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This paper is concerned with the direct and inverse time-harmonic electromagnetic scat-
tering problems for a finite number of isotropic point-like obstacles in three dimensions.
In the first part, we show that the representation of scattered fields obtained using the
Foldy physical assumption “on the proportionality of the strength of the scattered wave
on a given scatterer to the external field on it” is the same as the one derived from the
model corresponding to the scattering by Dirac-like refraction indices. Using the reg-
ularization approach known in quantum mechanics, we rigorously deduce the solution
operator (Green’s tensor) of the last model in appropriate weighted spaces. Intermediate
levels of the scattering between the Born and Foldy models are also described. In the
second part, we apply the MUSIC algorithm to the inverse problem of detecting both
the position of point-like scatterers and the scattering coefficients attached to them from
the far-field measurements of finitely many incident plane waves, with an emphasis on
discussing the effect of multiple scattering.
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1. Introduction

We consider the scattering of a time-harmonic electromagnetic plane wave from
an inhomogeneous isotropic medium in R3 with electric permittivity ε = ε(x)> 0,
magnetic permeability µ = µ0 > 0 and electric conductivity σ = σ(x). It is supposed
that the inhomogeneous medium occupies a bounded domain such that ε(x)= ε0 > 0
and σ(x) = 0 for x outside of some sufficiently large ball. Assume that the time-
harmonic incident plane waves (with the time-form exp(−iωt)) take the form

Ei(x; θ, p) = p exp(iκx · θ), Hi(x; θ, p) = (θ × p) exp(iκx · θ), θ⊥ p,

where κ := ω
√

ε0µ0 > 0 is the wavenumber corresponding to the background
medium and θ, p ∈ S2 := {x : |x| = 1} stand for the propagation and polarization
directions, respectively. Then, the total electric and magnetic fields E, H satisfy the
reduced time-harmonic Maxwell equations

curlE − iκH = 0, curlH + iκn(x)E = 0, in R
3, (1.1)

where the refractive index n = n(x) is given by

n(x) :=
1
ε0

(
ε(x) + i

σ(x)
ω

)
.

The scattered fields Es := E−Ei, Hs := H −Hi are required to satisfy the Silver–
Müller radiation condition

lim
|x|→∞

(Hs × x − |x|Es) = 0,

uniformly in all directions x̂ := x
|x| ∈ S

2, leading to the electric and magnetic
far-field patterns E∞(x̂), H∞(x̂) given by the asymptotic behavior

Es(x) =
eiκ|x|

|x|
{

E∞(x̂) + O

(
1
|x|
)}

,

Hs(x) =
eiκ|x|

|x|
{

H∞(x̂) + O

(
1
|x|
)}

,

(1.2)

as |x| → ∞. It is well known that E∞ and H∞ are both analytic functions defined
on S

2, satisfying E∞ ⊥H∞, and that they are both tangent to S
2.

In this paper we assume that the inhomogeneous medium consists of a finite
number of components and that the wavelength of incidence is much larger than
the diameter of each component. The inhomogeneous medium in this situation can
be regarded as the collection of a finite number of point-like obstacles centered at
yj , j = 1, 2, . . . , M. These point-like obstacles are treated as isotropic,a so we can

aIn other words, we allow only local interactions between them.
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write the refractive index in the form

(n(x) − 1) =
M∑

j=1

a′
j δ(x − yj), (1.3)

where the constant a′
j ∈ C, j = 1, . . . , M , is the polarizability describing the scatter-

ing coefficient attached to the scatterer located at yj, see (16) in Ref. 13. Eliminating
the magnetic field from (1.1) and making use of (1.3), we find that E = Ei + Es

satisfies the problem
curl curlE − κ2E −

M∑
j=1

ajδ(x − yj)E = 0, x in R
3,

curl Es(x) − iκ |x|Es(x) = o(1), |x| → ∞ uniformly in all directions

x̂ := x/|x| in S2,

(1.4)

which models the electromagnetic scattering by M point-like obstacles, where aj :=
κ2a′

j , j = 1, . . . , M . For convenience we set

HκE := curl curlE − κ2E −
M∑

j=1

ajδ(x − yj)E,

yj = (yj1 , yj2 , yj3)� ∈ R3

(1.5)

and Y := {y1, y2, . . . , yM}.
We refer the reader to Ref. 21 for a comprehensive study of the multiple scat-

tering in general and the scattering by point-like scatterers in particular, where
practical motivations of the corresponding models and historical facts are discussed.
Another close reference to our work is Ref. 1 concerning the scattering by point-like
potentials in quantum mechanics, where applications to many different areas and
historical references are provided. In contrast to significant progress made for the
Helmholtz equation, see Refs. 1 and 21, as far as we know, only relatively little
mathematical analysis for the Maxwell equations has been carried out and most of
the literature come from physical and engineering community.10,13,18,19,25,27,29 We
refer to Refs. 7 and 6 for a rigorous asymptotic analysis of the multiple electro-
magnetic scattering by a finite number small obstacles, see also Ref. 24 for related
results, using integral equation methods and to Refs. 26 and 14 using the Krein
resolvent formula. A physical overview of the applications related to the model
(1.4) can be found in Ref. 13, see also Ref. 5 where a different but related model is
considered with a discussion on the regularity of the solutions.

The contributions of this paper are twofold. First, we establish a rigorous solv-
ability theory for the scattering problem (1.4). To obtain the scattered waves cor-
responding to plane wave incidences, it is enough to provide the Green’s function
of the system (1.4), see Sec. 2.2.4. This Green’s function, given in Theorem 2.1, is
the kernel of the solution operator of Hκ(uf ) = f in appropriate spaces. A general
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idea to derive such Green’s function in the whole space is to Fourier transform Hκ

and then Fourier transform back the inverse of the resulting operator. By virtue
of the Dirac-like potentials occurring (1.5), we get a finite rank perturbation of
a multiplication operator in the Fourier variables, which cannot be inverted in
a straightforward way. An idea to overcome this difficulty is to first “regularize”
the obtained operator in the Fourier variables, then use the Weinstein–Aronszajn’s
determinant formula to invert this operator and finally Fourier transform back the
inverted operator. This is known as the regularization approach in the framework
of the solvable models in quantum mechanics, see, for instance, Ref. 1. However,
applying such an approach to the Maxwell system is not trivial, compared to the
acoustic model or the elastic system, mainly due to a higher (and non-integrable)
singularity of the Green’s tensor to the Maxwell equations. To handle this singu-
larity, we adopt an idea of Ref. 13 where the problem (1.2)–(1.4) is studied in the
case of one point-scatterer and a formal computation of the scattering matrix is
shown. This idea consists of decomposing the Green’s tensor into its longitudinal
and transversal parts, see (2.15)–(2.16) and then regularize them in the Fourier
variables, see (2.26). After that, in the Fourier variables, we restrict ourselves to
the tangential fields (which corresponds to taking divergence free sources f) and
invert the obtained operator. As a consequence we derive an explicit form of the
Green’s tensor of the problem (1.4) from which the representation of far fields corre-
sponding to plane incident waves follows, see (2.45). This representation turns out
to be nothing but the scattered field obtained using the Foldy physical assumption
“on the proportionality of the strength of the scattered wave on a given scatterer
yj to the external field on it”, see Sec. 2.1, after adjusting accordingly the scat-
tering strengths, i.e. taking the scattering coefficient gj in the Foldy model as the
coefficients (a−1

j − bj)−1 with bj appearing in (2.25), cf. (2.11) with (2.45) and
see Remark 2.1. In addition, we retrieve the results in Ref. 13 as a special case,
see Remark 2.2. The representation of the far field takes into account the multiple
scattering between the point scatterers. Based on this model, we then describe the
intermediate scattering models and the Born model as well. The analogue results
for the Lamé system are shown in Ref. 17. It is worth mentioning here the work8

where the point-like model (2.45), for the near fields, is obtained by approximating
scattering from spherical well-separated inclusions. In addition, we should empha-
size that if the inclusions are not spherical then the approximating model describes
the scattering by anisotropic scatterers, since the corresponding polarization tensors
are anisotropic. For such scatterers, our model, which describes isotropic scatterers
due to the type of contrast in (1.3), is not appropriate.

Second, we study the inverse scattering problem consisting of recovering the
point-scatterers as well as the attached scattering coefficients from the far fields
corresponding to finitely many incident plane waves. For this, we use the three
different models given by Born, Foldy and intermediate levels and discuss the effect
of the multiple scattering on the resolution of the reconstructions in terms of the
used wavelength, the distance between the scatterers and the scattering coefficients.
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This study is a continuation of the one provided in Ref. 11 for the acoustic and
elastic cases.

The paper is organized as follows. In Sec. 2.1, we briefly review the model of
Foldy for electromagnetic scattering by point-like obstacles. In Sec. 2.2, we apply the
regularization method to derive the Green’s tensor to the electromagnetic scattering
by Dirac-like refraction indices. Our main results concerning the forward model are
summarized in Theorem 2.1 at the end Sec. 2.2.3. Section 3 is devoted to the studies
of intermediate models and the Born approximation. The inverse problems related
to these models are investigated in Sec. 4. Some technical identities used in our
analysis will be proved in the Appendix.

We finish this section by introducing some notations that will be used through-
out the paper. Denote by (·)� the transpose of a vector or a matrix, and by (·)∗
the transpose and conjugate of a matrix. The symbols ej, j = 1, 2, 3, denote the
Cartesian unit vectors in R

3. For a ∈ C, let |a| denote its modulus, and for a ∈ R
3,

let |a| denote its Euclidean norm. The notation a · b stands for the inner product∑3
j=1 ajbj of a = (a1, a2, a3),b = (b1, b2, b3) ∈ C3. Let X ′ be the dual space of

a Hilbert space X ; then the set of bounded linear operators from X to Y will be
denoted by L(X, Y ).

2. The Forward Problem

We introduce the dyadic Green’s function Πκ for the Maxwell equations in the
homogeneous isotropic background. It is well known that Πκ takes the form (see,
e.g. Chap. 12 in Ref. 22 and Theorem 5.2.1 in Ref. 23)

Πκ(x, y) = Φκ(x, y)I +
1
κ2

∇y∇yΦκ(x, y) ∈ C
3×3, x �= y, (2.1)

satisfying

curly curly Πκ(x, y) − κ2Πκ(x, y) = δ(x − y)I, x �= y, (2.2)

where the notation I stands for the 3 × 3 identity matrix, Φκ(x, y) :=
(4π)−1 exp(iκ|x−y|)/|x−y| is the fundamental function to the Helmholtz equation,
i.e. (∆ + κ2)Φκ(x, y) = −δ(x − y) in R3, and ∇y∇yΦκ(x, y) is the Hessian matrix
for Φκ defined by

(∇y∇yΦκ(x, y))j,l =
∂2Φ

∂yj∂yl
, 1 ≤ j, l ≤ 3.

