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This paper is concerned with the variational approach in weighted Sobolev spaces
to time-harmonic elastic wave scattering by one-dimensional unbounded rough
surfaces. The rough surface is supposed to be the graph of a bounded and uni-
formly Lipschitz continuous function, on which the total elastic displacement
satisfies either the Dirichlet or impedance boundary condition. We establish
uniqueness and existence results at arbitrary frequency for both elastic plane
wave and point source (spherical) wave incidence in the two-dimensional case.
In particular, our approach covers the elastic scattering from periodic structures
(diffraction gratings), and we prove quasiperiodicity of the scattered field when-
ever the incident field is quasiperiodic. Moreover, the diffraction grating problem
is also uniquely solvable in the presented weighted Sobolev spaces for a broad
class of non-quasiperiodic incident waves.

Keywords: non-smooth rough surface; linear elasticity; radiation condition;
variational formulation; weighted Sobolev spaces; Navier equation

AMS Subject Classifications: 74B05; 35J05; 35J20; 35J25; 42B10; 78A45;
74J20; 35J57; 35Q74

1. Introduction

Rough surface scattering problems for acoustic, electromagnetic, and elastic waves have
been of interest to physicists, engineers, and applied mathematicians for many years due to
their wide range of applications in optics, acoustics, radio-wave propagation, seismology,
and radar techniques (see, e.g. [1–6]). Diffraction phenomena for elastic waves propagat-
ing through unbounded interfaces have many applications, particularly in geophysics and
seismology. For instance, the problem of elastic pulse transmission and reflection through
the earth is fundamental to the investigation of earthquakes and the utility of controlled
explosions in search for oil and ore bodies; see, e.g. [1,7–9] and the references therein.

This paper is concerned with uniqueness and existence results in weighted Sobolev
spaces for the two-dimensional problem of time-harmonic scattering of incident elastic
plane and point source waves from unbounded rough surfaces. We suppose the scattering
surface is given by the graph of a bounded and uniformly Lipschitz continuous function,
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on which the total elastic displacement satisfies either the Dirichlet or impedance boundary
condition.

There is already a vast literature on the mathematical analysis of acoustic and elec-
tromagnetic scattering by rough surfaces modeled by the Helmholtz equation. We refer
the reader to [10–12,38] and [13, Chapter 5] for the integral equation method applied
to the Dirichlet boundary value problem with smooth (C1,α) surfaces in R

n (n = 2, 3)
and to [14–16] for the scattering by penetrable interfaces and inhomogeneous layers. The
variational approach proposed in [17] by Chandler-Wilde and Monk gives rises to existence
and uniqueness results in non-weighted Sobolev spaces, allowing to treat the scattering
problem due to an inhomogeneous source term whose support lies within a finite distance
above rather general sound-soft surfaces in R

n (n = 2, 3). Moreover, this approach leads
to explicit bounds on solutions in terms of the data and applies to acoustic scattering by
impedance surfaces as well as by inhomogeneous rough layers; see, e.g. [13,18,19].

A rigorous analysis on the two-dimensional elastic scattering of plane waves is given
by Arens [20,21] for smooth (C1,α) rigid surfaces, where the solution is sought in C2(D) ∩
C(D) (the region D denotes the unbounded domain above the scattering surface) via
integral equation methods. This generalizes the solvability results in [11,14,15] from the
Helmholtz equation to the Navier equation. Moreover, an upward propagating radiation
condition (UPRC) is proposed in [20] based on the elastic Green’s tensor of the Dirichlet
boundary value problem in a half plane. The UPRC is proved to be equivalent to the so-called
angular spectrum representation for solutions of the Navier equation established in [22]. The
latter has been used to prove well-posedness of the Dirichlet boundary value problem in
non-weighted Sobolev spaces via a variational approach and perturbation arguments for
semi-Fredholm operators (see [22]). A different radiation condition is used in the work of
Duran et al. [23], with an emphasis placed on treating surface waves arising from local
normal stress excitations on the free boundary of a half plane. This new radiation condition
is inspired by the asymptotic behavior of the half-space elastic Green’s tensor with the
Neumann boundary condition. It leads to well-posedness of the Neumann boundary value
problem in suitable weighted Sobolev spaces, but the weights there (see also [24] in the
case of the Helmholtz equation) are different from ours presented in this paper.

We investigate the variational approach in appropriate weighted Sobolev spaces for both
the Dirichlet and impedance boundary value problems, where the time-harmonic incident
elastic plane pressure and shear waves as well as incident elastic point source waves are
all covered. Our methods are closest to the recently developed variational approach of
Chandler-Wilde and Elschner [25] to acoustic scattering by rough surfaces. The well-
posedness there is established by using the results of [17] in the non-weighted setting
and a perturbation argument. In this paper, the solvability of the impedance boundary value
problem in the standard Sobolev space is established by investigating an auxiliary Dirichlet
boundary value problem with an inhomogeneous source term; see Section 3.2. This novel
idea for treating the impedance boundary value problem comes from [22,26] where the a
priori estimates for solutions of the Helmholtz equation in unbounded periodic and non-
periodic structures have been established via Rellich-type identities. It also provides a
shorter and simpler proof of the well-posedness of acoustic scattering from impedance
rough surfaces in standard Sobolev spaces (see [13, Chapter 3.4]) at arbitrary wavenumber.

The grating diffraction problem can be viewed as a special case of scattering by a
rough surface. Existing solvability results for diffraction gratings (periodic structures) in
the literature all rest on the essential assumption of quasiperiodicity of solutions. Such an
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assumption leads to an outgoing Rayleigh expansion of the scattered field and has consider-
ably simplified the mathematical analysis of periodic scattering problems. We refer to [27]
for uniqueness and existence proofs via integral equation methods and to [28,29] for the
variational approach applied to boundary value problems of the first, second, third, or fourth
kind as well as to transmission problems with non-smooth interfaces in R

n (n = 2, 3). As
a consequence of the solvability in weighted spaces, we provide a theoretical justification
of the quasiperiodicity of solutions for elastic diffraction grating problems, whenever the
incident wave is quasiperiodic; see Section 4.1. In addition, our weighted Sobolev space
for rough surface scattering problems can be regarded as the solution space for the unique
solvability of diffraction of non-quasiperiodic incident waves from periodic structures,
including incident elastic point-source waves generated by the free space elastic Green’s
tensor and a linear combination of incident plane pressure and shear waves.

The paper is organized as follows. In Section 2, we rigorously formulate the Dirichlet
and impedance boundary value problems in weighted Sobolev spaces and propose their
equivalent variational formulations. As in [25], the radiation condition is to be under-
stood as a bounded linear functional on a weighted Sobolev space. We adopt the idea of
[25, Remark 5.4] to formulate the boundary value problems as equivalent variational
equations in a straightforward way. The right-hand sides of these equations are given
explicitly in terms of the incident elastic plane waves, and they actually take a form
analogously to that arising from diffraction grating problems; cf. Section 2.4 and [28,29].
In Section 3, we prove existence and uniqueness of solutions to the equivalent variational
problems, following the perturbation argument of [25] that relies on commutator estimates
for the Dirichlet-to-Neumann map. Section 4 concerns applications of our solvability results
to the elastic scattering from periodic structures (diffraction gratings) as well as to the
scattering of elastic point source (spherical) waves.

Section 5 is devoted to the proof of the crucial commutator estimates of Section 3.
In contrast to the Helmholtz case [25] where a square-root symbol with two singularities
is involved, we have to investigate properties of a non-smooth symbol in the form of a
2-by-2 matrix with four singularities. Therefore, additional arguments are needed in order
to generalize the results of [25] to the case of elastic scattering; see Section 5 for the details.
These commutator estimates play an essential rule not only in verifying the main Theorems
2.2 and 3.1, but also in establishing equivalent variational formulations in the weighted
spaces (see Lemma 2.5). In particular, Lemma 5.4 (i) provides a proof of [22, Lemma 1] in
the non-weighted Sobolev spaces.

We further note that the commutator estimates and the solvability results obtained in
this paper can be extended to three-dimensional elastic rough surface scattering problems.
Consequently, the Dirichlet and impedance problems for incident spherical and cylindrical
elastic waves in three-dimension can be treated analogously.

We end up this section by introducing some notation to be used later. Denote by (·)�
the transpose of a vector or a matrix. For a ∈ C, let |a| denote its modulus, and for a ∈ C

2,
let |a| denote its Euclidean norm. For a matrix M = (mi j ) ∈ C

2×2, ||M|| denotes the norm
defined by ||M|| := maxi, j |mi j |. The symbol a ·b stands for the inner product a1b1 +a2b2
of a = (a1, a2)

�, b = (b1, b2)
� ∈ C

2. Standard L2-based scalar Sobolev spaces defined
in a domain � or on a surface � are denoted by H s(�) or Hs(�) for s ∈ R. Throughout
the paper, the branch cut of a complex square root is always chosen such that its imaginary
part is non-negative. Unless otherwise stated, we always use c,C to denote generic positive
constants which may vary from line to line.
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2. Boundary value problems and equivalent variational formulations

2.1. The basic model

We precisely formulate the scattering problems as follows. Let D ⊂ R
2 be an unbounded

connected open set such that for some constants f− < f+ it holds that

U f+ ⊂ D ⊂ U f− , U f+ := {x = (x1, x2) : x2 > f+}. (2.1)

As in our previous paper [22], the boundary � := ∂D of D is supposed to be the graph of
a uniformly Lipschitz continuous function f , i.e.

