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Abstract
This paper is concerned with the inverse problem of detecting a boundary
corrosion coefficient which describes some corrosion index from a single
pair of Cauchy data measured on an accessible boundary of an electrostatic
conductor in two dimensions. The corroded portion is supposed to be either a
line segment or a part of some circle, while the corrosion coefficient is
restricted to be an analytic or a piecewise constant function. We prove two
Hölder stability estimates in recovering the unknown boundary coefficient.
Our arguments rely on the Schwarz reflection principle with the Robin
boundary condition and a novel interior estimate derived from the elliptic
Carleman estimate.

Keywords: inverse problem, corrosion detection, Robin boundary condition,
reflection principle, Hölder stability, elliptic Carleman estimate

1. Introduction

This paper is concerned with an inverse problem in the non-destructive testing of the
corrosion contaminating an inaccessible boundary of an electrostatic conductor (see e.g.
[20] and [22]). Let 2W Ì be a bounded connected domain with the piecewise smooth
boundary ,¶W which represents the region occupied by the conductor. Assume that

È Èg g¶W = G ¢ and Èg g¢ is C2-smooth, where Γ and γ are two open, non-empty,
disjoint open subsets of ¶W and .⧹( )Èg g¢ = ¶W G ¹ Æ We assume that Ω is a curvilinear
corner domain with two corner points between Γ and g¢ (see section 2 for the precise
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definition). The boundary G is supposed to be the inaccessible part of the conductor which is
now affected by corrosion, whereas Èg g¢ is the portion of ¶W that can be reached. In this
paper, we consider the two-dimensional corrosion model with a linearized Robin boundary
condition on G (see [20]):

u
u q u

u g

u

0 in ,
0 on ,

on ,

0 on .

1( )

⎧
⎨
⎪⎪

⎩
⎪⎪

g
g

D = W
¶ + = G
=
= ¢

n

In (1), u denotes the electrostatic potential of the conductor, g is the boundary voltage and the
normal derivative u¶n represents the current flux. The unit normal ν on ¶W is supposed to
point outside. The Robin boundary condition arises from, for example, the asymptotic
analysis performed in [8] when corrosion of a thin coating with rapid oscillations tends to
roughen a surface. It could also be derived by linearizing the more accurate nonlinear
boundary condition for the voltage and current on the corroded surface. The non-negative
Robin coefficient q represents the reciprocal of the surface impedance, and will be referred to
as the corrosion coefficient characterizing the damage on .G We refer to [27, 31] for other
mathematical models in corrosion detection and to [2, 3] for stability estimates of a nonlinear
boundary term on .G

In the present study, the geometry of the corrosion boundary G is assumed to be known
in advance, but knowledge of the index coefficient q, which gives essential information on
the corrosion on ,G is unknown. The corrosion detection problem then consists of the
determination of q from the Cauchy data u u, .( )¶n g

The uniqueness in recovering a con-
tinuous non-negative Robin coefficient simply follows from the uniqueness of the Cauchy
problem for the Laplace equation in Ω (see [20, lemma 3.1]). For non-negative bounded
Robin coefficients, it was recently verified in [5] that a single Cauchy-pair

u u H L, 1 2 2( ) ( ) ( )g g¶ Î ´
g n g

uniquely determines q L ( )Î G¥ in two dimensions, which

however does not hold in higher dimensions. In general, a single measurement is not
sufficient to determine simultaneously the shape G and the coefficient q ([9]). In [4], two
Cauchy data pairs are proven sufficient to recover G and q, if the two voltages (or current
densities) are linearly independent and one of them is positive on .⧹¶W G It is worth
mentioning that such a result also applies to the Cauchy data taken on an arbitrary sub-
boundary γ of ,⧹¶W G as considered in this paper.

This paper is concerned with stability estimates of q from single Cauchy data taken on a
sub-boundary of the accessible part. Our approach is closest to the idea of [23] for the stability
estimate of an analytic surface impedance in inverse scattering. The arguments in [23] rely
heavily on the analytic extension of the wave fields into an ò-neighborhood ( 0 > ) of the
scattering interface. This was achieved by applying the extension theorem of [26, theorem
5.7.1], which essentially requires suitable upper bounds of the derivatives of the impedance
function. In our studies, there are no a priori assumptions on the derivatives of q. The price
we should pay is an extra condition on the geometrical shape of Γ: the corroded portion is
assumed to be either a (finite) line segment or a portion of some circle. Under such an
assumption, we derive a Hölder stability estimate of the L2-norm of an analytic Robin
coefficient on any sub-interval of G for the Laplace equation. When G is flat, we consider
general linear elliptic equations of second order with constant coefficients and justify the same
kind estimate for a piecewise constant function over L .( )G¥ These stability estimates are
stronger than earlier logarithmic stability results established in [1], [12, section 3] and [10] in
more general situations and those from [12, section 4] and [14, section 3] where q C 0, 13 [ ]Î
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and Ω is a rectangular domain. Lipschitz stability estimates were obtained in [7] and [30] in
general Lipschitz domains with L¥ or piecewise constant impedance coefficients in the case
where unknowns are described by a fixed finite number of parameters. Other monotone and
local Lipschitz stability estimates were investigated in [11] and [14, section 2] under certain
assumptions of the input current flux.

Our arguments are relatively simple compared to the existing works, and differ dras-
tically from [13] detecting an unknown boundary coefficient in a hyperplane and the
approaches in [7] and [30] as well. The key ingredients in our analysis consist of the
Schwarz reflection principle under the Robin boundary condition on a flat or a circular
curve in 2 [6, 15] and a novel interior estimate derived from the elliptic Carleman estimate.
For piecewise constant Robin coefficients, it is not necessary to have a priori information
on the number of the (finite) partition of .G Although our results are restricted to the case of
a flat or circular boundary only, they may have practical applications, e.g. in detecting the
corrosion damage on the interior boundary of a pipe where the underlying conductor is a
spherical shell. With slight modifications, the inverse problem with an input current flux can
be treated analogously by means of the electrostatic measurement on the accessible
boundary.

The Schwarz reflection principle for harmonic functions has been well known since the
pioneering paper [28]. It provides a global harmonic extension formula across a portion of flat
and spherical surfaces in n subject to the Dirichlet or the Neumann boundary condition. In
contrast to the odd (even) reflection law corresponding to the Dirichlet (Neumann) boundary
condition, the reflection principle under the Robin boundary condition is no longer the point-
to-point type. We refer to [15] for the extension formulae for linear elliptic equations with
constant coefficients satisfying the Dirichlet, Neumann or Robin boundary condition with a
constant Robin coefficient on a flat surface in .n Recently a more general reflection principle
was established in [6] for harmonic functions subject to the Robin boundary condition with
analytic coefficients in .2 This extends the results of [15] to non-singular real-analytic curves
including circles.