Note that curlΠκ is understood as the application of curl to each column of Πκ. A
simple calculation shows that each column of Πκ satisfies the Silver–Müller radiation
condition, leading to the far-field matrix Π∞

κ (x̂; y) of Πκ(x, y) as |x| → ∞ given by

Π∞
κ (x̂; y) =

e−iκx̂·y

4π
(I − x̂ ⊗ x̂), (2.3)

where x̂ ⊗ x̂ := x̂x̂� ∈ R3×3.
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2.1. Foldy’s model for the electromagnetic scattering

by point-like obstacles

Following the Foldy method (see Ref. 15 or p. 298 in Ref. 21 for the acoustic case),
we represent the total field as

E(x) = Ei(x) +
M∑

j=1

Πκ(x, yj)Aj , (2.4)

where Aj are unknown constants. The field

Ej(x) = E(x) − Πκ(x, yj)Aj = Ei(x) +
M∑
l=1
l �=j

Πκ(x, yl)Al, (2.5)

is regarded as the external field incident on the jth scatterer in the presence of all
the other scatterers. The physical assumption in Foldy method is that the strength
of the scattered wave from the scatterer yj is proportional to the external field on
it. In our case this is given by the assumption that

Aj = gjEj(yj), (2.6)

where gj is called the scattering coefficient of the scatterer yj. Evaluating (2.5)
at yj, we obtain

Ej(yj) = Ei(yj) +
M∑
l=1
l �=j

glΠκ(yj , yl)El(yl) (2.7)

and then (2.4) becomes

E(x) = Ei(x) +
M∑

j=1

gjΠκ(x, yj)Ej(yj). (2.8)

Following Ref. 15, we call the system (2.7) the fundamental system of multiple
scattering.

The equations in (2.7) can be written as the algebraic linear system

[Γ̃]3M×3M [Λ]3M×1 = [EI ]3M×1, (2.9)

with Λ := (E1(y1)�, E2(y2)�, . . . , EM (yM )�)� ∈ C3M×1, EI := (Ei(y1)�, . . . ,

Ei(yM )�)� ∈ C
3M×1 and

Γ̃ := Γ̃(κ)

=


I −g2Πκ(y1, y2) −g3Πκ(y1, y3) · · · −gMΠκ(y1, yM )

−g1Πκ(y2, y1) I −g3Πκ(y2, y3) · · · −gMΠκ(y2, yM )
...

...
...

. . .
...

−g1Πκ(yM , y1) −g2Πκ(yM , y2) −g3Πκ(yM , y3) · · · I

.
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Assuming det(Γ̃) �= 0 and denoting the 3 × 3 blocks of Γ̃−1 ∈ C3M×3M by [Γ̃−1]lj
for l, j = 1, 2, . . . , M , we deduce from (2.4) that the scattered field takes the form

Es(x) := E(x) − Ei(x) =
M∑

l,j=1

gjΠκ(x, yj)[Γ̃−1]jlEi(yl), (2.10)

with the far-field pattern, using (2.3)

E∞(x̂) =
1
4π

M∑
l,j=1

gje
−iκx̂·yjeiκ θ·yl(I − x̂ ⊗ x̂)[Γ̃−1]jlp, x̂ ∈ S

2. (2.11)

The Foldy method provides us explicit formulas (2.10) and (2.11) of the scattered
near and far fields in terms of the point-like obstacles yj and the scattering coeffi-
cients gj, under the hypothesis of the invertibility of Γ̃ and the assumption (2.6).
In the rest of this section, we will rigorously derive (2.10) and (2.11) from the
model (1.4), establishing a relation between the Foldy method and the regularized
approach, see Remark 2.1. Our argument, in this sense, provides a theoretical justi-
fication of Foldy’s fundamental system (2.7)–(2.8) for idealized point-like obstacles.
The invertibility of Γ̃ will be discussed in Sec. 4.2.

2.2. The electromagnetic scattering by Dirac-like refraction indices

The purpose of this section is to derive the Green’s tensor to the solution operator
of Hκ (see (1.5)) using the regularization approach. As mentioned in Sec. 1, we first
Fourier transform the operator Hκ in Sec. 2.2.1, and then apply the Weinstein–
Aronszajn’s determinant formula to invert the “regularized” operator by choosing
appropriate coupling coefficients in the Fourier variables, see Sec. 2.2.2. The inverted
operator will be Fourier transformed back to the origin space variables in Sec. 2.2.3.
Finally, in Sec. 2.2.4 we deduce the scattered near and far fields for the scattering
problem (1.4) from the Green’s tensor.

2.2.1. The model in the Fourier variables

Define the Fourier transform F : L2(R3)3 → L2(R3)3 by

(Ff)(ξ) = f̂(ξ) := (2π)−3/2 lim
R→∞

∫
|x|≤R

f(x)e−ix·ξdx, ξ = (ξ1, ξ2, ξ3)� ∈ R
3.

Its inverse transform is given by

(F−1g)(x) := (2π)−3/2 lim
R→∞

∫
|ξ|≤R

g(ξ)eix·ξdξ.

For u = (u1, u2, u3)� ∈ L2(R3)3, a simple calculation shows

F(curl curlu) = (|ξ|2I − ξ ⊗ ξ)û = |ξ|2(I − ξ̂ ⊗ ξ̂)û, ξ̂ = ξ/|ξ|,
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where û := Fu = (û1, û2, û3)�. Define

Mκ(ξ) := |ξ|2(I − ξ̂ ⊗ ξ̂) − κ2I = (|ξ|2 − κ2)I − ξ ⊗ ξ ∈ R
3×3.

It is easy to check that the inverse matrix of Mκ takes the form

M−1
κ (ξ) =

1
|ξ|2 − κ2

(
I − 1

κ2
ξ ⊗ ξ

)
, (2.12)

and that (cf. (2.2))

(2π)−3/2F−1[M−1
κ (ξ)] =

(
I +

1
κ2

∇x∇x

)
eiκ|x|

4π|x| = Πκ(x, 0), x �= 0. (2.13)

Following Ref. 13, we decompose M−1
κ (ξ) into the sum

M−1
κ (ξ) = Tκ(ξ) + Lκ(ξ), Tκ :=

1
|ξ|2 − κ2

(I − ξ̂ ⊗ ξ̂),

Lκ := − 1
κ2

ξ̂ ⊗ ξ̂,

(2.14)

where Tκ, and Lκ denote the transverse and longitudinal parts with respect to ξ,
respectively. Accordingly, the dyadic Green’s function Πκ(x, 0) admits the decom-
position

Πκ(x, 0) = ΠT
κ (x) + ΠL

κ (x), x �= 0,

with (see Part II in Ref. 13 or the Appendix)

ΠL
κ (x) := (2π)−3/2F−1[Lκ(ξ)] = −I− 3x̂ ⊗ x̂

4πκ2|x|3 , (2.15)

ΠT
κ (x) := (2π)−3/2F−1[Tκ(ξ)]

=
I − 3x̂ ⊗ x̂

4πκ2|x|3 +
eiκ|x|

4π|x| [P (iκ|x|)I + Q(iκ|x|)x̂ ⊗ x̂], (2.16)

where P (t) = 1 − 1/t + 1/t2, and Q(t) = −1 + 3/t− 3/t2.
To Fourier transform the operator Hκ, we set H̃κ(f) := FHκF−1(f) for f =

(f1, f2, f3)� ∈ L2(R3)3. Obviously, there holds

[F(curl curl − κ2)F−1]f̂ = Mκ(ξ)f̂

and formally

(Fδ(x − yj)F−1f̂)(ξ) = (Fδ(x − yj)f)(ξ) =
3∑

m=1

〈f̂ , ϕm
yj
〉ϕm

yj
(ξ),

where ϕm
yj

(ξ) := φyj (ξ)em ∈ C3×1, m = 1, 2, 3 with φyj (ξ) := (2π)−3/2e−iyj·ξ. Here
we used the inner product 〈f̂ , ĝ〉 :=

∫
R3 f̂(ξ) · ĝ(ξ)dξ for f̂ , ĝ ∈ L2(R3)3. Therefore,

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
14

.2
4:

86
3-

89
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
E

IE
R

ST
R

A
SS

 I
N

ST
 F

O
R

 A
PP

L
IE

D
 o

n 
02

/0
3/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



February 19, 2014 10:25 WSPC/103-M3AS 1350070

Multiple scattering of electromagnetic waves by finitely many point-like obstacles 871

by the definitions of Hκ and H̃κ, in the Fourier variables we obtain

H̃κ(f̂)(ξ) = Mκ(ξ)f̂ −
M∑

j=1

3∑
m=1

〈aj f̂ , ϕm
yj
〉ϕm

yj
(ξ), (2.17)

which is a finite rank perturbation of the multiplication operator Mκ(ξ).

2.2.2. The regularization of the model in the Fourier variables

Since it is not easy to prove the existence of H̃−1
κ in a straightforward way, in

particular the functions ϕm
yj

, j = 1, . . . , M, are not square integrable, we will regu-
larize the operator H̃κ. To make the computations rigorous, we introduce the cut-off
function

χε(ξ) =

{
1 if |ξ| ≤ 1/ε,

0 if |ξ| > 1/ε,
for some 0 < ε < 1

and define the regularized operator (cf. (2.17))

H̃ε
κα

f̂ := Mκα(ξ)f̂ −
M∑

j=1

3∑
m=1

〈aj(ε)f̂ , ϕε,m
yj

〉ϕε,m
yj

(ξ),

ϕε,m
yj

(ξ) := χε(ξ)ϕm
yj

(ξ),

(2.18)

where κα := κ + iα with α > 0. The essence of the regularization approach in
quantum mechanics (see Ref. 1) is to choose the coupling constants aj(ε) in a
suitable way such that (H̃ε

κα
)−1 has a reasonable limit as ε tends to zero in appro-

priate spaces. Let us first recall the Weinstein–Aronszajn determinant formula from
Lemma B.5 of Ref. 1, which is our main tool for analyzing the inverse of H̃ε

κα
.

