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Abstract. The purpose of this paper is to numerically realize the inverse scattering
scheme proposed in [19] of reconstructing complex elastic objects by a single far-field
measurement. The unknown elastic scatterers might consist of both rigid bodies and
traction-free cavities with components of multiscale sizes presented simultaneously.
We conduct extensive numerical experiments to show the effectiveness and efficiency
of the imaging scheme proposed in [19]. Moreover, we develop a two-stage technique,
which can significantly speed up the reconstruction to yield a fast imaging scheme.

AMS subject classifications: 74J20, 74J25, 35Q74, 35R30

Key words: Inverse elastic scattering, complex scatterers, cavities and rigid elastic bodies, single-
shot method.

1 Introduction

This work concerns the numerical realization of an imaging scheme proposed in [19] for
reconstructing complex elastic scatterers embedded in a homogeneous isotropic back-
ground medium occupying R3. Let λ and µ be two constants such that µ>0 and 3λ+2µ>
0. λ and µ are the Lamé constants that constitute the parameterization of the back-
ground elastic material. Throughout, we assume that the density of the background
elastic medium is normalized to be 1. Let D⊂R3 be a bounded domain with a C2 bound-
ary ∂D and a connected complement R3\D. D denotes the inhomogeneous elastic body
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that we intend to recover by using elastic wave measurements made away from it. In
what follows, D is referred to as a scatterer. The detecting elastic field is taken to be the
time-harmonic plane wave of the form

uin (x)=uin
(

x;d,d⊥,α, β,ω
)
=αdeikp x·d+βd⊥eiks x·d, α, β∈C, (1.1)

where d ∈ S2 :=
{

x∈R3 : |x|=1
}

is the incident direction ; the vector d⊥ ∈ S2 satisfying

d⊥ ·d=0 denotes the polarization direction; and ks :=ω/
√

µ, kp :=ω/
√

λ+2µ denote the

shear and compressional wave numbers, respectively. Let usc(x)∈C3, x∈R3\D denote
the perturbed/scattered elastic displacement field caused by the elastic scatterer and u :=
uin+usc denote the total field. The propagation of the elastic field is governed by the
following reduced Navier equation (or Lamé system)

(△∗+ω2)u=0 in R
3\D, △∗ :=µ△+(λ+µ)grad div. (1.2)

In order to complete the description of the direct elastic scattering problem, we next pre-
scribe the physically meaningful boundary conditions satisfied by the elastic field on ∂D
and at the infinity.

Define the infinitesimal strain tensor by

ǫ(u) :=
1

2

(
∇u+∇uT

)
∈C

3×3, (1.3)

where ∇u and ∇uT stand for the Jacobian matrix of u and its adjoint, respectively. By
Hooke’s law the Cauchy stress tensor relates to the strain tensor via the identity

σ(u)=λ(divu)I+2µǫ(u)∈C
3×3, (1.4)

where I denotes the 3×3 identity matrix. The surface traction (or the stress operator) on
∂D is defined as

Tu=Tνu :=ν·σ(u)=(2µν·grad+λνdiv+µν×curl)u, (1.5)

where ν denotes the unit normal vector to ∂D pointing into R3\D. We also define Ru :=u
in the following. If D is a cavity, then one has the traction-free boundary condition Tu=
0 on ∂D; and if D is a rigid body, then one has Ru=0 on ∂D.

Decomposing the incident wave uin in (1.1), we denote by uin
p := deikp x·d the (normal-

ized) plane pressure wave, and uin
s :=d⊥eiks x·d the (normalized) plane shear wave. By Hodge

decomposition, the scattered field usc can be decomposed into

usc :=usc
p +usc

s , usc
p :=− 1

k2
p

grad divusc, usc
s :=

1

k2
s

curl curlusc,
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where the vector functions usc
p and usc

s are referred to as the pressure (P) and shear (S)
parts of usc, respectively, satisfying

(△+k2
p)u

sc
p =0, curlusc

p =0 in R
3\D,

(△+k2
s )u

sc
s =0, divusc

s =0 in R
3\D.