We organize the paper as follows. In section 2, we present assumptions on the corrosion
coefficient q, the inaccessible boundary G and the input data g. Our stability estimates will be
stated and verified in sections 3 and 4 for analytic and piecewise constant Robin coefficients,
respectively. Section 3.1 is devoted to some preliminary lemmas including the Schwarz
reflection principle and a novel interior estimate for linear elliptic equations of second order.
A possible extension of our work to non-singular analytic curves will be discussed in

Figure 1. Configurations of Ω: È Èg g¶W = G ¢ with .g¢ ¹ Æ Left: case (i). Right:
case (ii) with a 2.p=
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section 5. For clarity, the proof of some preliminary lemmas from section 3.1 is postponed to
the appendix in section A.

2. Mathematical setting

Throughout the paper, we denote by B Pr
2( ) Ì the disk centered at the point P with radius

r 0,> i.e. x x P r: ,2{ }Î - < and we set B B O .r r ( )= The inaccessible boundary Γ is
supposed be either a line segment or a portion of some circle. Without loss of generality, we
assume one of the following two cases holds (see figure 1):

Case (i): x x a, 0 : 01 1{( ) }G = < < for some a 0> and x x: 0 ;2{ }ÇW < ¹ Æ
Case (ii): R acos , sin : 0{ ( ) }j j jG = < < for some R 0> and a 0, 2 ,( )pÎ and

x x a: .{ }ÇW < ¹ Æ

Throughout the paper we suppose that g¢ is not empty and has two disconnected com-
ponents. Denote by P1, P2

2Î the boundary points of Ω connecting g¢ and .G For
a0 2< < sufficiently small, introduce the subdomain W of Ω by

x x P j: , 1, 2 . 2j{ }≔ ( )W Î W - > =

It is supposed that g Ì ¶W (see figure 1). Note that these are technical assumptions for
studying the corner singularity of u around Pj. If g¢ has only one component or ,g¢ = Æ then
we need an extra assumption on the angle formed by G and ;⧹¶W G see remark 3.3.

The boundary Èg g¢ is supposed be C2-smooth, whereas the boundary around the
transition points Pj is to be piecewise smooth. More precisely, for P Pj= we assume there
exists a neighborhood V of P and a diffeomorphism V B: 1Y  ofC¥ such that (see e.g. [24,
chapter 1.3.7])

P I P O V r r P, , , : 1, 0 3( ) ( ) ( ) {( ) ( )} ( )Ç j j wY = Y = Y W = < < <

for some angle P 0, 2 .( ) ( )w pÎ The point P is called a curvilinear corner of Ω if P .( )w p¹
In particular, P( )w p= if ¶W is smooth at P. Note that the required regularity of ¶W excludes
the possible inner peaks at Pj.

In order to formulate problem (1), we need to introduce appropriate Sobolev spaces. For
s ,Î define

H u u H u: , Supps s{ }( ) ≔ ∣ ( )g gÎ ¶W Ìg

endowed with the norm

u Uinf .H
U H U u

H
,

s
s

s{ }∣∣ ∣∣ ≔ ∣∣ ∣∣( )
( ) ∣

( )g
Î ¶W =

¶W
g

It is well known that for g H ,1 2 ( )gÎ q 0> i.e. on Γ, there exists a unique solution
u X u H u: 0 on1≔ { ( ) }gÎ Î W = ¢ to the mixed boundary value problem (1). Throughout
the paper, we assume that the input data g are given from the admissible set

g H g M g M: 0 , 0 on for some 0,M H
3 2 3 2{ }≔ ( ) ∣∣ ∣∣ ( ) g gÎ < < >g

and that q is non-identically vanishing on G subject to the condition

q x N N0 , 0.( )  >

It is worth noting that we do not have the higher regularity u H2 ( )Î W for general
g H ,3 2 ( )gÎ because the solution may be ‘singular’ around the transition points between Γ
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and ,g¢ even if q and ¶W are both smooth. We refer to lemma 3.2 (see also [25, corollary 3.1]
or [32]) for descriptions of the singular part of the solution.

3. Estimate of analytic coefficients

In this subsection we consider the stability estimate of an analytic Robin coefficient defined
on line segments or circles.

Let the parameter a 0> be specified as in case (i) or (ii). For a0 2< < we define a
subdomain G of G as

x x a

R a

in case i : , 0 : ;

in case ii : cos , sin : . 4

1 1{ }( )( ) ≔
( ) ≔ { ( ) } ( )

 

 



 j j j

G < < -

G < < -

Since q is analytic and g ,MÎ it follows from the boundary and interior regularity estimates
for elliptic boundary value problems that

u C C C M Nfor some , , , 0, 5H 2∣∣ ∣∣ ( ) ( )( ) 

 = W >W

where W is defined by (2). Applying the trace lemma yields u H1 2( ) ( )g¶ În g
and

u H .3 2 ( ) Î GG The main result of this section is stated as follows.

Theorem 3.1. Assume qj are analytic functions on G and gj MÎ for j 1, 2= and some

M 0.> Denote by u Hj
1( )Î W the unique solution to (1) with g g .j= There holds the stability

estimate

q q C g g u u
L H L1 2 1 2 1 22 1 2( )( )( ) ( ) ( )

- - + ¶ -
g n g

k

G

for some C 0, 0, 1( )k> Î depending on N, M, ò and .¶W

In the theorem, the estimation of q q1 2- is limited to a proper subset G of Γ, in order to
apply an elliptic interior estimate but not to obtain the Hölder estimate.

Before carrying out the proof of theorem 3.1, we state some preliminary lemmas in the
subsequent subsection. From now on, unless otherwise stated we always use C to denote a
generic positive constant depending on the a priori data specified in theorem 3.1 which may
vary from line to line.

3.1. Preliminary lemmas

We first prove by using a compact argument that the solution to (1) has a uniform positive
lower bound on ,G if the data g belongs to the admissible set .M Then we state two reflection
principles under the Robin boundary condition and an interior estimate for elliptic equations,
which are the essential ingredients for proving theorems 3.1. In the following lemma, we
denote by 0, 2j ( )w pÎ the angle of the boundary ¶W at the transition point Pj between Γ and

.g¢ We have jw p= if ¶W is smooth at Pj, and jw p¹ if Pj is a curvilinear corner point.