Lemma 2.1. Let H be a (complex) separable Hilbert space with a scalar product
〈·, ·〉. Let A be a closed operator in H and Φj , Ψj ∈ H, j = 1, . . . , M ′. ThenA +

M ′∑
j=1

〈·, Φj〉Ψj − z

−1

= (A − z)−1 −
M ′∑

j′=1

[Γ(z)]−1
j,j′〈 ·, [(A − z)−1]∗Φj′〉(A − z)−1Ψj , (2.19)

for z in the resolvent of A such that det[Γ(z)] �= 0, with the entries of Γ(z) given by

[Γ(z)]j,j′ := δj,j′ + 〈(A − z)−1Ψj′ , Φj〉. (2.20)

Note that in Lemma 2.1, the notation [Γ(z)]−1
j,j′ denotes the (j, j′)th entry of the

matrix [Γ(z)]−1, and [ ]∗ stands for the adjoint operator of [ ]. To apply Lemma 2.1,
we take

H := L2(R3)3, A(f) := |ξ|2(I − ξ̂ ⊗ ξ̂)f(ξ), M ′ := 3M, z = κ2
α
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and Φj := Φε
j , Ψj = −ãjΦε

j for j = 1, . . . , 3M , with ãj and Φε
j defined as follows:

ãj(ε) = al(ε) if j ∈ {3l − 1, 3l − 2, 3l},

Φε
j :=


ϕε,1

yl
if j = 3l − 2,

ϕε,2
yl

if j = 3l − 1,

ϕε,3
yl

if j = 3l,

(2.21)

for some l ∈ {1, 2, . . . , M}. The multiplication operator A is closed with a dense
domain

D(A) := {f(ξ) ∈ L2(R3)3 : |ξ|2(I − ξ̂ ⊗ ξ̂)f(ξ) ∈ L2(R3)3},
in L2(R3)3 hence H̃ε

κα
, with ε > 0, α > 0, is also closed with the same domain. For

a complex-valued number κ + iα, one can observe that det(Mκα(ξ)) �= 0 for all
ξ ∈ R

3, so that (Mκα)−1(ξ) always exists. Further, it holds that

[(Mκα)−1]∗ = [(Mκα
)]−1,

where κα := κ − iα denotes the conjugate of κα. Simple calculations show that

(A − z)−1Ψj = −ãj(Mκα)−1Φε
j ,

δj,j′ + 〈(A − z)−1Ψj′ , Φj〉 = ãj [ã−1
j δj,j′ − 〈(Mκα)−1Φε

j′ , Φ
ε
j〉].

Therefore, by Lemma 2.1, we arrive at an explicit expression of the inverse of H̃ε
κα

given by

(H̃ε
κα

)−1f̂ = (Mκα)−1f̂ +
3M∑

j,j′=1

[Γε(κα)]−1
j,j′ 〈f̂ , χεF

(j′)
−κα

〉χεF
(j)
κα

, α > 0, (2.22)

with

Γε(κα) := [ã−1
j δj,j′ − 〈(Mκα)−1Φε

j′ , Φ
ε
j〉]3M

j,j′=1, χεF
(j)
κα

:= M−1
κα

Φε
j , (2.23)

provided that det[Γε(κα)] �= 0.
In order to get H̃−1

κα
for the complex wavenumber κα, we need to remove the

cut-off function in (2.22) by evaluating the limits of Γε(κα) and 〈f̂ , χεF
(j′)
−κα

〉χεF
(j)
κα

as ε → 0. This will be done in the subsequent lemmas.

Lemma 2.2. The coupling coefficients al(ε) appearing in (2.18) can be chosen in
such a way that the limit ΓB,Y (κα) := limε→0 Γε(κα) exists and takes the form

ΓB,Y (κα) =


(a−1

1 − b1)I −Πκα(y1, y2) · · · −Πκα(y1, yM )

−Πκα(y2, y1) (a−1
2 − b2)I · · · −Πκα(y2, yM )

...
...

. . .
...

−Πκα(yM , y1) −Πκα(yM , y2) · · · (a−1
M − bM )I

, (2.24)
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where ajs are the coefficients involved in (1.4) and B := (b1, b2, . . . , bM ) with

bj := bj(βj , γj , κα) =
βj + iκα

6π

β2
j

β2
j + κ2

α

− (γj/
√

2)3

6πκ2
α

, βj , γj ∈ R. (2.25)

If in addition we assume that aj ∈ R, then [ΓB,Y (κα)]∗ = ΓB,Y (−κα).

Proof. The proof will be carried out in the following three cases of j, j′ ∈
{1, . . . , 3M}.
Case 1: |j′ − j| = 1, and j, j′ ∈ {3l − 2, 3l − 1, 3l} for some l ∈ {1, . . . , M}.

Assume first that j = 3l − 2, j′ = 3l − 1 for some l = 1, . . . , M . Then, we have
Φε

j = χεφyl
e1, Φε

j′ = χεφyl
e2. Since ϕyj (ξ) ϕyj (ξ) = (2π)−3, there holds

〈(Mκα)−1Φε
j , Φ

ε
j′ 〉 = (2π)−3〈(Mκα)−1χεe1, χεe2〉

= (2π)−3

∫
|ξ|<1/ε

[(Mκα)−1e1] · e2dξ = 0,

where the last identity follows from the fact that [(Mκα)(ξ)−1e1] · e2 is odd in ξj ,
see (2.12). By symmetry, we have also 〈(Mκα)−1Φε

j′ , Φ
ε
j〉 = 0. The other cases of

j �= j′ and j, j′ ∈ {3l − 2, 3l − 1, 3l} can be proved analogously. This means that
the off-diagonal terms of each diagonal-by 3 × 3-block of ΓB,Y vanish.

Case 2: j = j′ ∈ {3l − 2, 3l − 1, 3l} for some l ∈ {1, 2, . . . , M}.
In this case, we introduce the regularization parameters βl, γl ∈ R and define

U = U(ε, κα, βl, γl)

:=
1

(2π)3

∫
|ξ|<1/ε

[
Tκα(ξ)

|ξ|2
β2

l + |ξ|2 + Lκα(ξ)
|ξ|4

γ4
l + |ξ|4

]
dξ ∈ C

3×3. (2.26)

Employing spherical coordinate systems, we can readily deduce from the definitions
of Tκα and Lκα that the diagonal terms of U(ε, κα, βl, γl) coincide with each other,
which we denote by Ul(ε). Moreover, there holds the asymptotic behavior Ul(ε) ∼
O(ε−3) as ε → 0+. Now we define the coupling coefficient al(ε) appearing in (2.18) as

al(ε) := (a−1
l + Ul(ε))−1, l = 1, 2, . . . , M, (2.27)

which converges to al as ε → 0+. In view of (2.14), we see using the inverse Fourier
transformation that

lim
ε→0

[
U(ε, κα, βl, γl) − 1

(2π)3

∫
|ξ|<1/ε

(Mκα)−1(ξ)dξ

]

= lim
ε→0

[
U(ε, κα, βl, γl) − 1

(2π)3

∫
|ξ|<1/ε

(Tκα(ξ) + Lκα(ξ))dξ

]

= − lim
ε→0

1
(2π)3

∫
|ξ|<1/ε

[
Tκα(ξ)

β2
l

β2
l + |ξ|2 + Lκα(ξ)

γ4
l

γ4
l + |ξ|4

]
dξ

= −blI, (2.28)
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where the constant bl = bl(κα, βl, γl) is given in (2.25), see Ref. 13 or the Appendix
for the details. Therefore, by (2.21) we get

lim
ε→0

[ã−1
j (ε) − 〈(Mκα)−1Φε

j , Φ
ε
j〉] = a−1

l − bl, j = 3l − 2, 3l − 1, 3l. (2.29)

To sum up Cases 1 and 2, we conclude that the lth diagonal-by 3 × 3-block of the
matrix ΓB,Y := limε→0 Γε(ω) takes the form (a−1

l − bl)I.

Case 3: j ∈ {3l− 2, 3l− 1, 3l}, j′ ∈ {3l′ − 2, 3l′ − 1, 3l′} for some l, l′ ∈ {1, . . . , M}
such that |l− l′| ≥ 1, i.e. the element [ΓB,Y ]j,j′ lies in the off-diagonal-by 3×3-block
of ΓB,Y .

Without loss of generality we assume j = 3l − 2, j′ = 3l′ − 2. Define the 3 × 3
matrix Υl := (Φε

j , Φ
ε
j+1, Φ

ε
j+2) = χεφyl

I. A short computation shows

〈(Mκα)−1Υl, Υl′〉 =
∫
|ξ|<1/ε

(Mκα)−1φyl
φyl′dξ

=
1

(2π)3

∫
|ξ|<1/ε

(Mκα)−1 exp[i(yl′ − yl) · ξ]dξ,

which, by the inverse Fourier transformation, converges to Πκα(yl′ , yl) as ε → 0.
Combining Cases 1–3 finally yields the matrix (2.24).

To be consistent with the definitions of Φε
j and χεF

(j)
ω , we introduce the

functions

Φj(ξ) :=


(2π)−3/2e−iξ·yle1 if j = 3l − 2,

(2π)−3/2e−iξ·yle2 if j = 3l − 1,

(2π)−3/2e−iξ·yle3 if j = 3l,

F (j)
κα

:= (Mκα)−1Φj(ξ), (2.30)

for l = 1, . . . , M . Before carrying out the convergence analysis of (H̃ε
α)−1, we intro-

duce the tangential subspace

X := {f̂ ∈ (L2(R3))3 : ξ · f̂(ξ) = 0, a.e. in R
3}

and define the operator

ģκα
f̂ := (M−1

κα
)f̂ +

3M∑
j,j′=1

[ΓB,Y (κα)]−1
jj′ 〈f̂ , F

(j′)
−κ̄α

〉F (j)
κα

, f̂ ∈ X. (2.31)

Lemma 2.3. Let the coefficients aj(ε) and bj be given as in Lemma 2.2 such that
det[ΓB,Y (κα)] �= 0. Then we have the convergence (H̃ε

α)−1 → ģκα
as ε → 0 in the

space L(X, X ′).

Proof. It is seen from (2.12) and (2.23) that

〈f̂ , χεF
(j)
κα

〉 =
〈

f̂ ,
Φε

j

|ξ|2 − κ2
α

〉
, (2.32)
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since 〈f̂ , (ξ ⊗ ξ)Φε
j〉 = 0 for f̂ ∈ X . Define the bilinear form Lε

α : X × X → C by

Lε
α(f̂ , ĝ) : =

〈
f̂

|ξ|2 − κ2
α

, ĝ

〉

+
3M∑

j,j′=1

[Γε(κα)]−1
jj′

〈
f̂ ,

Φε
j′

|ξ|2 − κ2
α

〉〈
Φε

j

|ξ|2 − κ2
α

, ĝ

〉
< ∞, (2.33)

for any f̂ , ĝ∈X . Then, using (2.22) and (2.32), we deduce

〈(H̃ε
α)−1f̂ , ĝ〉 = Lε

α(f̂ , ĝ), f̂ , ĝ ∈ X.

Hence (H̃ε
α)−1 ∈ L(X, X ′). Analogously, we obtain ģκα

∈L(X, X ′) because of the
quadratic form

Lα(f̂ , ĝ) := 〈ģκα
f̂ , ĝ〉X,X′ = 〈M−1

κα
f̂ , ĝ〉 +

3M∑
j,j′=1

[ΓB,Y (κα)]−1
jj′ 〈f̂ , F

(j′)
−κα

〉〈F (j)
κα

, ĝ〉

=
〈

1
|ξ|2 − κ2

α

f̂ , ĝ

〉
+

3M∑
j,j′=1

[ΓB,Y (κα)]−1
jj′

〈
f̂ ,

Φj′

|ξ|2 − κ2
α

〉〈
Φj

|ξ|2 − κ2
α

, ĝ

〉
< ∞, (2.34)

for any f̂ , ĝ ∈X and α > 0. The convergence (H̃ε
α)−1 → ģκα

as ε → 0 follows from
(2.33), (2.34), Lemma 2.2 and the fact that∫

R3

∣∣∣∣ Φj − Φε
j

|ξ|2 − κ2
α

∣∣∣∣2 dξ =
∫
|ξ|>1/ε

∣∣∣∣ Φj

|ξ|2 − κ2
α

∣∣∣∣2 dξ → 0 as ε → 0.