The scattered field usc satisfies the Kupradze’s radiation condition in the sense that

lim
r→∞

(
∂usc

p

∂r
−ikpusc

p

)
=0, lim

r→∞

(
∂usc

s

∂r
−iksusc

s

)
=0, r= |x|, (1.6)

uniformly in all directions x̂= x/|x|∈S2.
The direct scattering system described above is well understood (see e.g., [23]). Cor-

responding to usc
p and usc

s , the radiation conditions in (1.6) lead to the far-field patterns
u∞

p and u∞
s , which can be read off from the following asymptotics

usc(x)=
exp(ikp |x|)

4π(λ+µ)|x|u
∞
p (x̂)+

exp(iks |x|)
4πµ|x| u∞

s (x̂)+O
(

1

|x|2

)
, |x|→∞. (1.7)

Based on u∞
p (x̂) and u∞

s (x̂), we define the full far-field pattern u∞ of usc as

u∞ (x̂) :=u∞
p (x̂)+u∞

s (x̂). (1.8)

In [19] we proposed several imaging schemes to reconstruct a cavity or a rigid elastic
body by knowledge of u∞

p (x̂), u∞
s (x̂) or u∞(x̂), corresponding to a single incident plane

wave uin in (1.1) with fixed α,β, d,d⊥ and kp,ks. The aim of this paper is to conduct ex-
tensive numerical experiments to show the effectiveness and efficiency of the developed
inversion schemes. In what follows, we shall write u∞

p (x̂,D), u∞
s (x̂,D) or u∞(x̂,D) to sig-

nify the dependence on the scatterer D. In the present study, the scatterer D could be
very general, which may consist of multiple components, and each component is either
rigid or traction-free. Moreover, there might be scatterer components of multiscale sizes
presented simultaneously.

The rest of the paper is organized as follows. In Sections 2 and 3, we briefly discuss the
schemes, respectively, of recovering multiple small and regular-size scatterers and then
present the corresponding numerical examples. Section 4 is devoted to the numerical
reconstruction of multiscale scatterers. In Section 5, we present the two-stage technique
which can yield a fast imaging scheme.

2 Reconstructing multiple small scatterers

In this section, we consider the reconstruction of multiple small scatterers. Throughout
the rest of the paper, we assume that ω∼1. That is, the wavelength of the elastic waves
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is given by 2π/ω ∼ 1 and hence the size of a scatterer can be expressed in terms of its
Euclidean diameter.

We first introduce the class of small scatterers for our study. Let ls ∈ N and Dj ⊂
R3, 1≤ j≤ ls be bounded simply-connected C2 domains containing the origin. For ρ∈R+,
we introduce a scaling operator

ΛρDj :=
{

ρx; x∈Dj

}
(2.1)

and set

Ω
(s)
j = zj+ΛρDj, zj ∈R

3, 1≤ j≤ ls, (2.2)

where each Ω
(s)
j is referred to as a scatterer component. The parameter ρj∈R+ represents

the relative size of the scatterer (or, more precisely, each of its components). Then a scat-

terer component Ω
(s)
j is said to be small if ρ≪ 1. For a collection of small scatterers, we

set

Ω(s) :=
ls⋃

j=1

Ω
(s)
j . (2.3)

Ω(s) is called a multiple small scatterer if ls > 1 and the following qualitative sparsity as-
sumption is satisfied

Ls :=dist(zi,zj)≫1 for i 6= j, 1≤ i, j≤ ls . (2.4)

In order to recover the multiple scatterers in Ω(s) in (2.3), the following three imaging
functionals are proposed in [19],

I1(z)=
1

∥∥∥u∞
p (x̂,Ω(s))

∥∥∥
2

L2

1

∑
n=0

n

∑
m=−n

3

∑
l=1

∣∣∣
〈

u∞
p (x̂,Ω(s)), (x̂⊗ x̂)Ym

n (x̂)ele
−ikp x̂·z

〉∣∣∣
2
, (2.5)

I2(z)=
1

∥∥u∞
s (x̂,Ω(s))

∥∥2

L2

1

∑
n=0

n

∑
m=−n

3

∑
l=1

∣∣∣
〈

u∞
s (x̂,Ω(s)), (x̂⊗ x̂)Ym

n (x̂)ele
−iks x̂·z

〉∣∣∣
2
, (2.6)

I3(z)=
1

∥∥u∞(x̂,Ω(s))
∥∥2

L2

1

∑
n=0

n

∑
m=−n

3

∑
l=1

| fn,m,l(z)|2 , (2.7)

where z∈R3 and

fn,m,l(z) :=
〈

u∞(x̂;Ω(s)),
[
(x̂⊗ x̂)e−ikp x̂·z+(I− x̂⊗ x̂)e−iks x̂·z

]
Ym

n (x̂)el

〉
.