Lemma 3.2. Let u Hg
1( )Î W be the unique solution to (1) for g ,MÎ and assume g Ì ¶W

(cf (2)). Choose m 2j  to be the minimal integer such that m 1 1 2j j( )p w- + is not an
integer, i.e. m m m mmin : 2, 1 1 2 .j j≔ { ( ) }  p wÎ - + Ï

(i) It holds that u Hg
s1 2 ( )Î GG

+ for some s 0,> and ug is continuous on .G
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(ii) We have u Hg ( )Î Ws where

if max m m

is any number less than if max m m

2 , 2, min , 3;
2 , 2, min , 2.

1 2 1 2

1 2 1 2

{ } { }
{ } { }

s w w p
s w w p
= <

< =

If max , 2,1 2{ } w w p then σ is allowed to be any number less than
min 2 , 2 1 2.1 2{ ( ) ( )}p w p w + < In particular, u Hg

s1 ( )Î W+ for any s0 1 2 < when
.1 2w w p= =

(iii) We have

u u x0 on , min 0,g
x

g{ }( )


 h> G >
ÎG

for all g MÎ and some positive number 0.( )h >

Proof. (i) We only need to investigate the regularity of ug around Pj. Write
B P ,j j( ) Çg g¢ = ¢ where the number 0 > is defined in (4). Obviously, jg¢ ¹ Æ for

j 1, 2= due to the assumption ,g Ì ¶W and ug fulfills the homogeneous Dirichlet boundary
condition u H0g

m ( )g= Î ¢g¢ for any m 0.> In view of the geometrical assumption on the
transition points Pj, we first apply the local coordinate transformation y x( )= Y (see (3) for
the definition) and then employ the perturbation argument of [24, chapter 1.3.7] in a
neighborhood of the origin in the transformed domain. Consequently, it suffices to consider
the plane corner singularity for the Laplace equation with mixed Dirichlet and Robin
boundary conditions in the sector r r, : 1, 0 .j{( ) }q q w< < < Since such arguments are
standard, we omit the details for brevity.

Since the mapping Ψ is of C¥-smooth and q is analytic, the transformed Robin
coefficient q y q y1˜( ) ≔ ( ( ))Y- is still a non-negative C¥-smooth function. This enables us to
apply Grivardʼs regularity theorem (see [17] or [25, 32]) to a neighborhood of the origin.
Therefore, it holds that

u a v H V j, 1, 2, 6g
m

j k j k
m

j
0 1

, ,

j k j

j

,

( ) ( )å- Î =
l< < -

where Vj is a small neighborhood of Pj in Ω, the number mj is specified as in lemma 3.2,
aj k, Î and k 1 2j k j, ( )l p w= - for k 1, 2, .=  The singular functions vj k, are given by
the following rule:

v r
r

r r
,

cos if ,

ln cos sin if .
7j k

j k j k

j k j k j k
,

, ,

, , ,

j k

j k

,

, ( )
( )

( ) ( )
( ) ≔ ( )

⎧
⎨⎪
⎩⎪




q
l q l

l q q l q l

Ï

- Î

l

l

Here without fear of confusion, by the same notations r,( )q we denote the local polar
coordinates around Pj, j 1, 2.= Moreover, it can be derived from (7) that v H Vj k

s
j, ( )Î for

all s0 1.j k,l< < + Observing that m1j k j,l + < and 1 1 2 1j k j j, ,1 ( )l l p w+ + = +
for k 1, 2, ,=  we obtain

u H V s mfor all 0 min 2 1, . 8g
s

j j j j{ }( ) ( )≔ ( )s p wÎ < < +

Hence, by the trace lemma, u Hg
s1 2

1 2( )È Èg gÎ G ¢ ¢+ for all s0 min , 1.1 2{ }s s< < -
Applying the Sobolev embedding theorems yields u Cg

s0, ( )Î G for some s 0.> The first
assertion is thus proven.

(ii) If 2jw p< and m 3,j  it is seen from (8) that u H Vg
s

j
2 ( )Î + for some s 0.>

Combining this with the fact that g ,MÎ we see u H .2 ( )Î W If 2j w p or m 2j = for
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j 1, 2,= the regularity of u in Ω is dominated by that in Vj depending on the size of the angle
at Pj, as shown in the second assertion of the lemma.

(iii) Obviously, u P 0j( )  for j 1, 2,= since ug ¶W is continuous in a neighborhood of
Pj and u 0g  on .Èg g¢ We first prove that u 0g > on Γ for arbitrarily fixed g .MÎ
Assume on the contrary that u x 0g ( )*  for some x .* Î G If u x 0,g ( )* < then by u P 0j( ) 
for j 1, 2,= we see that x P P, ,1 2* ¹ and we can assume that u x umin .g g( )* = G Next if
u x 0,g ( )* = then u P 0j( )  for j 1, 2= implies u P u xg j g( ) ( )* and we can assume also
u x umin 0.g g( )* = =G Therefore in both cases, u x umin .g g( )* = G Recalling the minimum
principle for harmonic functions and again using the fact that u 0g  on ,Èg g¢ we see
u x u x xmin : ,g g( ) { ( ) }* = Î W that is, ug attains the global minimum at x* on .W Moreover, it
holds that u x u xg g( ) ( )*> for x .Î W Since x* is an interior point of Γ and Γ is smooth in a
neighborhood of x ,* by choosing a small subdomain Ux* Ì W such that Ux* È¶ Ì G W and

Ux*¶ is smooth, we can apply Hopfʼs lemma to obtain

u x x0, .g ( )⎡⎣ ⎤⎦* *¶ < Î Gn

However, the impedance boundary condition of ug leads to

u x q x u x 0.g g( ) ( ) ( )⎡⎣ ⎤⎦* * * ¶ = -n

This contradiction implies that u x 0g ( ) > for x Î G and thus u xmin 0x g 0{ ( )}


 h >ÎG for
some 0.0 0 ( )h h= > It remains to find a uniform lower bound for all g .MÎ Suppose on
the contrary that

u x ginf min : 0.
x

g M{ }( )
⎧⎨⎩

⎫⎬⎭


tÎ =
ÎG

Then we can find a sequence gj j M1{ } Ì=
¥ such that u xminx gj

{ ( )}


tÎG as j . ¥ By the

compact embedding of H3 2 ( )g into H ,1( )g there always exists a subsequence, which we still
denote by gj, such that g gj 0 in H1( )g for some g H .0

1( )gÎ It is seen from the proof of the
first assertion that

u H C j s, 0, 1, 2, , for some 0.g
s s1 2 0,

j ( )( )Î G Ì G = >+ 

Together with the trace lemma and the well-posedness of elliptic problems (1) and (20), we
get the convergence

u x u x C u u C g gsup 0
x

g g g g
H j H0j j s0 0 1 2 1

∣ ( ) ( )∣
( ) ( )