2.2.3. Back to the original space variables

Having established the convergence of the inverse of the “regularized” operator H̃ε
α,

we are now in a position to Fourier transform back the limiting operator ģκα
to the

original space variables, and then analyze the convergence of the resulting operator
as α → 0 using limiting absorption principle.

Recalling the formula

3∑
j,j′=1

mj,j′aj′bj = (a1, a2, a3)M(b1, b2, b3)�, M = (mj,j′ )3j,j′=1 ∈ C
3×3,

we can rewrite the second term on the right-hand side of (2.31) as

3l∑
j=3l−2

3l′∑
j′=3l′−2

[ΓB,Y (κα)]−1
j,j′ 〈f̂ , F

(j′)
−κ̄α

〉F (j)
κα

= Θl,κα(ξ)[Γ−1
B,Y (κα)]l,l′

∫
R3

[Θl′,−κ̄α(t)]∗f̂(t)dt, (2.35)
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where [Γ−1
B,Y (κα)]l,l′ , l, l′ = 1, . . . , M, denote the 3 × 3 blocks of the matrix

[ΓB,Y (κα)]−1, and

Θl,κα(ξ) := (F (3l−2)
κα

, F (3l−1)
κα

, F (3l)
κα

) = M−1
κα

exp(−iξ · yl)(2π)−3/2

= F(Πκα(· − yl))(ξ). (2.36)

If f ∈ (L2(R3))3 such that div f = 0, then f̂ ∈ X and∫
R3

[Θl′,−κ̄α(ξ)]∗f̂(ξ)dξ = (2π)−3/2

∫
R3

M−1
κα

(ξ)f̂(ξ) exp(iξ · yl′)dξ

= (2π)−3/2

∫
R3

f̂(ξ)
|ξ|2 − κ2

α

exp(iξ · yl′)dξ

= (2π)−3/2

[
F−1

(
1

| · |2 − κ2
α

)
� f

]
(yl′)

= Φκα � f(yl′). (2.37)

Here and thereafter � denotes convolution, and recall that Φκ is the fundamental
solution to the Helmholtz equation, i.e. (∆ + κ2)Φκ = −δ in R3. In addition, using
the Fourier transform,

M−1
κα

(ξ)f̂(ξ) = f̂(ξ)/(|ξ|2 − κ2
α) = F(Φκα � f)(ξ). (2.38)

Hence, taking the inverse Fourier transform in (2.31) and using (2.35), (2.36), (2.37)
and (2.38), we arrive at

Gκαf := F−1(ģκα
f̂) = Φκα � f(·) +

M∑
l,l′=1

Πκα(· − yl)[Γ−1
B,Y (κα)]l,l′Φκα � f(yl′).

(2.39)

In what follows we will analyze the convergence of Gκα as α → 0+ in appropriate
spaces. For σ > 1, introduce the Agmon-type weighted spaces

L2
σ := {f : ‖(1 + |x|2)σ/2f‖(L2(R3))3 < ∞},

Xσ = L2
σ(div) := {f : ‖(1 + |x|2)σ/2f‖(L2(R3))3 < ∞, div f = 0},

Zσ = H2
−σ(R3) := {f : ‖(1 + |x|2)−σ/2∂βf‖(L2(R3))3 < ∞, |β| ≤ 2},

with ∂βf := ∂β1
x1

∂β2
x2

∂β3
x3

f , where |β| := β1 + β2 + β3, βj = 0, 1, 2. We denote the
dual space of Xσ by X ′

σ. Define the expression

Gκf := Φκ � f(·) +
M∑

l,l′=1

Πκ(· − yl)[Γ−1
B,Y (κ)]l,l′Φκ � f(yl′), f ∈ Xσ. (2.40)

Our aim is to prove that the limiting operator of Gκα , as α → 0+, is in L(Xσ, X ′
σ).

We claim that Gκf ∈ X ′
σ. To see this we first observe that Φκ � f ∈ H2

−σ(R3) ⊂ X ′
σ
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for f ∈ Xσ. Then it suffices to prove that the second term on the right-hand side
of (2.40) also belongs to X ′

σ, i.e.

Tκ(f, g) :=
∫

R3

 M∑
l,l′=1

Πκ(x − yl)[Γ−1
B,Y (κ)]l,l′Φκ � f(yl′)

g(x)dx < ∞ ∀ g ∈ Xσ.

(2.41)

By the imbedding of H2
−σ into the continuous space in R3, we know Φκ � f ∈ C(R3).

Then the terms Φκ � f(yl′) are well defined. Below we interpret (2.41) as a linear
functional over Xσ with respect to g. Let g ∈ Xσ ∩ C∞

0 (R3\Y ), recalling that
Y =

⋃M
l=1{yl}. By integration by parts and the fact that div g = 0, we obtain

Tκ(f, g) =
M∑

l,l′=1

[Γ−1
B,Y (κ)]l,l′Φκ � f(yl′) · Φκ � g(yl). (2.42)

in analogy with (2.37). Hence, Gκf defines a linear and continuous functional on
Xσ ∩ C∞

0 (R3\Y ). Since Xσ ∩ C∞
0 (R3\Y ) is dense in Xσ, see Lemma 2.4 below,

it has a unique extension to Xσ as a continuous linear functional. Hence
Gκ ∈L(Xσ , X ′

σ).

Lemma 2.4. The set Xσ ∩ C∞
0 (R3\Y ) is dense in Xσ.

Proof. It is enough to consider Y = {y0} and M = 1. Let ΩR(y0) and Ωε(y0) be
the balls centered at y0 with radius R and ε, respectively. For f ∈ Xσ and R > ε, set
fR,ε as the restriction of f to ΩR\Ω̄ε, i.e. fR,ε := f |ΩR\Ω̄ε

. Then fR,ε ∈ L2(ΩR\Ω̄ε)3

and div fR,ε = 0 in ΩR\Ω̄ε. It is known, see, for instance, Theorem 1.1 in Ref. 9,
that there exists a sequence {fR,ε,n}n∈N ⊂ C∞

0 (ΩR\Ω̄ε) such that

div fR,ε,n = 0, ‖fR,ε,n − fR,ε‖L2(ΩR\Ω̄ε) → 0, n → ∞.

Each element fR,ε,n can be extended to R3 by zero in R3\(ΩR\Ω̄ε), so that
div fR,ε,n = 0 in R3. We still denote by fR,ε,n this extension. It is clear that
{fR,ε,n}n∈N ⊂ Xσ ∩ C∞

0 (R3\{y0}). Now,

‖f − fR,ε,n‖2
L2

σ(R3) = ‖fR,ε − fR,ε,n‖2
L2

σ(ΩR\Ω̄ε)
+ ‖f‖2

L2
σ(R3\ΩR) + ‖f‖2

L2
σ(Ωε)

.

where the spaces L2
σ(R3\ΩR), L2

σ(R3\ΩR) and L2
σ(R3\ΩR) are defined similarly as

Lσ replacing R3 by one of the related domains. For any η > 0, we can choose ε

sufficiently small and R, n sufficiently large such that

‖f‖2
L2

σ(Ωε)
< η2/3, ‖f‖2

L2
σ(R3\ΩR) < η2/3, ‖fR,ε − fR,ε,n‖2

L2
σ(ΩR\Ω̄ε)

< η2/3.

Summing up, we deduce that ‖f − fR,ε,n‖L2
σ(R3) < η. The proof is thus complete.

The last step to derive the solution operator of our original problem is to take
the limit Im κα → 0. This is the object of the next lemma.
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Lemma 2.5. The operator Gκα converges to Gκ in the operator norm of L(Xσ, X ′
σ)

as Im κα → 0, i.e. α → 0.

Proof. Combining (2.39), (2.40) and (2.16), we have

‖Gκα − Gκ‖L(Xσ ,X′
σ) = sup

‖f‖Xσ =1

‖Gκα(f) − Gκ(f)‖X′
σ

= sup
‖ f‖Xσ =1

sup
‖g‖Xσ =1

|〈Gκα(f) − Gκ(f), g〉X′
σ ,Xσ |

≤ sup
‖f‖Xσ =1

sup
‖g‖Xσ =1

{|〈(Φκα − Φκ) � f, g〉X′
σ ,Xσ |

+ |Tκα(f, g) − Tκ(f, g)|}.
Inserting (2.42) into (2.41), we find

Tκα(f, g) − Tκ(f, g) =
M∑

l.l′=1

[[Γ−1
B,Y (κ)]l,l′ (Φκα � f − Φκ � f)(yl′) · (Φκα � g)(yl)

+ [Γ−1
B,Y (κ)]l,l′(Φκ � f)(yl′) · (Φκα � g − Φκ � g)(yl)

+ [Γ−1
B,Y (κα) − Γ−1

B,Y (κ)]l,l′Φκα � f(yl′) · Φκα � g(yl)].

Remark that Φκα � f = R(κα)f , where R(κα) = (∆ − κ2
α)−1 : L2

σ → Zσ is the
resolvent of the Laplace operator. By Lemma 2.2 and the continuous injection of
Zσ into C(R3), we see

|Tκα(f, g) − Tκ(f, g)| ≤ C[‖(Φκα − Φκ) � f‖Zσ‖Φκα � g‖Zσ

+ ‖Φκ � f‖Zσ‖(Φκα − Φκ) � g‖Zσ ]

+ o(1)‖Φκ � f‖Zσ‖Φκ � g‖Zσ ,

where C is a constant and o(1) → 0 as α → 0+. Therefore,

‖Gκα − Gκ‖L(Xσ,X′
σ) ≤ ‖R(κα) − R(κ)‖L(Xσ,Zσ)[1 + C‖R(κα)‖L(L2

σ,Zσ)

+ C‖R(κ)‖L(L2
σ,Zσ)] + o(1)‖R(κ)‖2

L(L2
σ,Zσ).

Since ‖R(κα) − R(κ)‖L(L2
σ,Zσ) → 0 as α → 0 (see Ref. 28), we finish the proof of

the convergence Gκα → Gκ.

From (2.40), we can formulate the Green’s tensor corresponding to the operator
Gκ : Xσ → X ′

σ as

Ξκ
B,Y (x, y) := Φκ(x, y)I +

M∑
l,l′=1

Πκ(x, yl)[Γ−1
B,Y (κ)]l,l′Φκ(yl′ , y).

We summarize our findings in the following theorem.