� = {x ∈ R
2 : x2 = f (x1), x1 ∈ R}, (2.2)

and there is a constant L > 0 such that

| f (x1)− f (x2)| ≤ L |x1 − x2|, for all x1, x2 ∈ R. (2.3)

Such a geometric assumption on � is weaker than the condition used in [20,21] but stronger
than that in [17,25]. Our a priori estimates of solutions derived in Section 3 always depend on
the global Lipschitz constant L .Assume the region D is filled with an isotropic homogeneous
elastic medium characterized by the Lamé constants λ,μ satisfying μ > 0, λ+μ > 0. Let
uin be a time-harmonic elastic plane wave (with time variation of the form exp(−iωt), ω >
0) incident on the rough surface � from above. The incident wave is assumed to be a
linear combination of plane pressure and shear waves having the same incident angle θ ∈
(−π/2, π/2), i.e.

uin = c1uin
p + c2uin

s , c j ∈ C, j = 1, 2, (2.4)

where

uin
p := θ̂ exp(ikp θ̂ · x), θ̂ := (sin θ,− cos θ), kp := ω/

√
2μ+ λ,

uin
s := θ̂⊥ exp(iks θ̂ · x), θ̂⊥ := (cos θ, sin θ), ks := ω/

√
μ.

Note that kp and ks are called the compressional and shear wave numbers, respectively.
The case of incident elastic point source (spherical) waves will be treated in Section 4.2,
following the approach for plane wave incidence.

We look for the total elastic displacement u = (u1, u2)
� such that the Navier equation

(
∗ + ω2) u = 0 in D , 
∗ := μ
+ (λ+ μ) grad div , (2.5)

together with one of the following boundary conditions on �:

Dirichlet boundary condition : u = 0, (2.6)

impedance boundary condition : T u − iηu = 0, η > 0, (2.7)

holds in a distributional sense, and that the scattered field usc := u − uin satisfies an
appropriate radiation condition as x2 → +∞. Note that in (2.5), we have assumed for
simplicity that the mass density of the elastic medium in D is equal to one. The operator T
in (2.7) stands for the stress vector or traction having the form

T u = 2μ∂nu + λn div u + μ

(
n2 (∂1u2 − ∂2u1)

n1 (∂2u1 − ∂1u2)

)
on � (2.8)

where n = (n1, n2)
� denotes the unit normal pointing into the exterior of D.
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2.2. Weighted Sobolev spaces

For h > f + := supx1∈R{ f (x1)}, let �h := {x = (x1, x2) : x2 = h} and Sh := D\U h . Our
variational formulation will be posed on the infinite strip Sh ; see Figure 1. Let Fv denote
the Fourier transform of v defined by

Fv(ξ) = (2π)−1/2
∫

R

exp(−i t ξ)v(t) dt, ξ ∈ R,

with the inverse transform given by

F−1w(t) = (2π)−1/2
∫

R

exp(i t ξ)w(ξ) dξ, t ∈ R.

We first introduce weighted Sobolev spaces. For 
 ∈ R, l ∈ N and a domain G ⊂ R, define
the Hilbert spaces

L2

(G) :=

(
1 + x2

1

)−
/2
L2(G) , Hl


(G) :=
(

1 + x2
1

)−
/2
Hl(G) ,

equipped with the corresponding canonical norm and scalar product. The space Vh,
 is then
defined as the closure of {u|Sh : u ∈ C∞

0 (D)} in the norm

‖u‖Vh,
 = ‖u‖H1

 (Sh)

=
(∫

Sh

(∣∣∣∣(1 + x2
1

)
/2
u

∣∣∣∣
2

+
∣∣∣∣∇ (

1 + x2
1

)
/2
u

∣∣∣∣
2
)

dx

)1/2

. (2.9)

From time to time, we employ the following equivalent norm to || · ||Vh,
 :

||u||′ :=
(∫

Sh

(
1 + x2

1

)
 (|u|2 + |∇u|2
)

dx

)1/2

, u ∈ Vh,
. (2.10)

Moreover, we introduce

Hs

(�h) :=

(
1 + x2

1

)−
/2
Hs(�h), 
 ∈ R ,

where Hs(�h) is identified with the Sobolev space H s(R) with norm

‖v‖Hs (R) =
(∫

R

(
1 + ξ2

)s |Fv|2dξ

)1/2

.

The weighted space Hs

(R) will be endowed with the norm

||v||Hs

(R)

:= ||
(

1 + x2
1

)
/2
v(x1)||Hs (R). (2.11)

Γh

Γ

Sh

x =f-2

x =h2

Figure 1. Geometrical setting of the scattering problem.
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Obviously, the restriction of the incident plane wave uin given in (2.4) to Sh (h > f +)
belongs to the space H1


 (Sh)
2 for all 
 < −1/2. Below we collect some properties of

Hs

(G), which will be used for our subsequent analysis.

Proposition 2.1 [30,31]

(i) F is an isometry of L2(R) onto itself and also an isometry of L2

(R) onto H
(R).

More generally, F is an isomorphism of H s

(R) onto H


s (R) for all s, 
 ∈ R.
(ii) The trace operators

γ− : H1

 (Sh) → H1/2


 (�h) , γ+ : H1

 (Uh\ŪH ) → H1/2


 (�h) , H > h ,

are continuous.
(iii) The dual space of Hs


(R) with respect to the L2 scalar product is H−s−
(R), that is,
Hs

(R)

∗ = H−s−
(R) for all s, 
 ∈ R.

2.3. Radiation condition and boundary value problems

To formulate the Dirichlet and impedance boundary value problems, we need an appropriate
radiation condition for the scattered field in D as x2 → ∞. Assuming that usc is a linear
superposition of outgoing plane waves in D, we shall represent the scattered field in Uh in
terms of the trace usc

h := usc|�h . Using Fourier transform, it was derived in [22] that

usc(x) = 1√
2π

∫
R

(
eiγp(ξ) (x2−h)Mp(ξ)+ eiγs (ξ) (x2−h)Ms(ξ)

)
ûsc

h (ξ) eix1ξ dξ (2.12)

for x2 > h, where Mp and Ms are two matrices given by

Mp(ξ) = 1

ξ2 + γpγs

(
ξ2 ξγs

ξγp γpγs

)
, Ms(ξ) = 1

ξ2 + γpγs

(
γpγs −ξγs

−ξγp ξ2

)
, (2.13)

respectively, with γp(ξ) :=
√

k2
p − ξ2, γs(ξ) := √

k2
s − ξ2. Obviously, Mp(ξ)+ Ms(ξ) =

I for any ξ ∈ R, where I denotes the 2 × 2 unit matrix. The right-hand side of (2.12) can
be interpreted as a superposition of upward propagating homogeneous compressional resp.
shear plane waves corresponding to |ξ | ≤ kp resp. |ξ | ≤ ks and some evanescent surface
waves corresponding to |ξ | > kp resp. |ξ | > ks . Hence, expression (2.12) is always referred
to as the angular spectral representation for solutions of the Navier equation in the literature
(see e.g. [32]). Moreover, such a radiation condition can be written in an alternative form
that is identical with the Upward Propagating Radiation Condition (UPRC) proposed by
Arens [20] (see [22, Remark 1])

usc(x) = −i
∫
�h

Ty [�h(x, y)] usc(y) ds(y) for x2 > h. (2.14)

Here,�h(x, y) denotes the Green’s tensor for the Navier equation in the half space x2 > h
with the homogeneous Dirichlet boundary condition on�h , and Ty [�h(x, y)] is understood
as the application of T to each column of �h(x, y) with respect to the argument y. The
explicit expression of �h(x, y) and its inverse Fourier transform on �h with respect to y1
can be found in [20].
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Since each element of Mp exp(iγp(x2−h) and Ms exp(iγs(x2−h) is uniformly bounded
in ξ ∈ R, the integral (2.12) exists in the Lebesgue sense for all x ∈ Uh when usc

h ∈ L2(�h)
2

so that ûsc
h ∈ L2(R)2. In the weighted case of usc

h ∈ H1/2

 (R)2 with 
 > −1, we can

interpret Equation (2.12) as a bounded linear functional over H 1/2

 (R)2. To see this, arguing

analogously to the Helmholtz case, we only need to show that the function lx (ξ), defined
by

lx (ξ) := 1√
2π

(
eiγp(ξ) (x2−h)Mp(ξ)+ eiγs (ξ) (x2−h)Ms(ξ)

)
eix1ξ ,

belongs to the dual space H−

−1/2(R)

2 of H


1/2(R)
2 for 
 > −1; note that by Proposition

2.1(i) we have Fusc
h ∈ H


1/2(R)
2. Indeed, using (2.11) there holds

||lx (ξ)||2H−

−1/2(R)

2 = ||
(

1 + ξ2
)−1/4

lx (ξ) ||2H−
(R)2

=
∫

R

(
1 + ξ2

)−
 |Ft→ξ [
(

1 + t2
)−1/4

lx (t)](ξ)| 2 dξ

=
∫

R

(
1 + ξ2

)−
 |b1/2(ξ) ∗ l̂x (ξ)|2 dξ, (2.15)

where b
(ξ) := Ft→ξ

(
1 + t2

)−
/2 ∈ L1(R) for 
 > 0 (see e.g. [25, Lemma 6.4]), with ∗
denoting convolution. Moreover, elementary calculations show that (cf. (2.12) and (2.14))

l̂x (y1) = Fξ→y1 [lx (ξ)] = −i [Ty �h(x, y)]| y∈�h , y = (y1, y2) ∈ R
2,

and that (see [20, Theorem 2.2])

||�h(x, y)|| ≤ H(x2 − h, y2 − h)

|x1 − y1|3/2 , |x1 − y1| ≥ ε > 0, x, y ∈ Uh,

for some function H ∈ C(R2). Together with the interior estimate for solutions to the
Navier equation (see e.g. Arens [20, Appendix]), the previous estimate implies that, for a
fixed x ∈ Uh , the inequality

|| Ty �h(x, y) || ≤ C (1 + |x1 − y1|)−3/2

holds uniformly in all y ∈ �h , with the positive constant C depending only on x2 and h.
Therefore, it follows from (2.15) that

|| lx (ξ)||2H−

−1/2(R)

2 ≤ C ||b1/2(ξ)||2L1(R)

∫
R

(
1 + ξ2

)−(
+3/2)
dξ,

which is bounded provided 
 > −1. This explains why we can understand (2.12) by
extending the mapping usc(x)|�h → usc(x), given by (2.12), to a bounded linear functional
over H1/2


 (R)2 for 
 > −1.
Now we formulate the Dirichlet and impedance boundary value problems (DBVP) and

(IBVP) as follows.