 - - - 
gÎG G+

as j . ¥ In particular,

u x u xmin lim min 0.
x

g
j x

gj0 { }{ }( ) ( )
 

t= =
ÎG ¥ ÎG

This contradicts the fact that u xmin 0x g 00
{ ( )} ˜ ( )


 h >ÎG which can be proved by repeating
the argument at the beginning of our proof. Lemma 3.2 is thus proven. ,

Remark 3.3. If ,g¢ = Æ then we have the boundary data u g H3 2 ( )g= Î
g

on the
accessible part around the point Pj in place of the homogeneous Dirichlet boundary value. In
this case, the positivity of ug over G can be verified by repeating the arguments in the proof of
lemma 3.2, provided the following assumption holds (see [17] or [25, corollary 3.1]):

j1 2 , 1, 2.j w p + Ï =

In this paper we do not consider the inverse problem in the case of .g¢ = Æ
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Below we present the Schwarz reflection principle for some elliptic equations subject to
the Robin boundary condition. First, we select a neighboring area S Ì W- of G so that the
reflection of S- with respect to G lies in .2⧹ W Let ò be given as in (4). In case (i), choose

M0 , 00 0 < < > to be such that

x x x a M x

x x x a x M

, : , 0 ,

, : , 0 .
9

1 2 0 1 0 0 2

1 2 0 1 0 2 0
2

{ }
{ }

≔ ( )
≔ ( ) ⧹

( )
⎪

⎪

⎧
⎨
⎩

 

  
S < < - - < < Ì W

S < < - < < Ì W

-

+

Clearly, the domain S+ is the mirror image of S- with respect to the x1-axis.
In case (ii), the parameters 0 and M0 are chosen to satisfy

r a R M r R

r a R r R M

cos , sin : , ,

cos , sin : , ,
10

0 0 0

0 0 0
2{ }

{ }≔ ( )

≔ ( ) ⧹
( )

⎪
⎪

⎧
⎨
⎩ *

 

  
j j j

j j j

S < < - - < < Ì W

S < < - < < + Ì W

-

+

with M R M .0
2

0≔* Then S+ is the inversion of S- with respect to a circle in the latter case.
When Ω is convex, we may take

M ℓ x ℓ x0, inf 0 : ,x0 0 { ( ) } Èn g g= = > - Î ¢ÎG

where x( )n is the unit normal direction at x Î ¶W pointing into .2⧹ W

Lemma 3.4. Let q be an analytic function on .G Then the solution u to (1) can be
analytically extended into the domain .S+ In particular, when q x q0( ) = is a constant, the
extension formula is given explicitly by

u x x u x x q u x t tcase i : , , 2 e , d ; 11
x

x t q
1 2 1 2 0

0
1

2
2 0( ) ( ) ( ) ( ) ( )( )ò= - +

-
- +

u r u r q
t r

t
u t t r R rcase ii : , , 2 , d , , 12

R

r q

0
2

0( )( ) ( ) ( ) ( ) ≔ ( )* *
*

òj j j= +
-

for x x x r, cos , sin .1 2( ) ( )j j= = Î S+

We refer to [6] for a proof performed for general non-singular real-analytic curves in 2
based on the idea of constructing reflected fundamental solutions (see [16]). The explicit
extension formulae can also be directly justified following the argument in section 6.2 of this
paper. Note that when q 0,0 = (11) and (12) reduce to the classical (even) reflection principle
for harmonic functions subject to the Neumann boundary condition. For the readers’ con-
venience, we will present a straightforward justification of (11) for the Helmholtz equation in
the appendix. Note that the extension formula (12), which is valid for the harmonic function
in the circular case, does not apply to the Helmholtz equation; see [19].

Our arguments in proving the stability mainly depend on an interior conditional estimate
for elliptic equations of second order with lateral Cauchy data. The proof is done by applying
a Carleman estimate (e.g. [18, 21]) for elliptic equations. For self-contained discussions, we
shall prove the Carleman estimate in the appendix. Our proof is more explicit than [18] and
[21] for general partial differential equations where the level sets are not given concretely.

We introduce some notation before stating the elliptic interior estimate. An essential
ingredient in the proof is the solution estimates in a level set x, ,( )l n dnL + defined below.
For x ,2Î 0l > and a unit vector ν (i.e. 1n = ), denote by x, ,( )l nL a paraboloidal
domain with the vertex located at x and the axis parallel to ν which is congruent to
x x .2 1

2l< - For 0,d > set
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x x x x x, , : , , ,
x x, ,

( ) ≔ { ( )} ⋃ { }
( )

l n dn dn l n dnL + - Î L = +
l nÎL

that is, the translation of x, ,( )l nL along the direction ν. The direction of the unit vector ν is
supposed to be chosen such that x x, , , ,( ) ( )l n dn l nL + Ì L for 0.d >

Let U 2Ì be a bounded connected domain. In this paper, the paraboloidal domain
x, ,( )l nL with x UÎ always means the connected component of x U, ,( ) Çl nL con-

taining x. Analogously, the notation x U, ,( ) Çl nL ¶ always means the intersection of the
boundary of this connected domain with U.¶ This rule also applies to the paraboloidal domain

x, , .( )l n dnL + Note that x U, ,( ) Çl nL may have several disconnected components if U
is not convex.

Lemma 3.5 (interior estimate). Let U 2Ì be a bounded connected domain with
the boundary U¶ of C2-smooth. Let y U,Î U y, ,0 ( )Çg l n= ¶ L and ℓ min=
t y t U t: , 0 .{ }n+ Î ¶ > For ℓ0 ,0d< < set y U, ,0 0≔ ( ( ) ) Çl n d nL L + (see figure 2).
Suppose that u H U2 ( )Î is a solution to the elliptic equation with variable coefficients

u a x
u

x x
b x

u

x
c x u U0in , 13

i j
ij

i j i
i

i, 1

2 2

1

2

≔ ( ) ( ) ( ) ( ) å å
¶

¶ ¶
+

¶
¶

+ =
= =

where a a C U b c L U, , .ij ji i
1( ) ( )= Î Î ¥ Then there exist constants C 0> and 0, 1 ,( )k Î

which depend on l a b, , , ,ij i0d l and c, such that

u u u C u u u .