Theorem 2.1. Suppose that the coupling constants al(ε) are given by (2.27), with
βl, γl ∈ R for l = 1, 2, . . . , M . Let ΓB,Y and F

(j)
κα be defined by (2.24) and (2.30),
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respectively. Then we have the following:

(i) The operator (H̃ε
α)−1 converges in the norm of L(X, X ′) to the operator ģκα

as ε → 0, where ģκα
∈ L(X, X ′) is given by (2.31). That is, for α > 0 such

that det[ΓB,Y (κα)] �= 0,

ģκα
= (Mκα)−1 +

3M∑
j,j′=1

[ΓB,Y (κα)]−1
j,j′ 〈·, F (j′)

−κα
〉F (j)

κα
,

where [ΓB,Y (κα)]−1
j,j′ denotes the (j, j′)th entry of the matrix [ΓB,Y (κα)]−1.

(ii) The operator Gκα := F−1ģκα
converges to Gκ in the operator norm of

L(Xσ, X ′
σ) as Im κα → 0, where

Gκf = Φκ � f(·) +
M∑

l,l′=1

Πκ(· − yl)[Γ−1
B,Y (κ)]l,l′Φκ � f(yl′), f ∈ Xσ.

(iii) We take Gκ to be the solution operator, from Xσ to X ′
σ, to the problem

curl curlGκf − κ2Gκf − ∑M
j=1 ajδ(x − yj)Gκf = f . The Green’s tensor cor-

responding to Gκ is given by

Ξκ
B,Y (x, y) := Φκ(x, y)I +

M∑
l,l′=1

Πκ(x, yl)[Γ−1
B,Y (κ)]l,l′Φκ(yl′ , y). (2.43)

Here [Γ−1
B,Y (κ)]l,l′ denote the 3 × 3 blocks of the matrix [ΓB,Y (κ)]−1.

2.2.4. The scattering theory by Dirac-like refraction indices

In classical scattering theory, (2.43) describes the electromagnetic total field
by the Dirac-like refraction indices supported by the collection of points Y =
{y1, y2, . . . , yM} corresponding to the incident point source located at y. We are
also interested in the case of plane wave incidence. By making use of (2.3) in (2.43),
we obtain

U(x, θ) = eiκx·θI +
M∑

l,l′=1

Πκ(x, yl)[Γ−1
B,Y (κ)]l,l′eiκyl′ ·θI,

with θ := −ŷ and U(x, θ) := 4π lim|y|→∞ e−iκ|y||y|Ξκ
B,Y (x, y). In particular,

multiplying the previous identity by the polarization direction p ∈ S
2(p⊥ θ) gives

the total field

E(x, θ, p) = Ei(x, θ, p) +
M∑

l,l′=1

Πκ(x, yl)[Γ−1
B,Y (κ)]l,l′Ei(yl′ , θ, p), (2.44)

corresponding to a plane wave incidence Ei(x, θ, p)=p exp(iκx·θ) with E(x, θ, p) :=
U(x, θ) · p. The far field corresponding to the scattered field is then given by

E∞(x̂; θ, p) =
1
4π

M∑
l,l′=1

exp(−iκx̂ · yl)(I − x̂ ⊗ x̂)[Γ−1
B,Y (κ)]l,l′Ei(yl′ , θ, p). (2.45)
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Remark 2.1. The representations (2.44) and (2.45) in the Foldy method are noth-
ing but the ones in (2.10) and (2.11) respectively, if we take as the scattering
coefficients gl, l = 1, . . . , M , the following parameters (a−1

l − bl)−1, l = 1, . . . , M ,
where al, l = 1, . . . , M , are the coefficients modeling the Dirac-like refraction indices
in (1.4) and bl, l = 1, . . . , M , are the parameters appearing in the regularization
method, see (2.25).

Remark 2.2. (1) We remark that the Green’s tensor (2.43) can be replaced by

Ξ̃κ
B,Y (x, y) := Πκ(x, y) +

M∑
l,l′=1

Πκ(x, yl)[Γ−1
B,Y (κ)]l,l′Πκ(yl′ , y), (2.46)

whenever the solution operator Gκ acts on the space H2
σ(div) defined as

H2
σ(div) := {f : ‖(1 + |x|2)σ

2 ∂αf‖(L2(R3))3 < ∞, |α| ≤ 2, div f = 0}.

To make this observation more rigorous, we define Πκ : H2
σ(div) → H−2(R3) as

follows:

Πκ(f) := 〈Πκ(·, y), f(y)〉H−2(R3),H2
σ(div)(R3),

which makes sense since Πκ(x, ·) ∈ H−2(R3) (but not in L2(R3)). Note that
Πκ(x, y) ∼ O(1/|x − y|3) as |x − y| → 0 and H2

σ(div) ⊂ H2(R3) for σ > 1. Now, if
f ∈ C∞

0 (div)(R3) := {f ∈ (C∞
0 (R3))3, div f = 0}, then

Πκ(f) := 〈Πκ(·, y), f(y)〉H−2,H2
σ(div)

= 〈Φκ(·, y), f(y)〉 − 1
κ2

〈∇Φκ(·, y),∇ · f(y)〉
= 〈Φκ(·, y), f(y)〉 = Φκ � f.

Arguing the same as in Lemma 2.4, we can show that C∞
0 (div)(R3)H

2
σ(R3) =

H2
σ(div) (see, e.g. Ref. 9). Hence, there holds Πκ(f) = Φκ � f, ∀ f ∈ H2

σ(div),
implying that the actions of (2.43) and (2.46) on H2

σ(div) are the same.

(2) If we choose, as in Ref. 13, the regularization parameters βj sufficiently large
(compared to the fixed wavenumber κ), then the coefficient bj in Lemma 2.2 takes
the form

bj := bj(βj , γj , κ) =
βj + iκ

6π
− (γj/

√
2)3

6πκ2
+ O

(
κ

βj

)
,

κ

βj
� 1. (2.47)

Additionally, suppose that there exists only one point-like scatterer located at
the origin (i.e. M = 1, y1 = O). Then by neglecting the term O(κ/βj) in (2.47), the
identity (2.46) becomes

Ξ̃κ
B,Y (x, y) = Πκ(x, y) + tΠκ(x, 0)Πκ(0, y),
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where t is given by (see (2.25) in Lemma 2.2)

t = (a−1
1 − b1)−1 =

1
a−1
1 − (β + iκ)(6π)−1 + γ3(6πκ2)−1 2−3/2

, β, γ ∈ R.

The number t is exactly the one characterizing the scattering T matrix in Ref. 13
(cf. Sec. III, A (33) and (19) in Ref. 13), remarking that in Ref. 13, β/

√
2 is taken

as β, i.e. 1/
√

2 is absorbed in β, and our coefficient a1 corresponds to the number
κ2αB there. The additional sign (−) appearing in the formula is due to the fact
that they used “negative” fundamental solutions, i.e. Φκ(x, y) := − eiκ|x−y|

4π|x−y| , instead

of the positive one we used here, i.e. Φκ(x, y) := eiκ|x−y|
4π|x−y| .

(3) The Green’s function in (2.43) (or (2.46)) is modeled by the parameters al, βl

and γl. The physical meaning of these parameters is discussed in Ref. 13.

Remark 2.3. The far field corresponding to scattered field given in (2.45) satisfies
the reciprocity relation, i.e. p2 ·E∞(x̂; θ, p1) = p1 ·E∞(−θ;−x̂, p2), for the polar-
ization directions p1, p2 ∈ S2 such that p1⊥θ and p2⊥x̂, see, for instance, Ref. 12.
It holds true since Γ−1

B,Y (κ) is symmetric and independent of x̂ and θ which follows
directly from (2.24).

3. The Born Approximation and the Intermediate Models

3.1. Born approximation

In the Born approximation, we only need to replace Ej(yj) by the value Ei(yj) of
the incident field in (2.7). Therefore, E(x) can be represented as

E(x) = Ei(x) +
M∑

j=1

gjΠκ(x, yj)Ei(yj), (3.1)

and the far-field pattern of the scattered field is given by

E∞(x̂) =
1
4π

 M∑
j=1

gje
iκ(θ−x̂)·yj

 (I − x̂ ⊗ x̂)p, x̂ ∈ S
2. (3.2)

The Born (weak) approximation neglects the multiple scattering between the point-
like obstacles. Hence (3.1) is a good approximation only if the distance between yj

and yl (l �= j) is relatively large with the wavelength.

3.2. Intermediate levels of approximations

Between the Born and Foldy models, we can define the kth (k ∈ N) level of the
total field E(k) as follows:

E(k)(x) = Ei(x) +
M∑

j=1

gjΠκ(x, yj)E
(k)
j (yj), (3.3)
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where the value E
(k)
j (yj) can be computed recursively via

E
(k+1)
j (yj) := Ei(yj) +

M∑
l=1
l �=j

glΠκ(yj , yl)E
(k)
l (yl), j = 1, 2, . . . , M, (3.4)

with the zeroth level approximations E
(0)
j (yj) given by E

(0)
j (yj) := Ei(yj), j =

1, 2, . . . , M. Thus E(0) is just the Born approximation (3.1). When k = +∞, we
define E

(∞)
j (yj) as

E
(∞)
j (yj) := Ei(yj) +

M∑
l=1
l �=j

glΠκ(yj , yl)E
(∞)
l (yl), j = 1, 2, . . . , M.

Then, we see that, for k = +∞, the total field in (3.3) coincides with the total field
in (2.8), i.e. the Foldy regime. The kth level approximation E(k) only takes into
account k time interactions between the scatterers, and thus is considered as the
intermediate level.

Remark that the system (3.4) is nothing but the (k + 1)th iteration of the Foldy
algebraic system (2.7). From (3.3), we write the following form of the scattered field
in kth level:

E(k,s)(x) =
M∑

j=1

gjΠκ(x, yj)E
(k)
j (yj). (3.5)

To write (3.5) and the corresponding far fields in a more useful form, we define
the vector Λ(k) ∈ C3M with components E

(k)
j (yj) arranged elementwise as in the

pattern of Λ in (2.9). Define Ĩ ∈ C3M×3M as an identity matrix, then the 3 × 3
diagonal blocks of Ĩ, Ĩjl are I, and the non-diagonal blocks are zero matrices. Set
M̃ := Γ̃− Ĩ,b then (3.4) can be written in a compact form as Λ(k) =

∑k
l=0(−M̃)lEI

for k = 0, 1, . . . .

Define the matrix C̃k ∈ C3M×3M by C̃k :=
∑k

l=0(−M̃)l for k = 0, 1, . . . . Denote
the 3× 3 blocks of C̃k ∈ C3M×3M by [C̃k]lj for l, j = 1, 2, . . . , M . With this setting
we deduce from (3.4),(3.5) that the scattered field in kth intermediate level takes
the form

E(k,s)(x) =
M∑

l,j=1

gjΠκ(x, yj)[C̃k]jlE
i(yl) (3.6)

and so the far-field pattern of the scattered field in the kth intermediate level is

E(k,∞)(x̂) =
1
4π

M∑
l,j=1

gje
−iκx̂·yj eiκθ·yl(I − x̂ ⊗ x̂)[C̃k]jlp, x̂ ∈ S

2. (3.7)

bIn the case that the norm of M is less than one, the inverse of Γ can be approximated by the
truncated Neumann series.
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It is again worth mention to remind that (3.3)–(3.4) is already stated and used by
Watson, see the formulas (3.1), (3.4) and (3.9) of Ref. 27.