(DBVP): Given the incoming plane wave uin , find the total field u = uin + usc ∈
H1

loc(D)
2 such that

u|Sh ∈ H1

 (Sh)

2, ∀ h > f +, for some 
 ∈ (−1,−1/2),
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u satisfies the Navier Equation (2.5) in a distributional sense and the Dirichlet
condition (2.6), and that the radiation condition (2.12) holds for all h > f +.

(IBVP): Given the incoming plane wave uin , find the total field u ∈ H1
loc(D)

2 such that

u|Sh ∈ H1

 (Sh)

2, ∀ h > f +, for some 
 ∈ (−1,−1/2),

u satisfies the Navier Equation (2.5) in a distributional sense and the impedance
boundary condition (2.7), and that the radiation condition (2.12) holds for all
h > f +.

2.4. Dirichlet-to-Neumann map and variational formulations

The purpose of this subsection is to propose equivalent variational formulations of (DBVP)
and (IBVP) in the weighted Sobolev spaces H s


(Sh)
2 for every
 ∈ (−1,−1/2) and h > f +.

Note that we require −1 < 
 < −1/2, because the radiation condition (2.12) is well defined
for any 
 > −1 and the elastic plane wave (2.4) belongs to the space H1


 (Sh)
2 for any


 < −1/2.
Recall the first Betti formula

−
∫

Sh

(
∗ + ω2)w · v dx =
∫

Sh

(
Eμ̃,λ̃(w, v)− ω2w · v

)
dx −

∫
∂Sh

v · Tμ̃,λ̃w ds (2.16)

for w, v ∈ H2(Sh)
2, where the bar indicates the complex conjugate, μ̃ and λ̃ are real

numbers satisfying μ̃+ λ̃ = μ+ λ, and

Eμ̃,λ̃(w, v) := (λ+ 2μ) (∂1w1 ∂1v1 + ∂2w2 ∂2v2)+ μ (∂2w1 ∂2v1 + ∂1w2 ∂1v2)

+ λ̃ (∂1w1 ∂2v2 + ∂2w2 ∂1v1)+ μ̃ (∂2w1 ∂1v2 + ∂1w2 ∂2v1), (2.17)

Tμ̃,λ̃w := (μ+ μ̃) ∂nw + λ̃ n div w + μ̃

(
n2 (∂1w2 − ∂2w1)

n1 (∂2w1 − ∂1w2)

)
.

In the Dirichlet case, we have a freedom of selecting the parameters μ̃ and λ̃. In our
previous paper [22], the parameters μ̃, λ̃ were taken as μ̃ = 0, λ̃ = λ + μ, leading to a
minimal loss of coercivity for the corresponding Dirichlet-to-Neumann map on �h ; see [22,
Remark 4]. Throughout this paper, we set μ̃ = μ, λ̃ = λ so that the operator Tμ̃,λ̃ = Tμ,λ
coincides with the stress operator defined in (2.8). Moreover, with this choice the bilinear
form E(·, ·) = Eμ,λ(·, ·) can be written as:

E(w,w) = λ |div w|2 + 2μ
2∑

i, j=1

|εi, j (w)|2, εi, j (w) := (∂ jwi + ∂iw j )/2.

Under our assumptions on the Lamé constants, μ > 0, λ + μ > 0, we have the estimate
(see e.g. [33, Chap. 5.4])

∫
Sh

E(w,w) dx ≥ C
2∑

i, j=1

||εi, j (w)||2L2(Sh)
, ∀w ∈ H1(Sh)

2. (2.18)

and the classical Korn’s inequality,
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∫
Sh

⎛
⎝ 2∑

i, j=1

|εi, j (w)|2 + |w|2
⎞
⎠ dx ≥ C ||w||2H1(Sh)

2 , ∀w ∈ H1(Sh)
2, (2.19)

where C = C(Sh) > 0 is independent of w. Korn’s inequality for a half space above a
Lipschitz graph was proved, e.g. by Nitsche [34], via constructing appropriate extension
operators. This approach can be easily adapted to proving (2.19) over the strip Sh of finite
height, and we also refer to [35, Section 2.2].

In the following, we introduce the Dirichlet-to-Neumann map T on the artificial bound-
ary �h , allowing us to treat the scattering problems in the truncated strip Sh in place of the
domain D. Define v as the right-hand side of (2.12) with usc

h ∈ C∞
0 (R). Then, elementary

calculations show

T v|�h = T (usc
h ),

where the Dirichlet-to-Neumann (DtN) map T = T μ,λ is given by the pseudodifferential
operator

T w := F−1 M(ξ)F w, w ∈ H1/2

 (R)2, (2.20)

with

M = Mμ, λ = i

ξ2 + γpγs

(
ω2γp −ξω2 + 2ξμ(ξ2 + γpγs)

ξω2 − 2ξμ(ξ2 + γpγs) ω2γs

)
. (2.21)

The following commutator estimate for the DtN map is crucial for establishing the main
solvability results in weighted spaces. Its proof will be carried out later in Section 5, based
on the commutator estimate of [25, Theorem 3.1] concerning non-smooth scalar symbols
with a square root singularity.

Theorem 2.2 Consider the commutator

C := T − (a2 + x2
1)

/2T (a2 + x2

1)
−
/2 (2.22)

with the parameter a > 1. Then, for |
| < 1 and a > max{1, 1/ks}, there exists a positive
constant C = C(
, ω, λ, μ) such that the norm of C on L2(R)2 is bounded by a−1/2C.

The following lemma describes the continuity properties of T .

Lemma 2.3

(i) For any s ∈ R, the operator T = T (ω) : H s(R)2 → Hs−1(R)2 is bounded, and
it is also continuous with respect to ω in the operator norm.

(ii) For |
| < 1, 0 ≤ s ≤ 1, T : H s

(R)

2 → Hs−1

 (R)2 is bounded.

Proof (i) The boundedness of T is a direct consequence of the estimates γp(ξ), γs(ξ) ∼
i |ξ | as |ξ | → ∞ and |M(ξ)z|2 ≤ c

(
1 + ξ2

) |z|2 for some constant c > 0 uniformly in
z ∈ R

2, ξ ∈ R. The continuity of T with respect toω follows from the uniform convergence

‖M(ξ ;ω1)− M(ξ ;ω2)‖ /
(

1 + ξ2
)

→ 0, as ω1 → ω2,
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in ξ ∈ R. The proof of the second assertion for 
 �= 0 can be carried out in the same way
as that for the Helmholtz equation (see [25, Lemma 3.3(ii)]) by applying the commutator
estimate of Theorem 2.2. �

We set V
 as the energy space for our variational problems, i.e. V
 = V 2
h,
 in the

Dirichlet case and V
 = H1

 (Sh)

2 in the impedance case; see Section 2.2 for the definition
of Vh,
. Introduce the scalar product

(u, v) :=
∫

Sh

u · v dx,

and define the continuous sesquilinear forms B j : V
 × V−
 → C ( j = 1, 2) by

B1(u, v) :=
∫

Sh

(
E(u, v)− ω2u · v

)
dx −

∫
�h

γ−v · T γ−u ds , (2.23)

B2(u, v) := B1(u, v)− iη (u, v) .

Now, the variational formulation of (DBVP) resp. (IBVP) can be stated as follows: find
u ∈ V
 with some −1 < 
 < −1/2 such that

B1(u, v) (resp. B2(u, v)) =
∫
�h

g · v ds, g := T uin|�h − T (uin|�h ) ∈ H−1/2

 (R),

(2.24)
for all v ∈ V−
. To determine the function g on the right-hand side of (2.24), we introduce
the notation

αp := kp sin θ, βp := kp cos θ, tp :=
√

k2
s − α2

p, ρp := α2
p + βp tp ,

αs := ks sin θ, βs :=
√

k2
p − α2

s , ts := ks cos θ, ρs := α2
s + βs ts .

By the definitions of γp(ξ) and γs(ξ), we have

γp(αp) = βp, γs(αp) = tp, γs(αs) = ts, γp(αs) = βs .

Using the relation F exp(iαx1) = √
2πδ(ξ − α) (the δ-function concentrated at ξ1 = α)

and elementary calculations, we find

T (uin
p |�h ) = i

kp ρp

(
2ω2αp βp − 2μαp βp ρp

−2μα2
p ρp + ω2(α2

p − βp tp)

)
exp(iαpx1 − βph),

T (uin
s |�h ) = i

ks ρs

(
2μα2

s ρs − ω2(α2
s − βs ts)

2ω2αs ts − 2μαs βs ρs

)
exp(iαs x1 − tsh). (2.25)

On the other hand, by the definition of T given in (2.8), we get

T uin
p |�h = i

kp

(−2μαp βp

ω2 − 2μα2
p

)
exp(iαpx1 − βph),

T uin
s |�h = i

ks

(
2μα2

s − ω2

−2μαs ts

)
exp(iαs x1 − tsh). (2.26)
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Combining (2.25) and (2.26) yields

T uin
p − T uin

p = i2ω2βp

kp ρp
(−αp , tp)

� exp(iαpx1 − iβph) =: gp(x1),

T uin
s − T uin

s = i2ω2ts
ks ρs

(−βs ,−αs)
� exp(iαs x1 − i tsh) =: gs(x1),

on �h .

One may check that gp and gs take the same forms as those arising from diffraction grating
problems for incident plane pressure and shear waves (see [28,29]). We now conclude that
the function g on the right-hand side of (2.24) can be represented as g = c1gp + c2gs ,
where the coefficients c j are the weights attached to the incident plane pressure and shear
waves; see (2.4).

Remark 2.4

(i) The right-hand side of (2.24) for the Dirichlet boundary value problem does not
depend on the choice of the parameters μ̃, λ̃. In the general case of μ̃+ λ̃ = μ+ λ,
the symbol matrix M μ̃,λ̃ involved in the Dirichlet-to-Neumann map T μ̃,λ̃ can be
written as (cf. (2.21))

Mμ̃,λ̃ := i

ξ2 + γpγs

(
ω2γp −ξω2 + ξ(a + μ)(ξ2 + γpγs)

ξω2 − ξ(λ+ 2μ− b)(ξ2 + γpγs) ω2γs

)
.