14

H H L H L H U
1

1
0

1
0 2

0

1
0 2

0
1( ) ( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

( )

( ) ( ) ( ) ( ) ( ) ( ) + ¶ + + ¶g n g g n g

k
k

L
-

Here C and κ do not depend on .0g

The proof will be carried out in appendix 6.1, based on an elliptic Carleman estimate.
Lemma 3.5 yields a stability estimate for u provided that u H U1( ) is bounded which is called
a conditional stability estimate.

Remark. In the lemma, since 0l > can be chosen arbitrarily large, even if 0g is an
arbitrarily small sub-boundary, for any y UÎ we can construct a family of paraboloidal

Figure 2. Configurations of y U, ,0 0≔ ( ( ) ) Çl n d nL L + with y UÎ and
U y, , .0 ≔ ( )Çg l n¶ L
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domains in U containing y and 0g and repeat the argument in lemma 3.5 to prove the
uniqueness in the continuation by Cauchy data on an arbitrarily small sub-boundary ,0g which
is a classical result. More precisely, let 0g be a non-empty relatively open connected sub-
boundary of U.¶ If u 0 = in U and u u 0= ¶ =n on ,0g then u 0º in U.

3.2. Proof of theorem 3.1

Relying on lemmas 3.2–3.5, we are now ready to prove theorem 3.1.

Proof of theorem 3.1. Since q is an analytic function and 0, > we have u H .2 ( )Î G Set
w u u1 2= - in Ω. From the Robin boundary conditions

u q u j0 on , 1, 2,j j j¶ + = G =n

it follows that

w w q w q q u0 in , on . 151 2 1 2( ) ( )D = W ¶ + = - Gn

Let 0h > be the number specified in lemma 3.2, and let G Ì G be defined as in (4).
Applying lemma 3.2, we derive from the boundary condition for w in (15) that

q q q q u ds

w q w ds

N w w

N w w

max 1,

max 1, , 16

L

L L

L H

2
2 1

2
2 1

2
2

2

1
2

2 2 2

2 2 2

2

2 2

2 1

( )
( )

{ }
{ }

∣∣ ∣∣

∣∣ ∣∣ ( )

( )

( ) ( )

( ) ( )

 



 

 







ò

ò

h - -

= ¶ +

¶ +

¶ +

n

n

n

G G

G

G G

G G

where N is the a priori upper bound of qj.
We need to extend w from Ω to a neighborhood of .G Let the domains S be given by

(9) and (10), respectively, with some .0 < Then there holds the relation
.0  ÇG Ì G = S S+ - By lemma 3.4, uj ( j 1, 2= ) and w can be analytically extended

from Ω to .S+ Set 0≔ È ÈW W S G
~ + and choose a paraboloidal domain

Figure 3. The paraboloidal domains constructed in the proof of theorem 3.1.
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y y, , , with some , 0, , 1,2( ) ∣ ∣l n l n nL Ì W Î S > Î =
~ +

such that

y, , .0( )( ) Çl nG Ì L ¶ S Ì G+

Obviously, the choice of y, ,( )l nL is not unique, depending on the length of ,G the height of
S+ as well as the number ò. Since ,0 < we can always find a smooth domain U and choose
a , , 00 0 0( ) d d d= > such that (see figure 3)

y U y, , , , , . 170( ) ( )( ) ( ) ( )Ç Çl n l n d nL S Ì Ì W G Ì L + G
~+

Now, as done in lemma 3.5 we set

y U U y, , , , , .0 0 0( )≔ ( ) ≔ ( )Ç Çl n d n g l nL L + ¶ L Ì W

Applying lemma 3.5 to w in U, we arrive at

w

w w C w w w , 18

H

H L H L H U
1

1
0

1
0 2

0

1
0 2

0
1( ) ( )

∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ( )

( )

( ) ( ) ( ) ( ) ( ) + ¶ + + ¶g n g g n g

k
k

L

-

with some 0, 1 .( )k Î Since U ,Ì W
~

using the extension formula and applying the elliptic
interior estimate leads to

u C u C u C,j H U j H U j H2 2 1)( ) ( ( )
  ÇW W

from which the relation w CH U2 ( )  follows. Hence, it is seen from (18) that

w C w wH H L
1

0
1

0 2
0

0( )∣∣ ∣∣ ∣∣ ∣∣( ) ( ) ( ) + ¶g n g

k
L

for some 0, 1 .0 ( ]k Î Making use of the Sobolev interpolation inequality, we see

w C w w

C w w w

C w w

H H H

H L H U

H L

1 2 1 2

1 2

3 2
0 1

0
2

0

1
0 2

0
2

1
0 2

0

( )
( )

( ) ( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣

( )

( ) ( ) ( )

( ) ( )







+ ¶

+ ¶

g n g

k

g n g

k

L L L

with 2 0, 1 .0≔ ( )k k Î Since 0G Ì G (see (17)), we obtain from the trace lemma that

w w C w C w w .H L H H L
1 2 3 2

0
1

0 2
0

( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣( ) ( ) ( ) ( ) ( ) 
 + ¶ + ¶n g n g

k
G G L

Together with (16), this proves the estimate

q q C w w , 19
L H L2 1 2

1
0 2

0
( )∣∣ ∣∣ ( )( ) ( ) ( )

- + ¶g n g

k

G

where the constant C depends on M, N, ò and .¶W Note that 0g is a C2-smooth curve inside Ω.
To finish the proof, we need to estimate the left-hand side of (19) in terms of the given

Cauchy data on γ by modifying the previous arguments as follows. We can first take a
piecewise linear curve in Ω connecting a point y 0gÎ and an interior point of γ and construct
a family of paraboloidal domains in Ω with axes included in the linear curve. Then, we repeat
to apply lemma 3.5 in such a family. After a finite number of steps, we can obtain

w C w w .H H L
3 2

0
1 2( )∣∣ ∣∣ ∣∣ ∣∣( ) ( ) ( ) + ¶g g n g

k

This together with (19) finishes the proof of theorem 3.1. ,
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4. Estimate of piecewise constant coefficients

Throughout this section Γ is supposed to be the line segment specified in case (i) for some
a 0.> We consider a more general linear elliptic boundary value problem of second order
with constant coefficients

A
u

x x
B

u

x
c u

u q u
u g

u

0 in ,

0 on ,
on ,

0 on ,

20
i j

ij
i j i

i
i, 1

2 2

1

2

( )

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

å å

g
g

¶
¶ ¶

+
¶
¶

+ = W

¶ + = G
=
= ¢

n

= =

where A Aij ji= for i j, 1, 2= and c 0. In this case, we suppose that the corrosion
coefficient q x( ) is a piecewise constant function, belonging to the admissible class

q x
q x q j N

:
there exists a finite partition of such that

0 on and that mes , 1, 2,
21

j
N

j

j j j

1

0

0

( )≔ ( )
⋃

( )
( )

⎪ ⎪
⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭


d

G G

= > G G > =
d

=



for some 0.d > Here we note that N0 Î depends on q Î d and mes j( )G denotes the
Lebesgue measure of .jG For two different Robin coefficients qj Î d ( j 1, 2= ), we can
obtain a stability estimate of the L¥-norm of the difference q q1 2- for the elliptic
equation (20). In the following theorem, the number of partitions (i.e. N0) of Γ is assumed to
be unknown.

