k2w)dx+/w8nvds
Sk r

:/ ngdx—i—/w@nvds.
Sh T

Together with (5.26) and (5.30), this implies, with C5 depending only on w, H, and
L

)

w72 (s, < ollL2sm) Gkl L2(s0) + 1wl L2y [18av] |22y

< Cs ||wllrz(sy) (1grllr2(sn) + llwll2(r))-
This proves the inequality
(5.31) llwllz2(sm) < Cs ([lwllr2er) + 19k L2(s)))-

To prove the first inequality in (5.24), we use the estimate

/ |w|2ds§/ lw[*ds for all c € (h, H],
Ty r.

which follows from (5.21), (5.22), and the Plancherel identity; see also the proof of
Lemma 2.2 in [14]. Thus we obtain the bound

(5.32) (H—h)/ |w|2dx§/ |w|2ds§/ [ ds
FH SH\Sh SH

Combining (5.31) and (5.32), we then get the desired estimate (5.24). O

To prove the desired bounds of the L? norms of div u and curl v on Sy and I'y
in terms of the right-hand side of (5.7), we now combine the estimates of Lemmas 6
and 7. In fact, applying Lemma 7 to w = ¢ and w = @ and the corresponding
right-hand side g of (5.19), and then using the bound (5.23), we obtain the estimate

(5:33)  ldiv ul|7z(s,, + el ul[Za(s,) < Cllllvi (1llvi + [102ul|z2(s)2) -
Analogously, the estimates (5.24) and (5.23) imply the bound
(5:34)  ldiv ul|Za .y, + lleurd ullZa ) < Cllllvi (1311, + [102ullL2(si)2) -

Here the constant C' only depends on w, h, H, and L.

End of proof of Lemma 5. To deduce the bound (5.2) from the estimates (5.33)
and (5.34), we need another Rellich identity for the Navier equation. Note that the
Rellich identity (5.8) is not sufficient for our purposes since it only leads to estimates
of u on the boundary of the strip. Using Betti’s formula (3.3) on the strip Sy and
employing the cut-off function x4 as in the proof of Lemma 6, integration by parts
yields
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(5.35) 2Re / (A +o?)u- (22— f_) Dude
Su

:/ E(u,u) —2Re Z E(u, (w2 — f-)e;) Ty ¢ — w?ul? § da
SH j=1,2

+ (/FH +/F) [—n2&(u, @) + 2Re (Tu - 097) + naw?|ul?] (v2 — f-)ds;

recall that e; denotes the unit vector in the z;-direction, and 7' is the stress operator
defined in (3.2). Note that (5.35) extends the Rellich identity used in [14] to the
case of elastic rough surface scattering. Using (5.33), (5.34), (5.35), and appropriate
estimates of the sesquilinear form B in (5.6), we can now finish the proof of Lemma 5.
Recalling (4.4), we rewrite the variational formulation (5.6) on Sy as

7)) — w?|ul?} do — ] 7
630 [ w0 @) T
—— [ geuder [ M©au(e) T
Su [€1<ks
where ug = u|pr,. From (5.36) and Lemma 2 (i),
(5.37) /S {E(u,m) — w?|ul’} dz

<—/SH§-Edw+/£ M (&) iy (€) - ap (€) de .

|<ks
Rearranging the terms in (5.35), and then using (5.37) and (5.10), we arrive at
(5.38)

/ 2Re Z E(U, (ZIJQ — f_)ej) 8ﬂj dx
SH

j=1,2
=[x = 1) {ulomul + -4 ) div uP ma ds
T

= / {€(u,m) — w?|u|’} dz — 2Re / (A" +whu - (22 — f_) DoTida
Su

Su

+(H - f) {2Re (Tw- 0o1) — E(u, W) + w?|ul*} ds
Tu

< [ {mgru2Re 0w ea - LYo [ MO (o) - Tn(e)ds

SH ‘f‘gks
+(H-f) {2Re (Tu - 0o1) — E(u, W) + w?|ul*} ds.
'y
We now estimate the second term on the right-hand side of (5.38). Since ||[M(£)|| < C4
for all |¢| < ks, with some constant C; > 0 depending only on w (cf. Lemma 2 (ii)),

there holds

(5.39) /M M) () - T (€) de < Cy / 2 (€2 de

1€1<ks
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Let Py (€) and Sp(€) denote the Fourier transforms of (—i/k2)div u(x1, H) and
(i/k2) curl u(z1, H), respectively, given by (see (2.6))