Here and in what follows, the notation 〈·, ·〉 denotes the inner product in L2 := L2
(
S2
)3

with respect to the variable x̂∈S2, defined as 〈u,v〉 :=
∫

S2 u(x̂)·v(x̂)ds(x̂). In (2.5)-(2.7),

the constant vectors el, 1≤ l≤3 are the standard Euclidean base vectors in R3 and Ym
n (x̂),
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Algorithm 1 Locating multiple small scatterers Ω(s) in (2.3) with Im, m=1,2,3.

Step 1 For an unknown scatterer Ω(s) with multiple components in (2.3), collect u∞
p (m=1),

u∞
s (m=2), u∞(m=3) by sending a single detecting plane wave (1.1).

Step 2 Select a sampling region with a mesh Th containing Ω(s).

Step 3 For each sampling point z∈Th, calculate Im according to the measurement data.

Step 4 Locate all the local maximizers of Im(z) on Th, which represent locations of the
scatterer components of Ω(s).

n= 0,1,··· , m=−n,··· ,n, are the spherical harmonics (cf. [11]). The imaging functionals
Im(z), m= 1,2,3, possess a certain local maximum behavior which can be used to locate
the scatterer components of Ω(s), namely zj, 1 ≤ j ≤ ls. To be more specific, the values
of Im(z)(m= 1,2,3) would become larger when approaching each zj (1≤ j ≤ ls), and be
close to zero when z is far away from each zj (1 ≤ j ≤ ls). Here, we would like to note

that ks/kp =
√
(λ+2µ)/µ, and hence ks > kp if λ>0. Generically, one would have λ>0,

and therefore, one can expect that the imaging functionals I2 and I3 would produce better
reconstructions than the imaging functional I1. This is actually numerically confirmed in
our experiments. The scheme for locating the multiple small scatterers is formulated as
Algorithm 1.

We proceed to present a numerical example to illustrate the effectiveness of Algorithm
1. Throughout the rest of the paper, for the numerical examples, the synthetic far-field
data are obtained by computing the corresponding direct elastic scattering problem. To
be more specific, we solve the Lamé system (1.2) by the standard Finite Element Method
(FEM), where the unbounded computed region is truncated by the Perfect Matched Lay-
ers (PMLs). Furthermore, we have refined the mesh several times until a sufficiently ac-
curate solution is achieved. Then the P-part and S-part far-field could be directly derived
by implementing

u∞
p (x̂)=

k2
p

4πω2

∫

∂D
[Tν(y) x̂x̂Te−ikp x̂·y]Tu(y)− x̂x̂Te−ikp x̂·yTν(y)u(y), x̂∈Ω, (2.8)

and

u∞
s (x̂)=

k2
s

4πω2

∫

∂D
[Tν(y)[I− x̂x̂T]e−iks x̂·y]Tu(y)−[I− x̂x̂T]e−iks x̂·yTν(y)u(y), x̂∈Ω, (2.9)

respectively. Unless otherwise stated, we always collect the far-field pattern u∞(x̂i)(i=
1,··· ,590) on 590 Lebdev quadrature points, which is important in evaluating the integral
in the indicator functions. And to show the stability of the locating scheme, we have also
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added a 5% Gaussian noise on the obtained far-field data. That is,

u∞
τ,noise(x̂i)=u∞

τ (x̂i)+0.05ξmax
i

|u∞
τ (x̂i)|, τ= s, por∅, (2.10)

where ξ obeys a gaussian distribution with expectation 0 and variance 1.

Example 2.1. Let a multiple small scatterer consist of three different components, i.e.,

Ω(s)=∪3
j=1Ω

(s)
j , which is illustrated in Fig. 1. Here, Ω

(s)
1 is a rigid ball located at (−2,0,0),

whose radius is 0.01; Ω
(s)
2 is a traction-free ellipsoid located at (2,0,−1.5), the lengths of

whose semi-principal axes are 0.2, 0.2, 0.1, respectively; Ω
(s)
3 is a traction-free cube of side

length 0.2 located at (0,0,1). Moreover, we set λ=2 and µ=1. Impinge an incident wave
of the form (1.1) with ω=2π, d=(1,0,0), α=1 and β=0, then we collect the corresponding
far-field u∞(x̂) on the unit sphere S1.