Theorem 4.1. Suppose that Γ is the line segment specified in case (i). Let gj MÎ and

qj Î d ( j 1, 2= ) for some M 0, 0.d> > Denote by u Hj
1( )Î W the unique solution to

(20) with g g .j= Then

q q C g g u u 22
L H L1 2 1 2 1 21 2( )( ) ( )( ) ( ) ( )- - + ¶ -

g n g

k

G¥

for some C 0, 0, 1( )k> Î depending only on M, N, δ, Aij, Bi, c and Ω.

Theorem 4.1 can be extended to the case where G is a non-singular real-analytic curve,
provided the configuration of Ω fulfills a certain geometrical condition; see section 5 for a
brief discussion. When G is circular, our proof carries over to the Laplace equation only by
employing the extension formula (12). In the following we state the reflection principle for the
linear elliptic equation of second order with constant coefficients.

Lemma 4.2. Let q q0= be a positive constant. Then the solution u to (20) can be
analytically extended into the domain .S+ Moreover, the extended solution still satisfies the
elliptic equation in (20).

Lemma 4.2 was first verified in [15] under the Dirichlet, Neumann or Robin boundary
conditions in n (n 2 ); see also section 6.2 in the appendix. For piecewise constant Robin
coefficients, we cannot extend the solution u fromS- to the wholeS+ as an analytic function.
Based on the extension formula described in lemma 4.2, we shall repeat the arguments in the
proof of theorem 3.1 on each sub-interval of .G Below we state the regularity of the solution
in Ω and the positive lower bound on .G
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Lemma 4.3. Let u Hg
1( )Î W be the unique solution to (20) for some g MÎ and q Q .Î d

Assume g Ì ¶W (cf (2)) for some a0 2.< < Then

i. ug is continuous on .G Further, u xmin 0
x

g{ ( )} ( )


 h >
ÎG

uniformly in g .MÎ

ii. u H ,g
s1 2 ( )Î GG

+ u Hg
s1 ( )Î W+ for some s 0.>

Proof. When q is a piecewise constant function, ug is piecewise C1,a-smooth on Γ and
u Cg

0, ( )Î Ga for some 0 1.a< < The proof was contained in the proof of [30, theorem
3.2]) or [29, lemma 3.3] for the Laplace equation, and carries over to the elliptic equation in
(20) without difficulties. Therefore, it holds that u qu Hs( ) ( ) ( )¶ = - Î Gn G G for some

s0 1 2,< < implying that u Hg
s1 ( )Î G+ for any fixed a 2 0.> > The regularity of ug in

a neighborhood of the end points of Γ and the uniformly positive low bound of ug G can be
verified in the same way as the proof of lemma 3.2. Hence, u Hg

s1 2 ( )Î GG
+ and

u Hg
s1 ( )Î W+ for some s 0.> ,

Proof of theorem 4.1. Denote by u Hj
s1 ( )Î W+ (s 0> ) the unique solution to (20) with

g g ,j M= Î q qj = Î d for some M, 0.d > Assume that

q x a a j N a a a

q x b b j N b b a

on , , 1, 2, , , 0, ,

on , , 1, 2, , , 0, ,

j j j j N

j j j j N

1
1

1 1 1 1

2
2

1 2 1 1

1

2)
( ) ≔ [ )

( ) ≔

( )

( ) ⎡⎣
l

m

= G = = =

= G = = =

+ +

+ +





for some N N, 0,1 2 > where j j
N1

1
1{ }( )G = and j j

N2
1

1{ }( )G = are two partitions of

x x a, 0 : 01 1{( ) } G = satisfying mes j
i( )( ) dG > for i 1, 2= and every j. Let 20 d<

and M 00 > be given in (9). Without loss of generality, we suppose that b a2 2 and set
I b,1 0 2( )= (otherwise we set I a,1 0 2( )= ). For clarity we divide our proof into three steps.

Step 1. Applying lemma 4.2 to uj with I ,1G = we can extend uj from Ω to the domain

x x x I x M, : , 0 .1 1 2 1 1 2 0{ }≔ ( )S Î < <+

Select a paraboloidal domain y I, , 1 1( ) È Èl nL Ì W S+ with y 1Î S+ and a 00d > such that

mes y b, , 2.0 2 0{ }{ } ( )( ) Çl n d nL + G > -

It is clear that w u u H I .1 2
2

1 1≔ ( )È È- Î W S+ Repeating the argument in the proof of
theorem 3.1 and making use of the fact that q x1 1( ) l= and q x2 1( ) m= on I1, we arrive at (cf
(19))

b
C w w

2
H L1 1

2 0
1 2( )∣∣ ∣∣ ( ) ( )

⎜ ⎟⎛
⎝

⎞
⎠

 l m-
-

+ ¶g n g

k

for some 0, 1 .( )k Î Since b2 d> and 2,0 d< we see

q x q x C w wmax . 23
x b

H L0
1 1 2 1 1 1

1 2

1 2( )( ) ( ) ∣∣ ∣∣ ( )( ) ( )
 

l m- = - + ¶g n g

k

Step 2. If b a ,3 2 then we set I b b, .2 2 3( )= Since q x1 1 1( ) l= and q x2 1 2( ) m= on I2, by
lemma 4.2 we can extend uj from Ω to

x x x I x M, : , 0 .2 1 2 1 2 2 0{ }≔ ( )S Î < <+
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By arguing analogously to step 1, we apply the interior estimate of lemma 3.5 to a family of
paraboloidal domains contained in I ,2 2È ÈW S+ leading to

q x q x C w wmax . 24
b x b

H L1 1 2 1
1 1 3

1 2( )( ) ( ) ∣∣ ∣∣ ( )( ) ( )
 

- + ¶g n g

k

Repeating this process, we can obtain an estimate analogous to (24) with b3 replaced by some
bj satisfying b b a b .j j3 2 1  < + To proceed with the proof, we define

I b a a b I a b b a, if 2, or , if 2.j j j j j j2 2 2 1 1 2( ) ( )d d= - > = - >+ +

This is possible due to the assumption b b .j j1 d- >+ In either of the two cases, we can obtain

an estimate of j1l m- bounded by the right-hand side of (24) following the proof of (23).
Consequently,

q x q x C w wmax . 25
a x a

H L1 1 2 1
1 1 2

1 2( )( ) ( ) ∣∣ ∣∣ ( )( ) ( )
 

- + ¶g n g

k

In the case that b a ,3 2> the equality (25) can be verified in the same manner.