4. The Inverse Problems for the Born, Foldy
and Intermediate Models

From (3.2), (2.11) and (3.7), we can write the far-field pattern corresponding to
scattered field in various models as

E∞(x̂; θ, p) =
1
4π

M∑
l,j=1

gje
−iκx̂·yj eiκθ·yl(I − x̂ ⊗ x̂)[T̃]jlp, (4.1)

with

T̃ :=


Ĩ Born approximation,

Γ̃−1 Foldy method,

C̃k kth intermediate level.

(4.2)

The above-mentioned far-field patterns are vectors. We define the following scalar
far field, denoted by Ė∞(x̂), which will be useful in the statement and the justifi-
cation of the MUSIC algorithm, see, for instance, Refs. 11 and 16:

Ė∞(x̂; θ, p) := x̂⊥ ·E∞(x̂) =
1
4π

M∑
l,j=1

gje
−iκx̂·yjeiκθ·ylx̂⊥�

[T̃]jlp. (4.3)

Here, x̂⊥ ∈ S2 is any orthogonal direction to the observational direction x̂ ∈ S2.
Since p is any direction in S2 perpendicular to θ, it has two orthogonal components
called horizontal and vertical polarization directions denoted by ph and pv, respec-
tively. So, p := θ⊥ = θ⊥/|θ⊥| with θ⊥ := c1 ph + c2 pv for arbitrary constants c1 and
c2. To give the explicit forms of ph and pv, we recall the Euclidean basis {e1, e2, e3}
where e1 := (1, 0, 0)�, e2 := (0, 1, 0)� and e3 := (0, 0, 1)�, write θ := (θx, θy, θz)�

and set r2 := θ2
x + θ2

y. Let R3 be the rotation map transforming θ to e3. Then in
the basis {e1, e2, e3},R3 = R3(θ) is given by the matrix

R3 =
1
r2

 θ2
y + θ2

xθz −θxθy(1 − θz) −θxr2

−θxθy(1 − θz) θ2
x + θ2

yθz −θyr
2

θxr2 θyr
2 θzr

2

. (4.4)

It satisfies R�
3 R3 = I and R3θ = e3. Correspondingly, we write ph := R�

3 e1

and pv := R�
3 e2. These two directions represent the horizontal and the vertical

directions of the polarized direction and they are given by

ph := θ⊥h =
1
r2

(θ2
y + θ2

xθz, θxθy(θz − 1),−r2θx)�,

pv = θ⊥v =
1
r2

(θxθy(θz − 1), θ2
x + θ2

yθz,−r2θy)�.

(4.5)

Hence, p can be written in terms of θ and then we can write Ė∞ as a function of
x̂ and θ only.
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Our concern in this section is to study the following inverse problem.

Inverse Problem: Given the far-field pattern Ė∞(x̂, θ) for several incident and
observation directions θ and x̂, find the locations y1, y2, . . . , yM and the scattering
coefficients g1, g2, . . . , gM .

In the next sections, we deal with the mentioned models, (4.2)–(4.3), providing
a detailed study of the resolution of the reconstruction depending on the distance
between the scatterers, the frequency used and the scattering coefficients.

4.1. MUSIC algorithm for the Maxwell system

The MUSIC algorithm is a method to determine the locations yj , j = 1, 2, . . . , M ,
of the scatterers from the measured far-field pattern Ė∞(x̂, θ) for a finite set of
incidence and observation directions, i.e. x̂, θ ∈ {θj, j = 1, . . . , N} ⊂ S2. We refer
the reader to Refs. 2 and 20 for more information about this algorithm and to
Refs. 4 and 3 for its stability and resolution analysis. We follow the way presented
in Refs. 11 and 20. We assume that the number of scatterers is not larger than the
number of incident and observation directions, in particular N ≥ 3M . We define
the response matrix F ∈ C

N×N by Fst := Ė∞(θs, θt). Then by making use of (4.3),
the response matrix F can be factorized as

F = H∗TH , (4.6)

with the matrices T ∈ C3M×3M and H ∈ C3M×N are given by

T := gT̃, g := Diag(g1I, g2I, . . . , gMI) (4.7)

and

H :=


θ⊥1 eiκθ1·y1 θ⊥2 eiκθ2·y1 . . . θ⊥NeiκθN ·y1

θ⊥1 eiκθ1·y2 θ⊥2 eiκθ2·y2 . . . θ⊥NeiκθN ·y2

...
...

. . .
...

θ⊥1 eiκθ1·yM θ⊥2 eiκθ2·yM · · · θ⊥NeiκθN ·yM

.

In order to determine the locations yj, we consider a grid of sampling points z ∈ R3

in a region containing the scatterers y1, y2, . . . , yM . For each point z, we define the
vectors φu

z ∈ CM by

φm
z := ((θ⊥1 · em)e−iκθ1·z, (θ⊥2 · em)e−iκθ2·z, . . . , (θ⊥N · em)e−iκθN ·z)�

∀m = 1, 2, 3. (4.8)

MUSIC characterization of the scatterers. Recall that MUSIC is essentially
based on characterizing the range of the response matrix F , forming projections
onto its null space, and computing its singular value decomposition. Under the
assumption that the matrix T in the factorization (4.6) of F is non-singular,
the standard linear algebraic argument yields that, R(H∗) and R(F ) coincide for
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N ≥ 3M , if the matrix H has maximal rank 3M . So, let us discuss the invertibility
of the matrix T . From the definition of T in (4.7), its invertibility depends only on
the non-singularity of T̃.

• In case of the Born approximation, it is clear that T is invertible as T̃ = Ĩ from
the definition (4.2).

• In case of the Foldy method, from (4.2), we have T̃ = Γ̃−1. So, the invertibility
of T depends on the existence of Γ̃−1. It can be observed that Γ̃ can be factorized
as Γ̃ = Γ̄g with

Γ̄ :=



1
g1

I −Πκ(y1, y2) −Πκ(y1, y3) · · · −Πκ(y1, yM )

−Πκ(y2, y1)
1
g2

I −Πκ(y2, y3) · · · −Πκ(y2, yM )

...
...

...
. . .

...

−Πκ(yM , y1) −Πκ(yM , y2) −Πκ(yM , y3) · · · 1
gM

I


.

Then Γ̃ is invertible when Γ̄ is invertible and T = Γ̄−1. Let us assume it holds
and postpone this issue to Sec. 4.2.

• In case of the approximation by intermediate level k, we have T̃ = C̃k =∑k
l=0(−M̃)l. One can observe that the norm of M̃ less than half is a sufficient

condition for the invertibility of T in every level of scattering.

Hence, under the assumption of the non-singularity of T , we can state the
MUSIC related theorem for the electromagnetic wave scattering by point-like scat-
terers as follows.

Theorem 4.1. Let {θs : s ∈ N} ⊂ S2 be a countable set of directions such that
any analytic function on S2 that vanishes in θs for all s ∈ N vanishes identically.
Let K be a compact subset of R3 containing {yj : j = 1, . . . , M}. Then there exists
N0 ∈ N such that for any N ≥ N0 the following characterization holds for every
z ∈ K :

z ∈ {y1, . . . , yM} ⇔ φm
z ∈ R(H∗), for some m = 1, 2, 3. (4.9)

Furthermore; the ranges of H∗ and F coincide and thus

z ∈ {y1, . . . , yM} ⇔ φm
z ∈ R(F ) ⇔ Pφm

z = 0, for some m = 1, 2, 3, (4.10)

where P : CN → R(F )⊥ = N (F ∗) is the orthogonal projection onto the null space
N (F ∗) of F ∗.

Proof. One can prove this theorem in the lines of the proof of Theorem 4.1 in
Ref. 20 concerning the Born approximation for the acoustic model and more closely
Theorem 3.1 and Theorem 3.2 in Ref. 11 concerning the acoustic and elastic wave
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scattering, respectively, related to the Born, Foldy and the intermediate models, by
proving the maximal rank property of the matrix H and using the test vector φm

z .

Remark 4.1. We can observe in (4.3) that either horizontal polarized directions ph

or vertical polarized directions pv are sufficient for the reconstruction. In addition,
either the horizontal observation directions or the vertical observation directions
are also sufficient for the reconstruction.

4.2. Invertibility of the matrix Γ̄

To discuss the invertibility of Γ̄, we distinguish two situations.

Diagonally dominant condition. As mentioned in Ref. 11, concerning acous-
tic and elastic cases, when the scatterers are relatively far away from each other
comparing to the scattering coefficients, then the invertibility condition of Γ̄ is the
diagonally dominant condition and it is given by

M∑
j=1
j �=l

‖Πκ(yj, yl)‖1 <
1
|gl| ∀ l = 1, 2, . . . , M. (4.11)

Here ‖ · ‖1 is the 1-norm and it is defined for a matrix L = [Lnm] ∈ CN×M, as
‖L‖1 := max1≤m≤M

∑N
n=1 |Lnm|.

Non-diagonally dominant condition. Using the form (2.1), we can write
Πκ(x, y) explicitly as

Πκ(x, y) = Φκ(x, y)I +
1
κ2

Φκ(x, y)
r2

[−κ2R ⊗ R + (1 − iκr)(3R̂ ⊗ R̂ − I)], (4.12)

where R = x − y, r = |x− y| and R̂ = R
r . We remark that the entries of Πκ(yj , yl),

j, l = 1, . . . , M , are analytic in terms of the variables ηjlm = (yj − yl)m, j, l =
1, . . . , M and m = 1, 2, 3 for ηjlm ∈ R\{0}. Remark also that the determinant of Γ̄,
det(Γ̄), is given by the products and sums of g−1

j and the entries of Πκ(yj , yl) for

j, l = 1, . . . , M . Then det(Γ̄) is analytic in terms of the 3M(M−1)
2 real variables ηjlm

for j, l = 1, . . . , M with j < l, m = 1, 2, 3. Fix the wavenumber κ and the scattering
coefficients gj, for j = 1, . . . , M , we deduce then that except for few distributions of
the scatterers, y1, . . . , yM , the matrix Γ̄ is invertible. The wavenumbers κ for which
Γ̄ is not invertible are called resonances, see Ref. 1 for a study of these resonances
concerning the acoustic case.