From ks=ω/
√

µ, kp=ω/
√

λ+2µ we have ks=2π and kp=π. We present the slice y=0
of Im (m=1,2,3) in Fig. 2. It is clear that all of the three imaging functionals correctly locate

(a)

(a) (b) (c)

Figure 1: Loating multiple small satterers. (a) The true satterer with 3 omponents; (b) The true satterer

omponent 1 (a rigid ball); () The true satterer omponent 2 (a tration-free ellipsoid); (b) The true satterer

omponent 3 (a tration-free ube).
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(a) (b) (c)

Figure 2: Loating multiple small satterers. (a) The on�guration of I1(z); (b) The on�guration of I2(z); ()
The on�guration of I3(z).

the unknown scatterer components. In addition, the decay speed is faster in Fig. 2(b) and
(c) than that in Fig. 2(a), which verifies our expectation made earlier.

3 Reconstructing multiple extended scatterers

In this section, we consider locating multiple extended elastic scatterers with a single
incident plane wave. Reconstructing a general elastic scatterer with a single far-field
measurement is known to be a challenging issue, both theoretically and numerically. In
order to overcome the difficulties involved with the generality and complexity of the scat-
terers, the scheme mentioned in this work requires some a priori knowledge about the
target scatterers. That is, we assume that the shape of the unknown scatterer components
is confined by a base scatterer class. With this assumption, we try to find some information
on the scatterers, e.g., the location, size, and rotation degree.

Let us first describe the base scatterer class and the multiple extended scatterers. For
l′∈N+, let Σj ⊂R3(1≤ j≤ l′) be a bounded simply-connected C2 domain containing the
origin. Then we define

A :={Σj}l′
j=1, l′∈N. (3.1)

Here A is said to be a base scatterer class; each base scatterer Σj, 1≤ j≤ l′, could be either
rigid or traction-free. Moreover, throughout this study we would always assume that
diam(Σj)∼1.

Let le∈N denote the number of the unknown scatterer components. For j=1,2, ··· , le,
set rj ∈R+ such that

rj ∈ [R0, R1], 0<R0<R1<+∞, R0∼O(1),

and moreover, let (θj,φj,ψj)∈ [0,2π]2×[0,π], j = 1,2, ··· , le be le Euler angles. Define the
scaling operator Λr j

to be the same as the one given in (2.1). Denote by Rj :=R(θj,φj,ψj)∈
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SO(3) the 3D rotation matrix around the origin whose Euler angles are θj ∈ [0,2π], φj ∈
[0,2π] and ψj ∈ [0,2π]; and define RjΣ :={Rjx : x∈Σ,Σ∈A}. For zj ∈R3, we let

Ω(e)=
le∪

j=1
Ω

(e)
j , Ω

(e)
j := zj+RjΛr j

Σj, Σj∈A, (3.2)

where Ω(e) is said to be the multiple extended scatterers in the current study. Obviously,

Ω(e) is a collection of scatterer components Ω
(e)
j that obtained by scaling, rotating and

translating Σj with the parameters rj, (θj,φj,ψj) and zj, respectively. In the sequel, the
parameter zj, Euler angles (θj,φj,ψj), number rj and the reference scatterer Σj will be
respectively referred to as the position, orientation, size and shape of the scatterer compo-

nent Ω
(e)
j in Ω(e). To reduce the multiple sampling effect, we also impose the following

sparsity assumption on the extended scatterer,

Le= min
j 6=j′,1≤j,j′≤le

dist(Ω
(e)
j ,Ω

(e)
j′ )≫1. (3.3)

Next, we introduce the h-net (h ∈ R+, h ≪ 1) for the base scatterer class A. Let N1

be a suitably chosen finite index set such that {Rj}j∈N1
={R(θj,φj,ψj)}j∈N1

is an h-net of
SO(3). That is, for any rotation matrix R∈SO(3), there exists j∈N1 such that

∥∥Rj−R
∥∥≤

h. For a simply-connected domain Σh containing the origin, we define

RhΣ :={RjΣ}j∈N1
. (3.4)