Step 3. Considering the interval a a,2 3( ) and repeating the arguments in step 2 yield an
estimate of q x q x

L b b1 1 2 1 , j1 1( )( ) ( ) ⎡⎣ ⎤⎦- ¥
+

with some b aj 1 2>+ bounded by the right-hand side

of (25). After a finite number of steps, we can obtain the estimate (22). Theorem 4.1 is thus
proven. ,

5. Concluding remarks

In this paper we have derived two Hölder stability estimates in recovering an unknown Robin
coefficient from a single pair of Cauchy data taken on the accessible part of the boundary. We
assume a priori information that the inaccessible boundary G is flat or circular, which cor-
responds to special cases of real-analytic curves. Under such a condition, the solutions to the
Laplace or elliptic equation with constant coefficients can be analytically extended into a
neighboring (rectangular or annular) area of any sub-interval of G in 2⧹ W with a constant
thickness. This is due to the global extension formula for flat and circular boundaries subject
to the Robin boundary condition [6, 15]. If G is a non-singular real-analytic curve, then a local
extension is still possible only if the Robin coefficient is analytic; see [6]. However, the
extended area is determined by both the Schwarz function associated with G and the geo-
metrical shape of Ω. Theorems 3.1 and 4.1 can be generalized to non-singular analytic curves,
provided the thickness of the extended area keeps a positive lower bound from zero (this can
be guaranteed, e.g. by the a priori bound on the derivatives of the Robin coefficient [23]). To
extend our results to three dimensions, one only needs to analyze the regularity for the
Laplace equation with mixed Dirichlet–Robin boundary conditions in a polyhedral or smooth
domain, which is more challenging than the 2D case because of the co-existence of corner and
edge singularities. Note that the extension formulae and the Carleman estimate all remain
valid in higher dimensions.

Acknowledgments

This work was initiated when G Hu visited the Graduate School of Mathematical Sciences at
the University of Tokyo in December of 2013. He would like to acknowledge the hospitality

Inverse Problems 31 (2015) 115009 G Hu and M Yamamoto

14



of the university and the support from the German Research Foundation (DFG) under grant
no. HU 2111/1-2. The authors thank the anonymous reviewers for their valuable comments
and suggestions which helped to improve the manuscript of this article.

Appendix

6.1. Proof of lemma 3.5

To prove lemma 3.5 we need the following Carleman estimate for elliptic equations. Its proof
can be found in [18] or [21]. Recall from lemma 3.5 that U 2Ì is a bounded connected
domain with the C2-smooth boundary .¶W

Lemma A.1 (Carleman estimate). Let the elliptic operator  be given by (13). Define the
function

x e , 0,d x
00( ) ( )j l= >l

where d C U2 ( )Î satisfying d 0 ¹ on U . Suppose D UÌ is a domain with smooth
boundary such that D U.Ì Then there exist C 0,> s 00 > such that

s u s u x C u x Ce u u se d e d d

26

D

s

D

s Cs

D

2 3 2 2 2 2 2 2{ } { }∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )

ò ò ò + +  +j j

¶

for all s s0> and all u H D .2 ( )Î

Proof of lemma 3.5. Without loss of generality, by translation and rotation we can formulate
the paraboloidal domain in lemma 3.5 as

y x x x x ℓ ℓ, , , : , , 01 2 2 1
2{ }( ) ( )l n l lL = < - + >

with y ℓ0, 1 , 0,( ) ( )n = - = and we assume that the origin O is on 0g and U is located above

0g near O; see figure 2. In order to apply lemma A.1, we set

d x x x ℓ D x U d x, : , 0.2 1
2( ) { ( ) } l d d= - - + = Î >d

We note that D D2 1Ìd d if 1 2d d< and

D y U, , .( ( ) ) Çl n dn= L +d

We have Cauchy data on D U0 0 Çg = ¶ ¶ but no data on D U.0⧹¶ ¶ Thus we introduce a cut-
off function C 2( )c Î ¥ such that (see e.g. [21])

x
D

D D
0 1,

1 in ,

0 in ,
2 3

0 3

0

0

( )
⧹

⎧⎨⎩ c c =
d

d

where ℓ0 0d< < is specified in lemma 3.5. Set v u.c= Then v = 0 on D U0⧹¶ ¶ and

v a
x

u

x x

u

x x x
u b

x
u x U, . 27

i j
ij

i j j i i j i
i

i, 1

2 2

1

2

( )
⎧⎨⎩

⎫⎬⎭ å å
c c c c

=
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶

¶ ¶
+

¶
¶

Î
= =
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Applying the Carleman estimate (26) to v in D0 and taking s 00 > sufficiently large yield

s v s v x

C a
x

u

x x

u

x x x
u x

Ce v v s

e d

e d

d

28

D

s

D i j
ij

i j j i i j

s

Cs

2 3 2 2

, 1

2 2
2

2

2 2

0

0

0

{ }

{ }

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )
⎧⎨⎩

⎫⎬⎭

ò

ò

ò

å
c c c

 +

¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶

¶ ¶

+  +

j

j

g

=

for all s s .0> In the Carleman estimate, the weighted L2-norms of the lower order terms on
the right-hand side of (27) have been absorbed by the left-hand side of (28). More precisely,
the first integral on the right-hand side of (28) does not vanish only if x D D ,3 2 30 0⧹Î d d
because χ is constant in D2 30d and D D .0 30⧹ d Therefore, observing that

d x x x D

d x x x D D

, e for ,

2 3, e for ,
0

0
2 3

3 2 3

0 0
0

0 0
0 0

( ) ( )
( ) ( ) ⧹ 

d j

d j

> > Î

Î

l d
d

l d
d d

the first integral on the right-hand side is bounded by

Ce s u s u xd .s

D D

2 exp 2 3 2 3 20 0

0 3 2 0 3

{ }∣ ∣ ∣ ∣( )
⧹ò  +l d

d d

By the definition of χ and the fact that D D ,00 Ìd

s u s u x s v s v x

s v s v x

e d e d

e d .