To get the corresponding variational formulation in the general case, one may only
replace E and T on the left-hand side of (2.24) by Eμ̃,λ̃ and T μ̃,λ̃, respectively. It

can be readily checked that (T μ̃,λ̃ − T μ̃,λ̃)uin = (Tμ, λ − T μ, λ)uin on �h for all
μ̃, λ̃ ∈ R such that μ̃+ λ̃ = μ+ λ.

(ii) Suppose u1 ∈ V
1 , u2 ∈ V
2 are the unique solutions to (2.24) corresponding to
distinct numbers 
1, 
2 such that −1 < 
2 < 
1 < −1/2. Then, we have u1 ≡ u2,
because V−
2 ⊂ V−
1 and thus u1 also satisfies (2.24) with
 = 
2. This implies that
the solution to (2.24) belongs to the space ∩−1<
<−1/2V
, provided the variational
Equation (2.24) is uniquely solvable for each 
 ∈ (−1,−1/2).

The equivalence of (DBVP) resp. (IBVP) and the variational formulations in (2.24) can
be established using the following lemma, which extends the results of [22, Lemma 1] for

 = 0 to the weighted case.

Lemma 2.5 Let |
| < 1.

(i) If (2.24) holds with usc
h ∈ H1/2


 (�h)
2, then usc ∈ H1


 (Uh\ŪH )
2 for every H > h.

(ii) Furthermore, we have (
∗ + ω2)usc = 0 in Uh, γ+usc = usc
h , and∫

�h

v̄ · T γ+usc dx + ω2
∫

Uh

u · v dx −
∫

Uh

E(u, v) dx = 0, ∀v ∈ C∞
0 (D)

2 .

As in the case of the Helmholtz equation [17] for 
 = 0, assertion (ii) is a consequence
of (i). We will prove Lemma 2.5(i) in Section 5 applying our commutator estimates. Using
the arguments from [17,22], we deduce from Lemma 2.5, Remark 2.4(ii), and the well-
posedness of (2.24) (see Theorem 3.1 below) the following lemma.
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Lemma 2.6 If u is a solution of (DBVP) (resp. (IBVP)), then u|Sh satisfies the variational
problem (2.24). Conversely, let w be the unique solution of (2.24). If we set u = w in Sh

and define u = uin + usc in Uh, where usc is given by right-hand side of (2.12) with
usc

h = γ−(w − uin), then u is the unique solution of (DBVP) (resp. (IBVP)).

3. Existence and uniqueness results in weighted spaces

From Lemma 2.3(ii), it is seen that the sesquilinear forms B j ( j = 1, 2) are well defined
and continuous on V
 × V−
 for |
| < 1. Denote by B( j)


 : V
 → V ∗−
 the continuous
linear operator generated by B j , where V ∗−
 is the dual of V−
 with respect to the scalar
product (·, ·) in L2(Sh)

2. This enables us to rewrite the variational formulations (2.24) as
the operator equations

B( j)

 (u) = G in V ∗−
, j = 1, 2, G(v) :=

∫
�h

g · v ds, ∀ v ∈ V−
 , (3.1)

for 
 ∈ (−1,−1/2). In this section, we investigate the unique solvability of problems (3.1)
and thus of the boundary value problems (IBVP) and (DBVP). We shall follow the approach
of Chandler-Wilde and Elschner [25] by using the results in the non-weighted case (
 = 0)
and a perturbation argument based on commutator estimates. The main theorem of this
paper is stated as follows.

Theorem 3.1 Under the assumptions (2.2) and (2.3), the operators B( j)

 : V
 → V ∗−
,

j = 1, 2, are invertible for |
| < 1. In particular, the boundary value problems (DBVP)
and (IBVP) both admit a unique solution that belongs to ∩−1<
<−1/2V
.

The proof of Theorem 3.1 will be carried out below in Sections 3.1 and 3.2.

3.1. Proof for the Dirichlet boundary value problem

We first recall the invertibility of B(1)
 in the non-weighted case when 
 = 0. It was proved
in [22] that B(1)0 is invertible for any frequency of the incident wave, and for some constant
c0 = c0(ω, λ, μ, h, L) > 0, there holds

||(B(1)0 )−1||V0→V ∗
0

≤ c0. (3.2)

This generalizes the results of Chandler-Wilde and Monk [17] to the case of elastic scattering.
The proof of (3.2) is based on Rellich-type identities for both the Helmholtz and Navier
equations and a perturbation argument for semi-Fredholm operators. However, in contrast
to the Helmholtz case, the Dirichlet-to-Neumann map for the Navier equation does not
have a definite real part, leading to essential difficulties in establishing explicit bounds on
solutions as in [17].

To investigate the case when 
 �= 0, we introduce equivalent norms

‖u‖L2

(Sh)

2 = ‖(a2 + x2)
/2u‖L2(Sh)
2

with parameter a > 0 sufficiently large and modify the norm (2.9) in V
 correspondingly.As
in [25], we reformulate the variational form (2.23)–(2.24) as a perturbation of the problem
in the non-weighted case. For u ∈ V
, v ∈ V−
, set



264 J. Elschner and G. Hu

ϕ = (a2 + x2
1)

/2u ∈ V0 , ψ = (a2 + x2

1)
−
/2v ∈ V0 .

Then from (2.23), we obtain

B1(u, v) = B1(ϕ, ψ)+ K (ϕ, ψ) , (3.3)

where K = K1 + K2 with

K1(ϕ, ψ) :=
∫

Sh

[
E((a2 + x2

1)
−
/2ϕ, (a2 + x2

1)

/2ψ)− E(ϕ, ψ)

]
dx,

K2(ϕ, ψ) :=
∫
�h

[
ψ · T ϕ − (a2 + x2

1)

/2ψ · T (a2 + x2

1)
−
/2ϕ

]
ds

=
∫
�h

ψ · Cϕ ds.

Recall that the operator C is the commutator defined in (2.22). By the definition of E(·, ·)
(see (2.17)), the sesquilinear form K1 can be evaluated as

|K1(ϕ, ψ)| ≤ c(λ, μ)
{||ϕ||L2 ||ψ ||L2 |E(∑ j=1,2(a

2 + x2
1)

−
/2e j ,
∑

j=1,2(a
2 + x2

1)

/2e j )|

+ ||ϕ||L2 (a2 + x2
1)

/2 |E(∑ j=1,2(a

2 + x2
1)

−
/2e j , ψ)|
+ ||ψ ||L2 (a2 + x2

1)
−
/2 |E(ϕ,∑ j=1,2(a

2 + x2
1)

/2e j )|

}
.

Here, e1 = (1, 0)�, e2 = (1, 0)� denote the unit vectors in R
2 and the norm || · ||L2(Sh)

2 is
written as || · ||L2 for simplicity. Moreover, using the estimates

sup
Sh

∣∣∇(a2 + x2
1)

/2
∣∣ (a2 + x2

1)
−
/2 ≤ |
|/2a,

sup
Sh

∣∣∇(a2 + x2
1)

/2 · ∇(a2 + x2

1)

/2
∣∣ ≤ (|
|/2a)2,

we obtain

|K1(ϕ, ψ)| ≤ c(λ, μ)

{( |
|
2a

)2
‖ϕ‖L2‖ψ‖L2 +

( |
|
2a

) (‖∇ϕ‖L2‖ψ‖L2 + ‖ϕ‖L2‖∇ψ‖L2
)}

≤ c(λ, μ)

{ |
|
2a

max

(
1,

|
|
2a

)
‖ϕ‖V0‖ψ‖V0

}
. (3.4)

Applying Theorem 2.2 to K2, we get

|K2(ϕ, ψ)| ≤ c(ω, λ, μ, 
) a−1/2 ‖ϕ‖L2(�h)
2 ‖ψ‖L2(�h)

2 . (3.5)

The estimates (3.4) and (3.5) then imply that the norm of the operator K0 : V0 → V ∗
0

generated by the form K tends to zero as a → ∞. By (3.3) we have

B(1)
 = (a2 + x2
1)

−
/2(B(1)0 + K0)(a
2 + x2

1)

/2.

Now it can be concluded that B(1)
 : V
 → V ∗−
 is invertible provided a is sufficiently large,
with the norm of its inverse bounded by some positive constant c = c(ω, λ, μ, 
, L , h).
Hence, the variational formulation (2.24) always admits a unique solution for each 
 ∈
(−1,−1/2); note that uin|Sh ∈ V
 for such 
. By Remark 2.4 (ii) and Lemma 2.6,
the solution to (2.24) is indeed the unique solution to (DBVP) belonging to the space
∩−1<
<−1/2V
. �
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3.2. Proof for the impedance boundary value problem

The mathematical analysis in Section 3.1 applies to the impedance boundary value problem,
provided the invertibility of B(2)0 holds in the non-weighted space. The following lemma
shows that the operator (B(2)0 )−1 exists and is bounded if we can establish an a priori bound
for the solution w ∈ V0 of the equation

B(2)0 w = g̃, g̃ ∈ V0. (3.6)

Lemma 3.2 Assume there exists some constant c = c(ω, λ, μ, η, h, L) > 0 such that

||w||H1(Sh)
2 ≤ c ||g̃||H1(Sh)

2 (3.7)

for all w, g̃ ∈ H1(Sh)
2 satisfying the Equation (3.6). Then the operator B(2)0 : H1(Sh)

2 →
(H1(Sh)

2)∗ is invertible, with the norm of its inverse bounded by some constant depending
on ω, λ,μ, η, h and L.

We sketch the proof of Lemma 3.2 based on the argument of [22] for elastic scattering
from rigid rough surfaces due to an inhomogeneous source term. The proof extends the
result of [17] in acoustic scattering to the case of the Navier equation under the impedance
boundary condition.