In a similar manner, for Λr with r∈ [R0, R1], we let N2 be a suitably chosen finite index
set such that {rj}j∈N2

is an h-net of [R0, R1]. Define

ΛhΣ :={Λr j
Σ}j∈N2

. (3.5)

Then we augment the admissible reference space A to be

Ah=RhΛhA=
l′∪

j=1
{RhΛhΣj} :={Σ̃j}l′′

j=1, (3.6)

where l′′ denotes the cardinality of the discrete set Ah. Indeed, Ah can be taken as an

h-net of A in the sense that for any Σ∈A, there exists Σ̃∈Ah such that dH(Σ, Σ̃)≤Ch,
where dH denotes the Hausdorff distance and C is a positive constant depending only on
A. For the augmented admissible reference space Ah, two assumptions should be made:

(i) u∞
τ (x̂, Σ̃j) 6=u∞

τ for τ= s, por∅, and j 6= j′ , 1≤ j, j′≤ l′′.

(ii)
∥∥∥u∞

τ (x̂, Σ̃j)
∥∥∥

L2
≥
∥∥∥u∞

τ (x̂, Σ̃j′)
∥∥∥

L2
for τ= s, p,or∅, and j< j′, 1≤ j, j′≤ l′′.
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Assumption (i) states that one can uniquely determine an elastic scatterer by using a
single far-field pattern, which is a well-known conjecture in the inverse scattering theory.
Since Ah is known, assumption (i) can be verified in advance. Assumption (ii) gives the
recovered order of the scatterer components, which can be fulfilled by reordering the
elements in Ah if necessary.

For an incident plane wave of the form (1.1) with α = 1, β = 0 or α = 0, β = 1, we
introduce the following indicator functions,

W
j
1(z)=

∣∣∣
〈

u∞
p (x̂;Ω(m)), A

j
1(x̂;z)

〉∣∣∣

‖u∞
p (x̂,Ω

(e)
j )‖2

L2

, z∈R
3, (3.7)

W
j
2(z)=

∣∣∣
〈

u∞
s (x̂;Ω(m)), A

j
2(x̂;z)

〉∣∣∣

‖u∞
s (x̂,Ω

(e)
j )‖2

L2

, z∈R
3, (3.8)

W
j
1(z)=

∣∣∣
〈

u∞(x̂;Ω(m)), A
j
1(x̂;z)+A

j
2(x̂;z)

〉∣∣∣

‖u∞(x̂,Ω
(e)
j )‖2

L2

, z∈R
3, (3.9)

where for j=1,2, ··· , le,

A
j
1(x̂,z) := eikp(d−x̂)·zu∞

p (x̂;d,d⊥,α, 0,Ω
(e)
j )+ei(ksd−kp x̂)·zu∞

p (x̂;d,d⊥,0, β,Ω
(e)
j ),

and

A
j
2(x̂,z) := ei(kpd−ks x̂)·zu∞

s (x̂;d,d⊥,α, 0,Ω
(e)
j )+eiks(d−x̂)·zu∞

s (x̂;d,d⊥,0, β,Ω
(e)
j ).

In what follows, the indicator functions (3.7)-(3.9) shall be adopted to locate extended

scatterers. Since Σj ∈A is known in advance, W
j
m (m=1,2,3) could be understood as the

projection of the scattering measurement data into a space generated by the scattering
data from the admissible base scatterers. When the sampling point is at the location of
the targets, i.e., z= zj, the term involved zj would be eliminated in the implementation

of the indicators. Thus W
j
m (m=1,2,3) also possesses a local maximum behavior, similar

to (2.5)-(2.7). We formulate the scheme for reconstructing multiple extended scatterers in
Algorithm 2.

Next, we show the indicating properties of the indicator functions for multiple ex-
tended scatterers by a numerical example.

Example 3.1. Let the base scatterer class A consist of two base scatterers Σ1 and Σ2, where
Σ1 is a traction-free ball of radius 1, and Σ2 is a rigid 3D-kite, given in Fig. 3. The 2D-kite is
a typical shape in inverse scattering experiments, whose parameter function is as follows,

{
x=cos(t)+0.65cos(2t)−0.65,

y=1.5sin(t),
0≤ t≤2π.
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Algorithm 2 Locating multiple extended scatterers Ω(m) with Wm, m=1,2,3.