P (&) = P(&) exp(i(H — h)p(€)),  Su(§) = S(§) exp(i(H — h)7s(£)) -

Then @ (€) is related to (Pg(€), Sk (€))7 via the equality (see (2.8))

() (€ 22) (1),
i 2(E) Y =€) \Su(§)
Thus, from (5.39), (5.34), and the Plancherel identity we get the estimates

(5.40) /W M(E)iun (€) - T () de < C / (Pu()F + |Su ()P} de

1€1<ks
< G (I1Pull2ae) + 1Sl 2m))
< Cs 3l 11311y, + 192l 2(s012)

where the constants Cy and C3 depend on w, h, H, and L.

Furthermore, from the estimates (5.14) and (4.7) we obtain the following bound
for the last term of (5.38):

(5'41)/ {2Re (T - 0y7) — E(u, W) + w’[uf*} ds < 2k, Tm | §-Tda
Tw Su

< 2ks [|9llv, [lullz2(s4)2
< Ca [|gllvi, [102ullL2 (542 5

with C4 > 0 depending only on w and H. Combining (5.40), (5.41), and (5.38), we
then arrive at

(542) /S 2Re Z €(u, (332 — f_)ej) 8zﬂj dx

7j=1,2
< G5 (N1, + 11311, 102ull2(si2 ) -

where the constant Cs depends on w, h, H, and L. Note that the second term in
(5.38) is nonnegative.

We further have the easily verified relation

/ 2Re Z E(U, (ZIJQ — f_)ej) 8ﬂj dx
Su

j=1,2

= 2(A +201) |[B2uz[T2 s,y + 20 ||02unr[|T2(s,) +2(A + p)Re [ Orus 85z da,
SH
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which implies, on choosing C > 0 sufficiently large,

(5.43)

/5 2Re E(u, (3 — f-)e;) OaT; b d+ C|[div ul[2agg,y o + C llewrl ul2as, o
H

j=1,2

= [C + 2()\ + 2,&)] ||(92U2||%2(SH)2 +C ||81U1||%2(SH)2

+ 2(0 + A+ /J,) Re Ovuq Oxun dx
Su

+ (C + 2#) ||(92U1||%2(SH)2 +C ||81U2||%2(SH)2 —2C Re O1us 0oy dx
Su
> Co [|Vul| 725,25

where the constant Cg only depends on the Lamé constants A and p. Combining
(5.33), (5.42), and (5.43) and using Young’s inequality gives

(5.44) IVullL2(sh)2 < C7 [lgllvi,

with C7 > 0 depending on w, h, H, and L. Together with the estimate (4.7) (for
the strip Spr), (5.44) finally yields the inequality ||u|lv, < Co ||g]]v,, hence ||ul|v, <
Co ||g]|v;, - Choosing H, say H = h+ 1, we see that the constant Cy > 0 depends only
on w, h, and the Lipschitz constant L. This completes the proof of Lemma 5. d

Let B = B(w) be the operator defined in (3.19). Combining Lemmas 4 and 5, we
now obtain the a priori estimate

(5.45) 1Byl

V;ZCHUHV;” u € Vi,

where the constant C' depends only on w, h, and the Lipschitz constant L of the rough
surface I'. Together with Lemma 3 and Theorem 2, the estimate (5.45) then implies
Theorem 1 in the case of smooth rough surfaces.

5.2. A priori estimate for Lipschitz rough surfaces. Having established
the a priori estimate (5.2) for C* surfaces in subsection 5.1, we now adapt Necas’s
method [37, Chapter 5] of approximating a Lipschitz graph by smooth surfaces to
justify the a priori estimate (5.2) in the general case. Similar arguments are employed
in [27] for the scalar Helmholtz equation and in [23, 24] for the Navier equation in the
periodic case.