4.3. Recovering the scattering coefficients gj

In this section we discuss how one can recover the scattering coefficients gj attached
to the scatterers yj for j = 1, . . . , M for the given far-field pattern, i.e. response
matrix F . Recall that F has the factorization F = H∗TH where H and T are
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defined as in Sec. 4.1. As the matrix H is of maximal rank 3M and N ≥ 3M

the matrix HH ∗ ∈ C3M×3M is invertible. Let us denote this inverse by IH . Once
we locate the scatterers y1, y2, . . . , yM by using MUSIC algorithm for the given
far-field patterns, we can recover the matrix T ∈ C3M×3M as T = IHHFH ∗IH ,
IHH is the pseudo-inverse of H∗ from whose entries we can deduce the values of
gj , j = 1, . . . , M .c We explain how this procedure of recovering g1, . . . , gM is going
to work in each model.

• In the Born approximation we have T = g, and hence the diagonal entries of T

give g1, . . . , gM .
• In the Foldy method we have T = Γ̄−1, and hence the reciprocals of the diagonal

entries of T−1 produce g1, . . . , gM .
• In the intermediate level, k, approximation we have T = g

∑k
l=0(−M̃)l. We have

already seen how one can recover the scattering coefficients for k = 0 (Born) and
for k = ∞ (Foldy). In the case k = 1, we have T = g − gM̃. As we know that g
is a diagonal matrix and the 3 × 3 diagonal blocks of M̃ are zero, the diagonal
entries of T are equal to the scattering coefficients of the M scatterers. But for
intermediate level approximation k > 1, it is difficult to recover the scattering
coefficients due to the complicated structure of the matrices (−M̃)l, for l = 2, . . . ,

and hence of T . For this reason, as in the acoustic and elastic cases of Ref. 11,
we restrict ourselves to the special case of two point-like obstacles y1, y2 with
the corresponding scattering coefficients g1, g2. In this case using the symmetry
relation of the fundamental matrix Πκ(x, y), i.e. Πκ(x, y) = [Πκ(y, x)]�, we have
the explicit form of (−M̃)l for l = 0, 1, 2, . . . , as follows:

(−M̃)l =



g
l
2
1 g

l
2
2 Πl

κ(y1, y2) 0

0 g
l
2
1 g

l
2
2 Πl

κ(y1, y2)

, l ∈ 2N ∪ {0},

 0 g
l−1
2

1 g
l+1
2

2 Πl
κ(y1, y2)

g
l+1
2

1 g
l−1
2

2 Πl
κ(y1, y2) 0

, l ∈ 2N − 1.

(4.13)

Here, 0 is the zero matrix of order 3. The matrix (−M̃)l is either diagonal or
anti-diagonal by blocks of the size 3 × 3. This structure is not valid anymore for
the case of more than two scatterers. From this structure, we obtain the explicit

cWe can recover the scattering coefficients a′
j , . . . , a′

M associated to Dirac model from the relations

gj = (a−1
j − bj)

−1 and aj = κ2a′
j for j = 1, . . . , M , see (1.4) and Remark 2.1. As three unknown

parameters aj , βj , γj are appearing in the equations gj = (a−1
j − bj)

−1, see (2.25), in order to
get the scattering coefficients a′

j two wavenumbers κ1 and κ2 can be used as follows. As ajs are

real, first we compare the imaginary parts of the equation gj = (a−1
j − bj)−1 to obtain βj . Then

we compare the real parts of the equation gj = (a−1
j − bj)−1 for the wavenumbers κ1 and κ2 to

obtain γj and aj , from which we can recover the scattering coefficients a′
j .
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form of T = g
∑k

l=0(−M̃)l in the kth order scattering as follows:

T =



[
g1I 0

0 g2I

]
, k = 0,


g1

k
2∑

l=0

gl
1g

l
2Π

2l
κ (y1, y2)

k
2∑

l=1

gl
1g

l
2Π

2l−1
κ (y1, y2)

k
2∑

l=1

gl
1g

l
2Π

2l−1
κ (y1, y2) g2

k
2∑

l=0

gl
1g

l
2Π

2l
κ (y1, y2)

, k ∈ 2N,


g1

k−1
2∑

l=0

gl
1g

l
2Π

2l
κ (y1, y2)

k−1
2∑

l=0

gl+1
1 gl+1

2 Π2l+1
κ (y1, y2)

k−1
2∑

l=1

gl+1
1 gl+1

2 Π2l+1
κ (y1, y2) g2

k−1
2∑

l=0

gl
1g

l
2Π

2l
κ (y1, y2)

, k ∈ 2N − 1,


1
g1

I −Πκ(y1, y2)

−Πκ(y1, y2)
1
g2

I


−1

, k = ∞.

(4.14)

From the explicit form of T , we observe the following points.

• The diagonal entries of T give g1 and g2 in the Born approximation, i.e. k = 0.
• Substituting the non-diagonal entries in the diagonal entries gives the scattering

coefficients in every even level scattering k, i.e. k ∈ 2N. Indeed, define ğ :=∑ k
2
l=1 gl

1g
l
2Π2l−1

κ (y1, y2) then the non-diagonal entries of T are equal to ğ. Also
the diagonal entries T11 and T22 of T are equal to g1(1+ Πκ(y1, y2)ğ) and g2(1+
Πκ(y1, y2)ğ) respectively. Now, with the knowledge of the scatterers y1 and y2

from the MUSIC algorithm and by substituting the value of ğ in the diagonal
entries, we can evaluate g1, g2.

• Substituting the diagonal entries in the non-diagonal entries gives the scat-
tering coefficients in every odd level scattering k, i.e. k ∈ 2N − 1. Indeed,

define b̆1 := g1

∑ k−1
2

l=0 gl
1g

l
2Π2l

κ (y1, y2) and b̆2 := g2

∑ k−1
2

l=0 gl
1g

l
2Π2l

κ (y1, y2) then
the diagonal entries T11 and T22 of T are equal to b̆1 and b̆2 respectively.
Also the non-diagonal entries T12 and T21 of T are the same and are equal to
g1b̆2Πκ(y1, y2) = g2b̆1Πκ(y1, y2). Now again with the knowledge of the scatterers
y1 and y2 from the MUSIC algorithm and by substituting the diagonal entries in
the non-diagonal entries of T , we can evaluate g1, g2.

• The diagonal entries of T−1 give g1 and g2 in the method of Foldy, i.e. k = ∞.
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4.3.1. Numerical results and discussions

For the convenience of visualization, we show the results for the scatterers in
XY-plane. For our calculations, we consider 50 incident and observational directions
and the point-like scatterers attached to same scattering coefficients located at the
points y1 = (0, 0, 0), y2 = (0, 0.5, 0), y3 = (0.5, 0, 0), y4 = (0.5, 0.5, 0), y5 = (1, 1, 0),
y6 = (1,−1, 0), y7 = (−1,−1, 0), y8 = (−1, 1, 0), y9 = (1,−1.5, 0), y10 = (1.5, 0.5, 0)
and y11 = (−1.5, 1, 0). Let dGL stands for the degree of Gauss–Legendre polyno-
mial. We used the 2d2

GL (= 50) incident and the observational directions obtained
from the Gauss–Legendre polynomial of degree dGL (= 5), i.e. if we denote the
zeros of the Gauss–Legendre polynomial of degree by GLk, for k = 1, . . . , dGL then
the azimuth and the zenith angles θ and φ are given by

φ = cos−1(GLk), k = 1, . . . , dGL,

θ = j ∗ π

dGL
, j = 0, 1, . . . , 2dGL − 1.

Combinations of these spherical coordinates will allow us to find the incident and the
observational directions given by (cos θ sin φ, sin θ sin φ, cos φ). These directions are
shown in Fig. 1. To show numerically that horizontal, ph, or vertical, pv, polarization
direction is enough for the reconstruction, we used the directions ph and pv as per
the definition (4.5).

Since MUSIC algorithm is an exact method, the reconstruction is very accurate
in the absence of noise in measured data, for Born, Foldy and intermediate models.

Fig. 1. The incident and observational directions.
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To analyze the effect of the noise level on the resolution of the algorithm, different
noise levels are used. To distinguish the differences between the Born approxima-
tion and the Foldy model, we used different scattering coefficients, noise levels and
distance between the scatterers.

Figures 2 and 3 are related to the six scatterers located at the points y1, y2,

y5, y6, y7 and y8 of each having scattering coefficient 1 for each with 1% random
noise in the measured far-field pattern. Figure 2 shows the pseudo-spectrum of
the mentioned six scatterers for the wavenumber κ = 2π whereas Fig. 3 shows the
pseudo-spectrum for the wavenumber κ = π, i.e. minimum distance between the
scatterers is half of the wavelength and quarter of the wavelength respectively. We
observe that due to the higher wavenumber, Fig. 2 has the better reconstruction
comparing to Fig. 3 with respect to ph and pv respectively. Also, we can observe
that the scatterers satisfy largely the condition (4.11) and the reconstruction looks

(a) (b)

(c) (d)

Fig. 2. Born (a), (c) and Foldy (b), (d)-based reconstructions with 1% noise, gj = 1 and κ = 2π
for six scatterers. Left part (a), (b) — ph, right part (c), (d) — pv.
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(a) (b)

(c) (d)

Fig. 3. Born (a), (c) and Foldy (b), (d)-based reconstructions with 1% noise, gj = 1 and κ = π
for six scatterers. Left part (a), (b) — ph, right part (c), (d) — pv.

similar in both the Born approximation and the Foldy model. Hence, if the scatter-
ers are well separated with low scattering coefficients there is not much difference
in the reconstruction between the Born approximation and the Foldy model.

Now, we present an example where the scatterers do not satisfy the condition
(4.11). Figure 4 shows the pseudo-spectrum of the six scatterers again located
at y1, y2, y5, y6, y7 and y8 of each having scattering coefficient 10 for κ = 2π

with 6% random noise in the measured far-field patterns with respect to the Born
approximation and the Foldy method. Compared to Figs. 2 and 3, we see in Fig. 4
how the reconstruction deteriorates due to the effect of multiple scattering created
by the close obstacles. In this case, we can see the differences between the Born
approximation and the Foldy model.

As a conclusion, we have seen that if the condition (4.11) is satisfied largely, then
the effect of the multiple scattering is quite low and the reconstruction is similar in
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Born (a), (b), (e), (f) and Foldy (c), (d), (g), (h)-based reconstructions with 6% noise,
gj = 10 and κ = 2π for six scatterers. Upper part (a)–(d) — ph, lower part (e)–(h) — pv.
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(g) (h)

Fig. 4. (Continued)

(a) (b)

(c) (d)

Fig. 5. Reconstruction of three scatterers with 1% noise, gj = 7 and κ = π. 3rd level (a), (c) and
12th level (b), (d) approximations. Left part (a), (b) — ph, right part (c), (d) — pv.
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both Born and Foldy but above the condition (4.11) the use of the Born approxima-
tion gives better reconstruction than the use of the Foldy method. However in the
latter case, Born approximation is not valid as the scatterers are relatively close.