Proof of Lemma 3.2 Using Korn’s inequality (2.19), from (3.7), one can derive the a priori
estimate

||w||H1(Sh)
2 ≤ c ||B(2)0 w||(H1(Sh)

2)∗ for all w ∈ H1(Sh)
2, (3.8)

at arbitrary frequency ω ∈ R
+. Indeed, (3.8) can be verified by arguing analogously to

[22, Lemma 4] where the same a priori estimate for B(1)0 was justified. The estimate
(3.8) implies that B(2)0 : H1(Sh)

2 → (H1(Sh)
2)∗ is a semi-Fredholm operator. Such an

estimate combined with the invertibility of B(2)0 : H1(Sh)
2 → (H1(Sh)

2)∗ for small
frequencies leads to the existence and boundedness of (B(2)0 )−1 at any frequency; we refer
the reader to [22, Sections 4 and 5] for the details using perturbation arguments for semi-
Fredholm operators. Note that, under the assumption η > 0 for the impedance coefficient,
the invertibility of B(2)0 for small frequencies can be established in the same way as in
[22, Section 4]. �

Now we turn to establishing the crucial a priori estimate (3.7) in the case 
 = 0. Due
to the positive impedance coefficient η on �, the mathematical argument below appears
simpler compared to the Dirichlet case. It also provides a shorter proof of the well-posedness
of acoustic scattering from impedance rough surfaces in the non-weighted Sobolev space
(see [13, Chapter 3.4]) at arbitrary wavenumber. Our approach rests heavily on the well-
posedness of the Dirichlet boundary value problem in the case 
 = 0. To prove (3.7), we
need the following lemma describing the positivity of the matrix Re M := (M + M∗)/2
for large |ξ |.

Lemma 3.3 Let the matrix M be given as in (2.21). There exists a sufficiently large number
� > 0 such that the matrix Re M is positive definite for all |ξ | > �.
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In the case of μ̃ = 0 and λ̃ = λ + μ, Lemma 3.3 was proved in [22, Section 4] by
choosing � = ks . Since the approach there applies to our present case of μ̃ = μ, λ̃ = λ,
we omit the proof for the sake of brevity. A corresponding result for diffraction gratings can
be found in [28, Lemma 2].

Assume w ∈ H1(Sh)
2 is a solution to (3.6). In order to evaluate the non-definite part

occurring in the DtN map, we follow [22] and extend w to SH via (2.12) for some H > h.
Without loss of generality, we assume H = h + 1. Note that this extension is a solution of
the inhomogeneous Navier equation (
∗ + ω2)w = g̃ in SH , with g̃ ≡ 0 in SH \Sh , and it
also satisfies the impedance boundary condition on � and the UPRC in UH . Hence, for all
v ∈ H1(SH )

2,∫
SH

(
E(w, v)− ω2w · v

)
dx − iη

∫
�

w ·v ds −
∫
�H

γ−v ·T γ−w ds =
∫

SH

g̃ ·v dx . (3.9)

Taking the imaginary part of (3.9) with v = w and making use of the identity (see e.g. [22])

Im
∫
�H

γ−w·T γ−w ds = 2ω2

(∫
|ξ |<kp

γ 2
p (ξ) |P(ξ)|2 dξ +

∫
|ξ |<ks

γ 2
s (ξ) |S(ξ)|2 dξ

)
> 0

(3.10)
with P(ξ) := (−i/k2

p)F(div u|�H ), S(ξ) := (i/k2
s )F(curl u|�H ), we find

||w||2L2(�)2
≤ c(ω) η−1 ||g̃||L2(SH )

2 ||w||L2(SH )
2 . (3.11)

To estimate the L2 norm of w on the strip SH , we study the auxiliary boundary value
problem of finding u ∈ V0 such that

(
∗ + ω2) u = w in SH , u = 0 on �, T u = T (γ−u) on �H . (3.12)

The consideration of the above problem is motivated by [22,26] where the a priori estimate
for solutions of the Helmholtz equation is verified in unbounded periodic and non-periodic
structures. It follows from [22, Lemma 8] that problem (3.12) is well-posed, with the unique
solution u satisfying the bound

||u||H1(SH )
2 ≤ c ||w||H1(SH )

2 , c = c(ω, λ, μ, H, L) > 0. (3.13)

Moreover, using (3.13), the L2-norms of div u and curl u on the scattering surface can be
estimated by

||div u||L2(�)2 + ||curl u||L2(�)2 ≤ c||w||1/2
L2(SH )

2 ||∂2u||1/2
L2(SH )

2 ≤ c||w||1/2
L2(SH )

2 ||w||1/2
H1(SH )

2 ,

(3.14)

where the first inequality follows from [22, Lemma 6] through Rellich identities for the
Helmholtz equation under the assumption (2.3). Since u = 0 on �, it is easy to check that

n2 |∂nu|2 = n2 |∇u|2 = n2(|curl u|2 + |div u|2) on �.

Therefore, by (3.14), the L2-norm of ∂nu on � and thus that of T u can be also bounded by
the left-hand side of (3.14), i.e.

||T u||L2(�)2 ≤ c ||w||1/2
L2(SH )

2 ||w||1/2
H1(SH )

2 . (3.15)
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Using integration by parts and again the fact that u = 0 on �, we obtain

‖w‖2
L2(SH )

2 =
∫

SH

w · w dx =
∫

SH

w · (
∗u + ω2u) dx

=
∫

SH

(
∗w + ω2w) · u dx +
∫

SH

(
∗u · w −
∗w · u) dx

=
∫

SH

g̃ · u dx +
∫
�∪�H

(T u · w − Tw · u) ds

=
∫

SH

g̃ · u dx +
∫
�

T u · w ds +
∫
�H

(T u · w − T w · u) ds.

It follows from the symmetry M(−ξ) = M(ξ)� and the Plancherel identity that∫
�H

T u · w ds =
∫

R

M(ξ) û H (ξ) · ŵH (−ξ) dξ

=
∫

R

û H (−ξ) · M(ξ) ŵH (ξ) dξ =
∫
�H

T w · u ds,

where wH = w|�H . Hence, using (3.11), (3.13) and (3.15),

‖w‖2
L2(SH )

2 =
∫

SH

g̃ · u dx +
∫
�

T u · w ds

≤ c
(||g̃||L2(SH )

2 ||u||L2(SH )
2 + ||T u||L2(�)2 ||w||L2(�)2

)
≤ c

(
||g̃||L2(SH )

2 ||w||H1(SH )
2 + ||w||L2(SH )

2 ||g̃||1/2
L2(SH )

2 ||w||1/2
H1(SH )

2

)
,

for some constant c = c(ω, H, L , η, μ) > 0. Together with Young’s inequality and the
relation g̃ = 0 in SH \Sh , this leads to the following estimate of the L2-norm of w on SH ,

‖w‖2
L2(SH )

2 ≤ c ||g̃||L2(Sh)
2 ||w||H1(SH )

2 . (3.16)

Taking the real part of (3.9) with v = w and using (2.20), we get∫
SH

E(w,w)dx − Re
∫

|ξ |>�
M(ξ) ŵH (ξ) · ŵH (ξ) dξ

= −Re
∫

SH

g̃ · w dx + Re
∫

|ξ |≤�
M(ξ) ŵH (ξ) · ŵH (ξ) dξ + ω2

∫
SH

|w|2dx ,

(3.17)

where � > 0 is taken as in Lemma 3.3 so that the second term on the left-hand side of
(3.17) is positive. The second term on the right-hand side of (3.17), which is non-definite,
can be estimated by (see [22, formula (5.40)])

Re
∫

|ξ |≤�
M(ξ)ŵH (ξ)·ŵH (ξ) dξ ≤ c ||g̃||H1(Sh)

2 (||g̃||H1(Sh)
2 +||∂2w||L2(SH )

2) , (3.18)

for some constant c = c(ω, λ, μ, h, L ,�) > 0. Adding up (3.17) and (3.16) and using the
inequalities (2.18), (2.19) and (3.18), we arrive at

||w||2H1(Sh)
2 ≤ c (||g̃||2H1(Sh)

2 + ||g̃||H1(Sh)
2 ||w||H1(Sh)

2 + ||w||2L2(SH )
2)

≤ c (||g̃||2H1(Sh)
2 + ||g̃||H1(Sh)

2 ||w||H1(Sh)
2) (3.19)
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where the last step follows again from (3.16). Finally, recalling that H = h+1 and applying
Young’s inequality, we obtain

||w||H1(Sh)
2 ≤ ||w||H1(SH )

2 ≤ c ||g̃||H1(Sh)
2 , c = c(ω, λ, μ, h, L , η) > 0.

This proves the estimate (3.7).
Having established the a priori estimate for solutions to (3.6), we can verify Theorem

3.1 for the impedance boundary value problem in the same way as that for (DBVP). We
omit the details. The proof of Theorem 3.1 is thus complete. �

Remark 3.4 In proving Theorem 3.1 we have used the identity (3.10) and the inequality
(3.18), which were justified in [22] for the Dirichlet problem when the parameters μ̃, λ̃ are
taken as μ̃ = 0, λ̃ = λ+μ. However, (3.10) and (3.18) remain valid in the general case of
μ̃, λ̃ ∈ R such that μ̃+ λ̃ = μ+ λ.

4. Applications

4.1. Elastic scattering by diffraction gratings

As an application of Theorem 3.1, we prove the quasiperiodicity of solutions to (DBVP)
and (IBVP) for diffraction gratings (periodic structures) whenever the incident wave is
quasiperiodic. For simplicity, we assume the scattering surface � is 2π -periodic in x1, that
is, the Lipschitz function f given in (2.2) satisfies f (x1 + 2π) = f (x1) for all x1 ∈ R.
Recall that u is called quasiperiodic in D with phase shift α (or α-quasiperiodic) if the
function u(x) exp(iαx1) is 2π -periodic in x1, or equivalently

u(x1 + 2π, x2) = exp(i2πα)u(x1, x2), x ∈ D.