LEMMA 8. Suppose that T is given by the graph of a Lipschitz function f satisfying
(2.1), h > fy, § € Vi, and that u € V}, is a solution of the problem (5.6), i.e.,

B(u,v):(Bu,v)sh:—/ g-vdx, veV,.
Sh

Then there exists a constant Cy > 0 independent of u and § such that ||ully, <

Co l|gllv;. -
Proof. We first approximate the Lipschitz function f by smooth functions. Choose
C*-smooth functions f,, such that (see, e.g., [41, Lemma 3.10])

Ipoi={2:22 = f(®1),21 €R} C Sp, meN,
sup{|fm(z1) — f(z1)] : 21 € R} -0 as m — oo,
|[fn(z1) — fm(22)| < L|z1 — 22| for allz1,20 € Rand m € N,
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where L > 0 is the Lipschitz constant of f (cf. (2.1)). Define the strip S}, the space
Vi, and the operator By, as Sp, Vi, and B, respectively, with I' replaced by I'y,.
Then it follows from the proof of Lemma 4 that, for some sufficiently large number
a > 0, there exists a unique solution w,, € V" to the problem

(5.46) (Binwm, + qwy,, v)sm = / (—g+ou)-vdr, veVp",
sm
for all m € N. Note that S;* C Sj, since I'y;, C Sp,. We extend the functions w,, by

zero from S} to Sp, and regard V;" as a subspace of V},. Then w,, € V}, is also the
unique solution of the variational problem

(5.47) (Bawp,v)s, = / (—Gm + auy,) -Tdr, veV,
Sh

where B, := B+ ol and u,, gm € L*(S,)? denote the extensions of U|S,T and §|SZ%
respectively, to Sy by zero. Furthermore, the operator B, : V;, — V}* is also invertible
for the chosen a > 0; see the proof of Lemma 4 again. Thus the problem

(5.48) (Baw,v)s, = / (—g+au)-vdr, veV,,
Sh

has the unique solution w = u € V},. Using the relations S}* C Sy, the convergence
of the functions f,, to f, and the Lebesgue dominated convergence theorem, we get
Um — w and Gm, — g in L?(Sk)? as m — oo. Therefore (cf. (5.47) and (5.48)),

llu = winllvi, < 1B3 v s [l = um) + (Gm — Dll2s,)2 =0, m — o0,
implying that
(5.49) Wy —u in Vi, m— oo

Note that [[v[v,: < [v]|2(s,) < [[v]|s, for all v € V.
We rewrite the variational problem (5.46) for w,, as

(Bmwm,v)sgn = / I - Tde, veWV, ln:=—0m+alu—wy).
Sy

Applying Lemmas 4 and 5 to the operators B, : V;™* — (V;™)* that correspond to

the smooth rough surfaces I';,, with uniformly bounded Lipschitz constants L,, < L,

we obtain the estimates

(5.50)

[wim [lvm < Cr{llnll(vmys < Cllnllzzespyz < Chl|gml|p2(simyz +Cral|[u—wi || L2 (smy2

with some constant C; > 0 independent of m. Letting m — oo in (5.50) and using
(5.49), it follows that

llullvi, < C1 [19l]L2smy2 < Ch l|gl|va 5

which finishes the proof of Lemma 8. O

Combining Lemmas 4 and 8, we get the a priori estimate (5.45) for a Lipschitz
surface I'; so that Theorem 1 is proven in the general case. We note that, for sound-
soft acoustic scattering, existence and uniqueness of solutions has been proved in [14]
for a more general class of nonsmooth rough surfaces, including a priori estimates of
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the form (5.45) with an explicit stability constant C' in terms of the wave number and
the width of the strip Sj. The extension of these more general and precise results to
elastic scattering remains an open problem.

We further note that the uniqueness and existence results obtained in this pa-
per can be extended to three-dimensional elastic rough surface scattering problems,
including the case of impedance boundary conditions. Moreover, following the varia-
tional approach of [11] in appropriate weighted Sobolev spaces, the problem of plane
elastic wave incidence in the two-dimensional case and the problem of incident spher-
ical and cylindrical elastic waves in the three-dimensional case can also be treated.
These results will be presented in subsequent publications.
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