29

D

s

D

s

D

s

2 3 2 2 2 3 2 2

2 3 2 2

0 0

0

{ } { }
{ }

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )



ò ò

ò

 + =  +

 +

j j

j

d d

Hence we derive from (28) and (29) that

e s u s u x

s u s u x

C e s u s u x Ce u u s

d

e d

d d

s

D

D

s

s

D D

Cs

2 exp 2 3 2

2 3 2 2

2 exp 2 3 2 3 2 2 2

0 0

0

0

0 0

0 3 2 0 3 0

{ }
{ }

{ } { }

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

( )

( )
⧹





ò

ò

ò ò

 +

 +

 + +  +

l d

j

l d

g

d

d

d d

for all s s ,0 which implies that

u Ce u Ce u u s s, ,
H D

sr
H U

Cs
H L

2 2 2 2 2
01

0

0 1 1
0

2
0( ) ( ) ( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣( ) ⎜ ⎟

⎛
⎝

⎞
⎠ + + ¶g n g

-
d

for some r0 exp exp 2 3 .0 0 0 0 0( ) ( )l d l d< < - Replacing C by Ce ,Cs0 we reach

u C e u Ce u u s, 0. 30
H D

sr
H U

Cs
H L

2 2 2 2 2
1

0

0 1 1
0

2
0( ) ( ) ( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ( )( ) ⎜ ⎟

⎛
⎝

⎞
⎠ + + ¶g n g

-
d

We consider two cases separately.
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Case (a) Let u u u .H U H L
2 2 2

1 1
0

2
0( ) ( )( ) > + ¶

g n g
Then we can choose s 0> such that

u u ue esr
H U

Cs
H L

2 2 2 2
0 1 1

0
2

0( ) ( )∣∣ ∣∣ ∣∣ ∣∣( ) ⎜ ⎟
⎛
⎝

⎞
⎠= + ¶g n g

-

which can make the right-hand side of (30) close to the minimum in s. That is, setting

s
C r

u

u u

1

2
log ,

H U

H L
0

2

2 2

1

1
0

2
0( ) ( )

∣∣ ∣∣

∣∣ ∣∣
( )=

+ + ¶g n g

we see from (30) that

u Ce u u

C u u u

C u u u

2

2

2

31

H D
Cs

H L

H U
C C r

H L

r C r

H U H L

2 2 2

2 2 2 2
2 2

2 1 2 2

1
0

1
0

2
0

1
0

1
0

2
0

0 0

1 1
0

2
0

( ) ( ) ( )

( ) ( )

( ) ( )

∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣ ∣∣ ∣∣
( )

( ) ( )
( )

( )
( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 + ¶

= + ¶

= + ¶

g n g

g n g

k
g n g

k

+
+

-

d

with r C r2 2 0, 1 .0 0( ) ( )k = + Î

Case (b). Let

u u u .H U H L
2 2 2

1 1
0

2
0( ) ( )∣∣ ∣∣ ∣∣ ∣∣( )  + ¶g n g

Then

u u u u . 32H D H U H L
1

0
1 1

0 2
0

( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ( )( ) ( ) ( )  + ¶g n gd

Combining (31) and (32), we finally obtain

u C u u u

u u

2

,

H D H U H L

H L

1
1

0
1 1

0 2
0

1
0 2

0

( )
( )

( )∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣

∣∣ ∣∣

( ) ( ) ( )

( ) ( )

 + ¶

+ + ¶

k
g n g

k

g n g

-
d

which proves lemma 3.5. ,

6.2. Proof of lemma 4.2

In this subsection, we first provide a direct proof of the extension formula (11) for the
Helmholtz equation subject to the Robin boundary condition, and then remark on how to
extend it to elliptic equations with constant coefficients. Let

x x x b x

x x x b x

x x x b x

, : 0 , 0 ,

, : 0 , 0 ,

, : 0 , 0 .

1 2 1 2

1 2 1 2

1 2 1 2

{ }
{ }
{ }

( )
( )
( )

S = < < <

S = < < >

G = < < =

-

+
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Lemma A.2. Assume q, 0 k Î and

u
u

x
q u on0 in , 0 .

2
0( )kD + = S

¶
¶

+ = G-

Define v u≔ in S- and

v x x u x x q u x t t, , 2 e , d in .
x

x t q
1 2 1 2 0

0
1

2
2 0( ) ≔ ( ) ( )( )ò- + S

-
- + +

Then v 0( )kD + = in .È ÈS G S+ -

Proof. Straightforward computations show that

v u
v

x

u

x
q u, 2 on ,

2 2
0=

¶
¶

= -
¶
¶

- G+ -
+ -

-

where the superscripts ( · ) denote the limits taken from above and below, respectively. This
implies that

v

x
q v

u

x
q u 0 on .

2
0

2
0

¶
¶

+ = -
¶
¶

- = G
+

+
-

-

Hence v v=+ - and v v¶ = ¶n n
+ - on .G To prove the lemma, we only need to verify that v

satisfies the Helmholtz equation in .S+ Since this is true for the function x u x x,1 2( ) - and
q0 is a constant, it is sufficient to check that U 0( )kD + = in ,S+ where

U x u x t t xe , d , .
x

x t q

0
1

2
2 0( ) ( )( )ò= Î S

-
- + +

By elementary calculations, we see

U x x q U x x q u x x u x x

U x x u x t t

u x t t

U x u x t t

, , , , ,

, e , d

e , d

e , d .

x
x t q

x
x t q

t

x
x t q

t

2
2

1 2 0
2

1 2 0 1 2 2 1 2

1
2

1 2
0

1
2

1

0

2
1

0

2
1

2
2 0

2
2 0

2
2 0

( )

( ) ( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

( )

( )

ò

ò

ò

k

k

¶ = + - + ¶ -

¶ = ¶

= - ¶ +

= - - ¶

-
- +

-
- +

-
- +

Integrating by parts twice and using the Robin boundary condition, we have

u x t t u x x q u x x q U x xe , d , , , .
x

x t q
t

0

2
1 2 1 2 0 1 2 0

2
1 2

2
2 0 ( ) ( ) ( ) ( )( )ò ¶ = ¶ - + - +

-
- +

Combining the previous three equations, we obtain U 0( )kD + = which completes the
proof. ,

Proof of lemma A.2. The linear elliptic equation with constant coefficients in (20) can
be reduced to the Helmholtz equation via an appropriate orthogonal transformation of
variables and a certain function substitution. Moreover, under such transformations the Robin
boundary condition with a constant coefficient is transformed into the same kind. Hence,
the first part of lemma A.2 is a consequence of lemma A.2 (see [15] for the details). Note
that the extended function in S+ still satisfies the original elliptic equation, since the
transformations involved are invertible. This together with lemma A.2 completes the proof
of lemma A.2. ,
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