Obviously, the incident pressure and shear waves uin
p , uin

s are α-quasiperiodic with α =
kp sin θ , α = ks sin θ , respectively.

Corollary 4.1 Suppose the grating profile function f is 2π -periodic in x1 and the
incident wave ũin is α-quasiperiodic in D. Then, the unique solution to (DBVP) or (IBVP)
is also α-quasiperiodic. Moreover, the scattered field usc = u − ũin satisfies the following
outgoing Rayleigh expansion

usc(x) =
∑
n∈Z

{
Ap,n

(
αn

βn

)
eiαn x1+iβn x2 + As,n

(
γn

−αn

)
eiαn x1+iγn x2

}
(4.1)

for x2 > f +, where Ap,n, As,n ∈ C are the Rayleigh coefficients, αn := α + n and

βn :=
⎧⎨
⎩
√

k2
p − α2

n if |αn| ≤ kp ,

i
√
α2

n − k2
p if |αn| > kp,

γn =
{√

k2
s − α2

n if |αn| ≤ ks ,

i
√
α2

n − k2
s if |αn| > ks .

Proof Assume u is the unique solution to (DBVP) or (IBVP). Then, one can check that
the function w(x) = exp(−i2πα)u(x1 + 2π, x2) is also a solution, using the periodicity of
� and the quasiperiodicity of the incident wave. By the uniqueness shown in Theorem 3.1,
this implies the identity

exp(−i2πα)u(x1 + 2π, x2) = u(x) in D,
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that is, u is quasiperiodic with the same phase shift as the incident wave. The equivalence of
the UPRC (2.14) for quasiperiodic solutions to the Rayleigh expansion (4.1) can be found
in [22, Remark 1]. �

Corollary 4.1 shows that a solution of the form u = ũin +usc satisfying the Dirichlet or
impedance boundary condition on �, where usc is α-quasiperiodic and admits the Rayleigh
expansion (4.1), is the unique solution to (DBVP) or (IBVP) for diffraction gratings.

Remark 4.2 In the case of general elastic plane waves of the form (2.4), the unique
solution of (DBVP) or (IBVP) for diffraction gratings belongs to the sum of a k p sin
θ - and a ks sin θ -quasiperiodic Sobolev space by linear superposition. The diffraction of
other non-quasiperiodic incident waves, e.g. a point source wave generated by the free
space (non-quasiperiodic) Green’s tensor to the Navier equation, can be treated as a special
case of the scattering by rough surfaces (see Corollary 4.3 below).

4.2. Scattering of elastic point source waves

As an immediate consequence of the solvability results in weighted Sobolev spaces, we
obtain well-posedness of the scattering of elastic point source waves (spherical waves)
from rough surfaces. For y = (y1, y2) ∈ R

2 with y2 > f + and some polarization vector
a ∈ C

2, the incident elastic point source wave Gin
a (x, y) is defined as Gin

a (x, y) = G(x, y)a,
x �= y, where G(x, y) is the free-space elastic Green’s tensor given by (see e.g. [36])

G(x, y) = i

4μ
H (1)

0 (ks |x − y|) I + i

4ω2
grad x grad �

x

[
H (1)

0 (ks |x−y|)−H (1)
0 (kp|x−y|)

]
.

Here H (1)
0 (t) denotes the first kind Hankel function of order zero. Each column of G(x, y)

satisfies the Kupradze radiation condition as |x | → ∞. The asymptotic behavior of the
Hankel function for large arguments implies that

Gin
a (x, y), ∇x Gin

a (x, y) ∼ O(|x |−1/2) as |x | → ∞ .

Therefore, the incident wave satisfies Gin
a (x, y) ∈ H1


 (Sh)
2 for every 
 < 0 and f + < h <

y2. Note that Gin
a (x, y) /∈ H1


 (Sh)
2 for h > y2, since it has a logarithmic singularity at the

point source x = y. By Lemma 2.6 and the proof of Theorem 3.1, we have

Corollary 4.3 Given an incident elastic point source wave Gin
a (x, y) with y2 > f +,

there exists a unique solution u = Gin
a (·, y)+ usc to the boundary value problem (DBVP)

or (IBVP), where usc lies in the intersection of weighted Sobolev spaces
⋂

−1<
<0 V
(Sh)

for any h > f +.

5. Commutator estimates

This section is devoted to the proof of Theorem 2.2 and Lemma 2.5 (i). Introduce the
parameter a > 0 and consider the pseudodifferential operator Ta on R, with symbol Ma(ξ):

Ta v(t) = F−1 Ma(ξ)Fv (ξ), Ma(ξ) := M(ξ/a),
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where the matrix M = Mμ,λ is given in (2.21). Set ρ(a)(|ξ |) = |ξ |2 + γ
(a)
p (|ξ |) γ (a)s (|ξ |),

with

γ (a)p (|ξ |) := aγp(ξ/a) =
√

k2
pa2 − |ξ |2, γ (a)s (|ξ |) := aγs(ξ/a) =

√
k2

s a2 − |ξ |2.
Then, the matrix Ma(ξ) can be rewritten as:

Ma(ξ) = ia

(
ω2γ

(a)
p (ξ)/ρ(a)(ξ) −ω2ξ/ρ(a)(ξ)+ 2ξμ/a2

ω2ξ/ρ(a)(ξ)− 2ξμ/a2 ω2γ
(a)
s (ξ)/ρ(a)(ξ)

)
.

Consider the commutator

Ca := Ta −
(

1 + x2
1

)
/2
Ta

(
1 + x2

1

)−
/2
, a > 0. (5.1)

To reduce the norm estimate of Theorem 2.2 for the commutator C to a corresponding
estimate for Ca , we will make use of the following lemma, which follows immediately from
a standard scaling argument (see [25, p.2573]).

Lemma 5.1 For a > 0, the norm of the commutator C on L2(R2)2 is bounded by Ca−1/2

if and only if this is true for the commutator Ca.

To estimate the norm of Ca on L2(R2)2, we need to study the commutator corresponding
to each entry of Ma on L2(R). Introduce the symbols

m(0)
a = ξμ/a, m(1)

a = a γ (a)p (ξ)/ρ(a)(ξ), m(2)
a = a γ (a)s (ξ)/ρ(a)(ξ), m(3)

a = a ξ/ρ(a)(ξ),
(5.2)

and define analogous commutators C( j)
a ( j = 0, 1, 2, 3) of Ca with Ma replaced by m( j)

a .
Obviously, the symbol of the pseudodifferential operator C(0)a is smooth, whereas those of
C( j)

a ( j = 1, 2, 3) are only continuous functions. In the following two lemmas, we collect
some commutator estimates for pseudodifferential operators with smooth and non-smooth
scalar symbols established by Chandler-Wilde and Elschner [25].

Lemma 5.2 Consider the scalar symbol ma(ξ) ∈ C1(R) with parameter a > 0 and
define the commutators

C̃a := Ma −
(

1 + x2
1

)
/2
Ma

(
1 + x2

1

)−
/2
, Ma := F−1 ma F (5.3)

for |
| ≤ 1.

(i) Assume there exist positive constants C0 and C1 such that

|ma(ξ)| ≤ C0

(
1 + ξ2

)1/2
, |m′

a(ξ)| ≤ C1 a−1/2 on R . (5.4)

Then C̃a : L2(R) → L2(R) are bounded operators with norm less than a−1/2 C(
)
for some constant C(
) > 0 depending only on 
.

(ii) Assume there exist positive constants C0 and C1 such that, for a = 1,

|m1(ξ)| ≤ C0 , |m′
1(ξ)| ≤ C1

(
1 + ξ2

)−1/2
on R . (5.5)
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Then the pseudodifferential operator M1 : L2

(R) → L2


(R) and the commutator

C̃1 : L2(R) → H1(R) both can be bounded by some constant C(
) > 0.

The results of Lemma 5.2, which are shown in [25, Remark 6.6(ii),(iii)], can be verified
by using standard estimates for pseudodifferential operators; see also the proof of [25,
Theorem 6.2(i)]. More general results on pseudodifferential operators with smooth symbols
in weighted Sobolev spaces can be found in [30,31]. We also refer the reader to the
monograph [37] by Eskin concerning the theory of smooth pseudodifferential operators,
including their applications to boundary value problems for elliptic equations in a half space.
The following lemma from [25, Section 6] presents norm estimates for pseudodifferential
operators with non-smooth (continuous) symbols.

Lemma 5.3 Assume ka > 1 and |
| < 1.

(i) The commutator C̃a defined in (5.3) with ma(ξ) = a−1
√

k2a2 − ξ2 has norm less
than C(
)

√
k/a on L2(R) .

(ii) Suppose a = 1 and m1(ξ) = exp(i (x2−h)
√

k2 − ξ2), where x2 ∈ (h, H) for some
H > h. Then the operators M1 : L2


(R) → L2

(R) and C̃1 : L2(R) → H1(R) are

bounded by some constant C(
, ω, λ, μ, H − h) > 0 uniformly in x2 ∈ (h, H).

The main idea in the proof of Lemma 5.3(i) in [25] is the use of cut-off functions
vanishing in a neighborhood of the singularities ξ = ±ka, splitting the square-root symbol
into a sum of a compactly supported non-smooth symbol and a C∞-smooth symbol. We do
believe that such an approach applies to our commutator estimates in the elastic case as well,
with only an additional complexity arising from the four singularities ξ = ±k pa,±ksa of
the symbol matrix Ma . However, in the following, we prefer to verify Theorem 2.2 (via
Lemma 5.1) and Lemma 2.5(i) in an alternative way by reducing the proofs to the estimates
of Lemmas 5.2 and 5.3 using an appropriate decomposition of the symbols in (5.2).

5.1. Proof of Theorem 2.2

Applying Lemma 5.2(i) to the commutator C(0)a , it follows that

||C(0)a ||L2(R)→L2(R) ≤ a−1/2C(
) for a > 1.