We have similar kind of difference between the intermediate level approximations
as the level k increases with respect to the condition (4.11). We can observe this in
Fig. 5 which shows the numerical reconstruction of the three scatterers, based on
3rd and 12th level approximations, located at y3, y4 and y9 and having scattering
coefficient 7 with κ = π and of 1% random noise in the measured far-field pattern.
Finally, let us remind that the reconstruction depends on the choice of the signal
and noise subspaces of the multiscale response matrix, see, for instance, Ref. 11 for
a discussion on this issue concerning the acoustic and elastic cases.

Appendix

For the reader’s convenience we show the proofs of (2.15), (2.16) and (2.28).

Proofs of (2.16) and (2.15). The Green’s tensor Πκ(x, 0) can be written as

Πκ(x, 0) =
eiκ|x|

4π|x| {P (iκ|x|)I + Q(iκ|x|)x̂ ⊗ x̂}, (A.1)

where the functions P and Q are defined in Sec. 2.2.
In the following we will only prove (2.16), since (2.15) follows automatically from

(2.16), (2.13) and (A.1). By the definitions of Tκ and the inverse Fourier transform,

(2π)−3/2F−1(Tκ(ξ))

=
1

(2π)3

∫
R3

1
|ξ|2 − κ2

eiξ·xdξI − 1
(2π)3

∫
R3

1
|ξ|2 − κ2

ξ̂ ⊗ ξ̂eiξ·xdξ

=
eiκ|x|

4π|x|I −
1

(2π)3
∇x∇x

∫
R3

1
(κ2 − |ξ|2)|ξ|2 eiξ·xdξ

=
eiκ|x|

4π|x|I −
1

(2π)3κ2
∇x∇x

∫
R3

(
1

κ2 − |ξ|2 +
1
|ξ|2

)
eiξ·xdξ

=
eiκ|x|

4π|x|I −
1

(2π)3/2κ2
∇x∇x

(
F−1

(
1
|ξ|2

)
−F−1

(
1

|ξ|2 − κ2

))
.

Employing (2π)−3/2F−1( 1
|ξ|2−κ2 )(x) = eiκ|x|

4π|x| , we get

(2π)−3/2F−1(Tκ(ξ)) =
eik|x|

4π|x|I −
1

4πκ2
∇x∇x

(
1 − eiκ|x|

|x|
)

= (I +
1
κ2

∇x∇x)
eiκ|x|

4π|x| −
1

4πκ2
∇x∇x

1
|x|

= Πκ(x, 0) − 1
4πκ2

∇x∇x
1
|x| .
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Simple calculations show

∇x∇x
1
|x| = − 1

|x|3 {I − 3x̂ ⊗ x̂}. (A.2)

With the help of (A.1), we finally obtain

1
(2π)3

∫
R3

1
|ξ|2 − κ2

(I − ξ̂ ⊗ ξ̂)eiξ·xdξ

=
I − 3x̂ ⊗ x̂

4πκ2|x|3 +
eiκ|x|

4π|x| {P (iκ|x|)I + Q(iκ|x|)x̂ ⊗ x̂}.

The identity (2.16) is thus proven.

Proof of (2.28). We first compute the integral (2π)−3
∫

R3 Tκ(ξ)f(β, ξ)dξ with

f(β, ξ) = β2

β2+|ξ|2 . Again using the definition of Tκ, we find

Tκ(ξ)f(β, ξ) = Tκ(ξ)f(β, κ) + Tκ(ξ)(f(β, ξ) − f(β, κ))

=
[
Tκ(ξ) + Tκ(ξ)

κ2 − ξ2

β2 + ξ2

]
f(β, κ)

=
[

1
ξ2 − κ2

(I − ξ̂ ⊗ ξ̂) − 1
ξ2 + β2

(I − ξ̂ ⊗ ξ̂)
]

f(β, κ).

Recalling that ΠT
κ (x) = (2π)−3/2F−1[ 1

ξ2−κ2 (I − ξ̂ ⊗ ξ̂)], we have

(2π)−3/2F−1[Tκ(ξ)f(β, ξ)] = [ΠT
κ (x) − ΠT

iβ(x)]f(β, κ).

It is easy to see[
I − 3x̂ ⊗ x̂

4πκ2|x|3 − I − 3x̂ ⊗ x̂

−4πβ2|x|3
]

β2

β2 + κ2
=

I − 3x̂ ⊗ x̂

4πκ2|x|3 .

Using the previous identity, it follows from the expression of ΠT
κ (x) that

(2π)−3/2F−1[Tκ(ξ)f(β, ξ)] =
I − 3x̂ ⊗ x̂

4πκ2|x|3 +
{

eiκ|x|

4π|x| [P (iκ|x|)I + Q(iκ|x|)x̂ ⊗ x̂]

− e−β|x|

4π|x| [P (−β|x|)I + Q(−β|x|)x̂ ⊗ x̂]
}

β2

β2 + κ2
.

(A.3)

Now, by the inverse Fourier transformation and the expressions for P and Q,

1
(2π)3

∫
R3

Tκ(ξ)f(β, ξ)dξ = (2π)−3/2 lim
|x|→0

F−1[Tκ(ξ) f(β, ξ)](x)

=
β + iκ

6π

β2

β2 + κ2
I. (A.4)

Indeed, recall that P (z) = 1 − 1
z + 1

z2 , Q(z) = −1 + 3
z − 3

z2 .
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• Consider the term eiκ|x|
4π|x| Q(iκ|x|) − e−β|x|

4π|x| Q(−β|x|) =: AQ, then

AQ =
eiκ|x|

4π|x|
[
−1 +

3
iκ|x| +

3
κ2|x|2

]
− e−β |x|

4π|x|
[
−1 − 3

β|x| −
3

β2|x|2
]
.

Using Taylor series, we obtain the following after few computations:

eiκ|x|

4π|x|
[
−1 +

3
iκ|x| +

3
κ2|x|2

]
=

1
8π|x| +

3
4πκ2|x|3 + o(|x|),

e−β|x|

4π|x|
[
−1 − 3

β|x| −
3

β2|x|2
]

=
1

8π|x| −
3

4πβ2|x|3 + o(|x|).

By substituting the above expressions in AQ, we obtain

AQ =
3

4π|x|3
[

1
κ2

+
1
β2

]
+ o(|x|)

=
3

4πκ2|x|3
1

f(β, κ)
+ o(|x|); f(β, κ) :=

β2

β2 + κ2
. (A.5)

• Consider the term eiκ|x|
4π|x| P (iκ|x|) − e−β|x|

4π|x| P (−β|x|) =: AP , then

AP =
eiκ|x|

4π|x|
[
1 − 1

iκ|x| −
1

κ2|x|2
]
− e−β|x|

4π|x|
[
1 +

1
β|x| +

1
β2|x|2

]
.

Again by using the Taylor series, we obtain the following after few computations,

eiκ|x|

4π|x|
[
1 − 1

iκ|x| −
1

κ2|x|2
]

=
iκ

6π
+

1
8π|x| −

1
4πκ2|x|3 + o(|x|),

e−β|x|

4π|x|
[
1 +

1
β|x| +

1
β2|x|2

]
= − β

6π
+

1
8π|x| +

1
4πβ2|x|3 + o(|x|).

By substituting the above expressions in AP , we obtain

AP =
β + iκ

6π
− 1

4π|x|3
[

1
κ2

+
1
β2

]
+ o(|x|)

=
β + iκ

6π
− 1

4πκ2|x|3
1

f(β, κ)
+ o(|x|). (A.6)

Gathering (A.3), (A.5) and (A.6) will produce

(2π)−3/2F−1[Tκ(ξ)f(β, ξ)] =
I − 3x̂ ⊗ x̂

4πκ2|x|3

+
{

β + iκ

6π
I +

3x̂ ⊗ x̂ − I
4πκ2|x|3

1
f(β, κ)

}
f(β, κ) + o(|x|)

=
β + iκ

6π
f(β, κ)I + o(|x|).

Hence, (A.4) holds.
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It remains to check the relation

1
(2π)3

∫
R3

Lκ(ξ)
γ4

γ4 + ξ4
dξ = − γ̃3

6πκ2
I, γ̃ = γ/

√
2. (A.7)

From the definition of Lk, we see

1
(2π)3/2

F−1

[
Lκ(ξ)

γ4

γ4 + |ξ|4
]
(x)

=
−1

(2π)3κ2

∫
R3

γ4

γ4 + |ξ|4 ξ̂ ⊗ ξ̂eiξ·xdξ

=
1

(2π)3κ2
∇x∇x

∫
R3

(
1
|ξ|2 − |ξ|2

γ4 + |ξ|4
)

eiξ·xdξ

=
−1

(2π)3/2κ2
∇x∇x

(
F−1

[ |ξ|2
γ4 + |ξ|4

]
(x) −F−1

[
1
|ξ|2

]
(x)

)
. (A.8)

In view of (A.2),

1
(2π)3/2κ2

∇x∇x

(
F−1

[
1
|ξ|2

]
(x)

)
=

1
κ2

∇x∇x
1

4π|x| = −I− 3x̂ ⊗ x̂

4πκ2|x|3 .

To evaluate the first term on the right-hand side of (A.8), we need the integral
identity∫

R3

|ξ|2
γ4 + |ξ|4 eiξ·xdξ =

∫ ∞

0

∫ 2π

0

∫ π

0

|ξ|4
γ4 + |ξ|4 sin θei|ξ| |x| cos θdθdφd|ξ|

= 4π

∫ ∞

0

|ξ|3 sin(|ξ| |x|)
(γ4 + |ξ|4)|x| d|ξ| = 2π2 e−γ̃|x| cos(γ̃|x|)

|x| ,

with γ̃ = γ/
√

2, where the last equality follows from the Fourier sine transform of
the odd function t3/(γ4 + t4). It then follows that

−1
(2π)3/2κ2

∇x∇xF−1

[ |ξ|2
γ4 + |ξ|4

]
(x) =

−1
4πκ2

∇x∇x
e−γ̃|x| cos(γ̃|x|)

|x|

=
1

4πκ2
{g(|x|)I + |x| g′(|x|)x̂ ⊗ x̂},

where g(t) = {e−γ̃t[cos(γ̃t) + γ̃t(cos(γ̃t) + sin(γ̃t))]}/t3. After elementary calcula-
tions, we obtain

1
(2π)3/2

F−1

[
Lκ(ξ)

γ4

γ4 + |ξ|4
]
(x) = −I− 3x̂ ⊗ x̂

4πκ2
{1 − g(|x|)}

− γ̃2e−γ̃|x| sin(γ̃|x|)
2πκ2|x| x̂ ⊗ x̂,
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and arguing similarly to the justification of (A.4), we obtain

1
(2π)3

∫
R3

Lκ(ξ)
γ4

γ4 + ξ4
dξ = lim

|x|→0

1
(2π)3/2

F−1

[
Lκ(ξ)

γ4

γ4 + |ξ|4
]

(x)

= − γ̃3

6πκ2
I.

This proves (A.7). Finally, combining (A.7) and (A.4) yields (2.28).
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