To verify the same estimate for C( j)
a , j = 1, 2, 3, we introduce the auxiliary symbols

m̃( j)
a (ξ) := a−1

√
k2

pa2 − ξ2 C ( j)
p + a−1

√
k2

s a2 − ξ2 C ( j)
s

= a−1C ( j)
p γ (a)p (ξ)+ a−1C ( j)

s γ (a)s (ξ),

with C ( j)
p ,C ( j)

s ∈ R ( j = 1, 2, 3) to be determined later. Obviously,

(m̃( j)
a )′(ξ) = a−1C ( j)

p (γ (a)p )′(ξ)+ a−1C ( j)
s (γ (a)s )′(ξ), j = 1, 2, 3. (5.6)

where (γ (a)p )′(ξ) = −ξ/
√

k2
pa2 − ξ2 is singular at ξ = ±kp a, while (γ (a)s )′(ξ) =

−ξ/√k2
s a2 − ξ2 is singular at ξ = ±ks a. These singular points coincide with those

for m( j)
a .
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For j = 1, 2, we select C ( j)
p ,C ( j)

s such that m( j)
a (ξ) − m̃( j)

a (ξ) are continuously
differentiable functions in ξ ∈ R. In the case j = 1, a simple calculation shows

(m(1)
a )′(ξ) = a(γ (a)p )′(ξ)/ρ(a)(ξ)− aγ (a)p (ρ(a))′(ξ)/[ρ(a)(ξ)]2 (5.7)

= (γ (a)p )′(ξ) a

ρ(a)(ξ)

[
1 − γ

(a)
p (ξ)γ

(a)
s (ξ)

ρ(a)(ξ)

]
− (γ (a)s )′(ξ)

a[γ (a)p (ξ)]2

[ρ(a)(ξ)]2

− 2aξ γ (a)p (ξ)/[ρ(a)(ξ)]2.

This suggests that m(1)
a (ξ)− m̃(1)

a (ξ) ∈ C1(R) if we take (cf. (5.6) and (5.7))

C (1)
p = lim|ξ |→kpa

a2

ρ(a)(ξ)

[
1 − γ

(a)
p (ξ)γ

(a)
s (ξ)

ρ(a)(ξ)

]
= 1

k2
p
,

C (1)
s = − lim|ξ |→ksa

a2[γ (a)p (ξ)]2

[ρ(a)(ξ)]2
= k2

s − k2
p

k4
s

.

Moreover, with such a choice the estimates in (5.4) apply to the difference

ma(ξ) := m(1)a (ξ)− m̃(1)a (ξ) = a−1γ
(a)
p (ξ)[a2/ρ(a)(ξ)− 1/k2

p] − a−1γ
(a)
s (ξ)(k2

s − k2
p)/k4

s

= γp(ζ )[1/ρ(ζ )− 1/k2
p] − γs(ζ )(k

2
s − k2

p)/k4
s

=: m(ζ ),

where ζ = ξ/a, ρ(ζ ) := ζ 2 + γp(ζ )γs(ζ ) and m(ζ ) ∈ C1(R). In fact, the first estimate in
(5.4) simply follows from the uniform boundedness

ma(ξ) = m(ζ ) ≤ C0

(
1 + ζ 2

)1/2 ≤ C0

(
1 + ξ2

)1/2
, ∀ ξ ∈ R.

To prove the second inequality in (5.4), we observe that, for |ζ | �= kp, ks ,

m′(ζ ) = γ ′
p(ζ )[1/ρ(ζ )− 1/k2

p] − γ ′
s (ζ )(k

2
s − k2

p)/k4
s + γp(ζ )ρ

′(ζ )/ρ2(ζ ).

By virtue of the asymptotic behavior

ρ′(ζ ) ∼ − (k2
p − k2

s )
2 |ζ |3

(|ζ |2 − k2
p)

3/2(|ζ |2 − k2
s )

3/2
as |ζ | → ∞, (5.8)

and the uniform boundedness

k2
p ≤ |ρ(ζ )| ≤ k2

s , ∀ ζ ∈ R,

we get

m′
a(ξ) = m′(ζ )/a ≤ C1/a ≤ C1a−1/2, a > 1.

By Lemma 5.2(i), the commutator (5.3) corresponding to the symbol ma := m(1)
a (ξ) −

m̃(1)
a (ξ) has norm less than C(
)a−1/2 over L2(R). On the other hand, applying Lemma

5.3(i) we arrive at the same bound for the commutator associated with the symbol m̃(1)
a (ξ)

when ksa > 1; note that the constants C (1)
p and C (1)

s are independent of a. Therefore,

||C(1)a ||L2(R)→L2(R) ≤ C(
)a−1/2, for all a > max{1, 1/ks}.
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Analogously, taking C (2)
p = (k2

p − k2
s )/k4

p and C (2)
s = 1/k2

s yields the same bound for C(2)a .

In the case j = 3, we have m(3)
a (ξ) = ζ/ρ(ζ ), ζ = ξ/a, and for |ξ | �= kpa, ksa,

(m(3)
a )′(ξ) = a[1/ρ(a)(ξ)− ξ(ρ(a))′(ξ)/[ρ(a)(ξ)]2] = [1/ρ(ζ )− ζρ′(ζ )/ρ2(ζ )]/a

= −(γ (a)p )′(ξ)a ξ γ (a)s (ξ)

[ρ(a)(ξ)]2
− (γ (a)s )′(ξ)

a ξ γ (a)p (ξ)

[ρ(a)(ξ)]2
+ a

ρ(a)(ξ)

[
1 − 2ξ2

ρ(a)(ξ)

]
.

Define a function χ(ξ) ∈ C1(R) such that χ(ξ) = 1 for ξ > 1, χ(ξ) = −1 for ξ < −1.
Consider the symbol m(3)

a (ξ) − m̃(3)
a (ξ)χ(ξ), where the coefficients of m̃(3)

a (ξ) in (5.6)
are taken as C (3)

p = −
√

k2
s − k2

p/kp and C (3)
s = −

√
k2

p − k2
s /ks , so that this symbol is

continuously differentiable for all ξ ∈ R. Again using (5.8), it follows that the symbol can
be also estimated as in (5.4). Employing the same argument as for C(1)a implies that the norm
of C(3)a : L2(R) → L2(R) is bounded by C(
)a−1/2 for all a > {1, 1/ks}.

Now, it can be concluded that the commutator Ca : L2(R2)2 → L2(R2)2 given by (5.1)
can be bounded by C(
)a−1/2 for all a > {1, 1/ks}, since this is true for the commutators
C( j)

a ( j = 0, 1, 2, 3) that correspond to the entries of Ma . Recalling Lemma 5.1, we finish
the proof of Theorem 2.2. �

5.2. Proof of Lemma 2.5(i)

Set v = usc in D and vh = v|�h . It follows from (2.12) that

v(x) = F−1
ξ→x1

N0(ξ, x2)Fx1→ξ vh =: N0 vh, (x1, x2) ∈ Uh,

N0(ξ, x2) := exp(iγp(ξ)(x2 − h))Mp(ξ)+ exp(iγs(ξ)(x2 − h))Ms(ξ) ,

with the matrixes Mp(ξ),Ms(ξ) ∈ C
2×2 given in (2.13). Introduce the differential operator

T̃ v :=
(
μ∂2 μ∂1
λ∂1 (λ+ 2μ)∂2

)(
v1
v2

)
,

which coincides with the stress operator T = Tμ,λ on �b for any b > h. Then, for some
constant C(ω, λ, μ) > 1, there holds the inequality

C(|∂1v|2 + |T̃ v|2) ≥ C |∂1v|2 + |T̃ v|2 ≥ 1

2

(|∂1v|2 + |∂2v|2
)

(5.9)

on D. The differential operators ∂1 and T̃ acting on v can be expressed as:

∂1v(x1, x2) = F−1[iξ N0(ξ, x2)]F vh =: N1vh,

T̃ v(x1, x2) = F−1[M(ξ) N0(ξ, x2)]F vh =: N2vh . (5.10)

Now assume that vh ∈ C∞
0 (�h). We have to prove the estimate

||v||H1

 (Uh\U H )

2 ≤ C(
, H, h) ||vh ||
H1/2

 (�h)

2 , |
| < 1, H > h.

Employing the equivalent norm (2.10) and recalling (5.9), we only need to verify that∫ H

h

∫
R

(
1 + x2

1

)
 (|N0vh |2+|N1vh |2+|N2vh |2)dx1dx2 ≤ C ||
(

1 + x2
1

)
/2
vh ||2H1/2(�h)

2 .

(5.11)
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In the following lemma, we will first prove (5.11) in the case 
 = 0 and then reduce the
proof in the weighted case to norm estimates for the operator N0 only.

Lemma 5.4

(i) If vh ∈ H1/2(�h)
2, then v ∈ H1(Uh\U H )

2 for every H > h.
(ii) In the general case |
| < 1, the assertion of Lemma 2.5(i) holds if the following

operators

N0 : L2

(R

2)2 → L2

(R

2)2,

N0 −
(

1 + x2
1

)
/2
N0

(
1 + x2

1

)−
/2 : L2(R2)2 → H1(R2)2 (5.12)

are uniformly bounded in x2 ∈ (h, H).

Proof (i) By the Plancherel identity we get∫ H

h

∫
R

(|N0vh |2 + |N1vh |2 + |N2vh |2)dx1dx2

≤
∫ H

h

∫
R

(||N0(ξ, x2)||2 + ||iξN0(ξ, x2)||2 + ||M(ξ)N0(ξ, x2)||2
)|v̂h(ξ)|2dξdx2

≤ C
∫

R

(
1 + ξ2

)
|v̂h(ξ)|2

∫ H

h
||N0(ξ, x2)||2dx2dξ. (5.13)

Below we shall prove that∫ H

h
||N0(ξ, x2)||2dx2 ≤ C

(
1 + ξ2

)−1/2
, ∀ ξ ∈ R. (5.14)

The relation Mp + Ms = I allows us to rewrite N0 as

N0(ξ, x2) = (
exp(iγp(ξ)(x2 − h))− exp(iγs(ξ)(x2 − h))

)
Mp(ξ)+ exp(iγs(ξ)(x2 − h))I.

(5.15)
Applying the mean value theorem to the function t → exp(t (x2 − h)) yields the identity

eiγp(ξ)(x2−h) − eiγs (ξ)(x2−h) = et (ξ)(x2−h)(x2 − h) |γp(ξ)− γs(ξ)|,
where the values of t (ξ) lie between iγp(ξ) and iγs(ξ) for large |ξ |. Hence, by (5.15) and
the definition of Mp,

∫ H

h
||N0(ξ, x2)||2dx2

≤ C

(
|γp(ξ)− γs(ξ)|2 ξ2

∫ H−h

0
|et (ξ)x2 x2|2dx2 +

∫ H−h

0
|eiγs (ξ)x2 |2dx2

)
.

Making use of the asymptotic behavior

|γp(ξ)|, |γs(ξ)| ∼
(

1 + ξ2
)1/2

, |γp(ξ)− γs(ξ)| ∼ 1/|ξ |, as |ξ | → ∞, (5.16)
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we obtain after some elementary calculations (see e.g. [17, Lemma 2.2])

|γp(ξ)− γs(ξ)|2 ξ2
∫ H−h

0
|et (ξ)x2 x2|2dx2 ≤ C

∫ H−h

0
|et (ξ)x2 x2|2dx2 ≤ C

(
1 + ξ2

)−1/2
,∫ H−h

0
|eiγs (ξ)x2 |2dx2 ≤ C

(
1 + ξ2

)−1/2
,

from which the inequality (5.14) follows. Insertion of (5.14) into (5.13) yields (5.11) for

 = 0. This proves the first assertion.

(ii) We shall prove the second assertion following the lines in the proof of Lemma 3.4(i)
and Lemma 3.3(ii) of [25]. Denote by A one of the operators ∂1 and T̃ . Then, there holds
the identity

AN0 −
(

1 + x2
1

)
/2
AN0

(
1 + x2

1

)−
/2 = A
(

N0 −
(

1 + x2
1

)
/2
N0

(
1 + x2

1

)−
/2)

+
(

A −
(

1 + x2
1

)
/2
A
(

1 + x2
1

)−
/2)(
1 + x2

1

)
/2
N0

(
1 + x2

1

)−
/2
. (5.17)

Since the two operators in (5.12) are uniformly bounded and the operators

A : H1(R)2 → L2(R)2, A −
(

1 + x2
1

)
/2
A
(

1 + x2
1

)−
/2 : L2(R)2 → L2(R)2

are also bounded, we derive from (5.17) and (5.10) that the commutators

N j −
(

1 + x2
1

)
/2
N j

(
1 + x2

1

)−
/2
, j = 0, 1, 2 ,

are uniformly bounded on L2(R)2 with respect to x2 ∈ (h, H). Further, this implies that

C j = C j (x2) :=
(

1 + x2
1

)−
/2
N j−N j

(
1 + x2

1

)−
/2
, : L2(R)2 → L2


(R)
2, j = 0, 1, 2 ,

(5.18)
are uniformly bounded in x2. By the continuous imbedding of H 1/2(R)2 into L2(R)2, we
see the boundedness of C j : H1/2(R)2 → L2


(Uh\U H )
2. On the other hand, the operators

(
1 + x2

1

)−
/2
N j : H1/2(R)2 → L2


(Uh\U H )
2, j = 0, 1, 2, (5.19)

are also bounded, because by assertion (i) the operators N j : H1/2(R)2 → L2(Uh\U H )
2

are bounded. Now combining (5.18) and (5.19), we can conclude the boundedness of

N j

(
1 + x2

1

)−
/2 : H1/2(R)2 → L2

(Uh\U H )

2, j = 0, 1, 2,

which implies the estimate (5.11). �

Remark 5.5 In [25] the uniform boundedness of the operators in (5.12) with

N0 = F−1 exp

(
i
√

k2 − ξ2(x2 − h)

)
F

(see Lemma (5.3)(ii)) plays an essential role in proving Lemma 2.5(i) for the Helmholtz
equation.
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We proceed with the proof of Lemma 2.5(i). By Lemma 5.4(ii), it suffices to estimate
the norm of the operators in (5.12). For this purpose, we shall adopt the same approach as
in the proof of Theorem 2.2 by using the second assertion of Lemma 5.2 and the result of
Lemma 5.3(ii) for non-smooth symbols.

Motivated by the proof of Theorem 2.2, we introduce the auxiliary symbol

W (ξ, x2) = [exp(iγp(ξ)(x2 − h))�+
p + exp(iγs(ξ)(x2 − h))�+

s ]χ(ξ)
+ [exp(iγp(ξ)(x2 − h))�−

p + exp(iγs(ξ)(x2 − h))�−
s ] (1 − χ(ξ)),

where χ(ξ) ∈ C∞(R) satisfies χ = 1 for ξ > kp/3 and χ = 0 for ξ < −kp/3. We shall
select the entries of�±

p ,�
±
s ∈ C

2×2 so that Q := N0 − W is a continuously differentiable
matrix in ξ ∈ R.

Elementary calculations show

∂W

∂ξ
= i(x2 − h)[exp(iγp(ξ)(x2 − h))�±

p γ
′
p(ξ)+ exp(iγs(ξ)(x2 − h))�±

s γ
′
s (ξ)] := J1(ξ)

(5.20)
for ξ ≷ ±kp/3, and ∂N0/∂ξ = J0(ξ)+ J2(ξ) where

J0(ξ) := i(x2 − h)[exp(iγp(ξ)(x2 − h))Mp(ξ)γ
′
p(ξ)+ exp(iγs(ξ)(x2 − h))Ms(ξ)γ

′
s (ξ)],

J2(ξ) := exp(iγp(ξ)(x2 − h))M ′
p(ξ)+ exp(iγs(ξ)(x2 − h))M ′

s(ξ). (5.21)

Comparing (5.20) and (5.21) and using elementary calculations, we obtain the desired
expressions for �±

p ,�
±
s depending on x2, kp and ks :

�±
p (x2) =

(
1 ±k−1

p

√
k2

s − k2
p

0 0

)
+ 1 − e

i
√

k2
s −k2

p(x2−h)

i(x2 − h) k2
p

⎛
⎝−

√
k2

s − k2
p ∓k−1

p (k2
s − k2

p)

±kp

√
k2

s − k2
p

⎞
⎠ ,

�±
s (x2) =

(
0 0

∓k−1
s

√
k2

p − k2
s 1

)
+ 1 − e

i
√

k2
p−k2

s (x2−h)

i(x2 − h) k2
s

⎛
⎝

√
k2

p − k2
s ∓ks

±k−1
s (k2

p − k2
s ) −

√
k2

p − k2
s

⎞
⎠ .

Since the matrices�±
p (x2),�

±
s (x2) are uniformly bounded in x2 ∈ [h, H ], applying Lemma

5.3(ii) to W yields the uniform boundedness of the operators

W := F−1 W F : L2

(R

2)2 → L2

(R

2)2 ,

W −
(

1 + x2
1

)
/2
W

(
1 + x2

1

)−
/2 : L2(R2)2 → H1(R2)2 .

Now it is sufficient to prove the uniform boundedness of the operators in (5.12) with
the C1-smooth matrix Q in place of N0. In the following, we shall apply Lemma 5.2(iii)
and check the validity of the inequalities in (5.5) with m1 replaced by each entry of Q for
large |ξ |. Since Q = N0 − W and ∂Q/∂ξ = J0 + J1 + J2, it is enough to show that there
exist a positive number K > 0 and some constant C(
, N , H − h) > 0 such that

||N0||+ ||W || ≤ C, ||Jn|| ≤ C(1+ξ2)1/2, |ξ | > K , j = 0, 1, n = 0, 1, 2. (5.22)
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We first prove (5.22) for J0. Observing that γ ′
p(ξ) = ξ/γp(ξ), γ

′
s (ξ) = ξ/γs(ξ) and

Mp(ξ)+ Ms(ξ) = I , we represent J0 as J0 = J (1)0 + J (2)0 with

J (1)0 (ξ) := i(x2 − h) ξ
{

ei(x2−h)γp(ξ)/γp(ξ)− ei(x2−h)γs (ξ)/γs(ξ)
}

Mp(ξ),

J (2)0 (ξ) := i(x2 − h)
(
ξ/γs(ξ)

)
ei(x2−h)γs (ξ) I.

The matrix function J (2)0 can be bounded as

||J (2)0 || ≤ ||i(x2 − h)γs(ξ)e
i(x2−h)γs (ξ)|| |ξ/γ 2

s (ξ)| ≤ C (1 + ξ2)−1/2, (5.23)

where C > 0 is independent of x2 ∈ (h, H). Applying the mean value theorem to the
function t → exp((x2 − h)t)/t gives the relation

ei(x2−h)γp(ξ)/γp(ξ)− ei(x2−h)γs (ξ)/γs(ξ)

= 1

(x2 − h)
e(x2−h)t (ξ) [−(x2 − h)t (ξ)+ ((x2 − h)t (ξ))2] |γp(ξ)− γs(ξ)|

t3(ξ)
, (5.24)

where again the values of t (ξ) lie between iγp(ξ) and iγs(ξ) for large ξ . Inserting (5.24) into
the expression for J (1)0 and applying the asymptotic behavior (5.16), we obtain ||J (1)0 || ≤
C(1 + ξ2)−1/2. This together with (5.23) proves the inequality in (5.22) for J0.

The other estimates in (5.22) for Jn (n = 1, 2) can be obtained in the same manner
as for J0. The boundedness of W in (5.22) follows straightforwardly from the uniform
boundedness of �±

p (x2),�
±
s (x2), exp(iγp(ξ)(x2 − h)) and exp(iγs(ξ)(x2 − h)) in x2 ∈

(h, H), whereas the estimate for N0 can be verified by first using the relation Mp + Ms = I
and then again applying the mean value theorem to the resulting expression. The proof of
Lemma 2.5(i) is thus complete. �
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