Step 1 For the admissible reference scatterer class A in (3.1), formulate the augmented
admissible Ah in (3.6);

Step 2 Collect in advance the P-part (m=1), S-part (m=2) or the full far-field data (m=3)
associated with the admissible reference scatterer class Ah corresponding to a single
incident plane wave of the form (1.1). Reorder Ah if necessary to make it satisfy
assumption (ii), and also verify the generic assumption (i);

Step 3 For an unknown scatterer Ω(e) in (3.2), collect the P-part, S-part or the full far-field
data by sending the same detecting plane wave;

Step 4 Select a sampling region with a mesh Th containing Ω(e);

Step 5 Set j=1;

Step 6 For each sampling point z∈Th, calculate W
j
m(z)(m= 1,2,3) according to available

far-field data for Ω(e);

Step 7 Locate all those significant local maximum points of W
j
m(z) satisfying W

j
m(z)≈ 1

for the scatterer components of the form z+Σ̃j. Let zη , η = 1, ··· ,η0 be the local
maximum points found this step;

Step 8 Remove all those z+Σ̃j found in Step 6 from the mesh Th;

Step 9 Update the far-field patterns according to the following formulae

u∞,new
p =u∞

p (x̂;d,d⊥,α, β,Ω(e))−u∞
p (x̂;d,d⊥,α, 0, Σ̃j)

η0

Σ
η=1

eikp(d−x̂)·zη

−u∞
p (x̂;d,d⊥, 0, β, Σ̃j)

η0

Σ
η=1

ei(ksd−kp x̂)·zη , (3.10)

u∞,new
s =u∞

s (x̂;d,d⊥,α, β,Ω(e))−u∞
s (x̂;d,d⊥,α, 0, Σ̃j)

η0

Σ
η=1

ei(kpd−ks x̂)·zη

−u∞
p (x̂;d,d⊥, 0, β, Σ̃j)

η0

Σ
η=1

eiks(d−x̂)·zη , (3.11)

u∞,new=u∞,new
p +u∞,new

s ; (3.12)

Step 10 If j=l′′, namely, the maximum number of the reference scatterers reaches, then stop
the reconstruction; otherwise set j= j+1, and go to Step 6.
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(a) (b)

Figure 3: Reonstruting multiple extended satterers: base satterer lass.

(a) (b) (c) (d)

Figure 4: Reonstruting multiple extended satterers: the augmented 3D-kite. (a) the rotation degree is 0;
(b) the rotation degree is 90; () the rotation degree is 180; (d) the rotation degree is 270.

Figure 5: Reonstruting multiple extended satterers: true satterer

The 3D-kite is generated by revolving the 2D-kite lying in the plane z=0 around x-axis.
For simplicity, the augmented data set is obtained by rotating the 3D-kite in the x-z plane
every 90 degrees, see, e.g., the four orientations in Fig. 4, and by scaling the ball by one
half, one and twice. For the located targets, we assume the multiple extended scatterers



1276 G. Hu et al. / Commun. Comput. Phys., 19 (2016), pp. 1265-1286

(a) (b)

(c) (d)

(e) (f) (g)

Figure 6: Reonstruting multiple extended satterers: slie y=0 of W2.

consist of two components. One of the components is a ball with radius 1 whose center
lies at (−3,0,−3); the other one is a 3D-kite with rotation 270 degree lying at (3,0,3). The
same as in Example 2.1, we set µ = 1 and λ = 2. Moreover, in this example, we let the
incident wave be of the form (1.1) with ω=2π, d=(1,0,0), α=1 and β=0, and collect the
needed far-field data on 590 Lebdev quadrature points for numerical integration.

We adopt W1 to locate the regular-size scatterer components. By the increasing mag-
nitude of the far field patterns, the Kite reference data is firstly employed for the locating
purpose. Fig. 6(a)-(d) show that the first unknown component is a 3D-kite with rotation
270 degree, and the position of the 3D-kite is highlighted. One could find that, some
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 7: Reonstruting multiple extended satterers: slie y=0 of W2.

ghosts highlight close to the position of the ball in Fig. 6(a)-(d), which is largely due to
the similarity between the far-field pattern of the two scatterer components. In the next
stage, by subtracting the contribution of the 3D-kite from the total far-field data, we con-
tinue our reconstruction work with the far-field associated with the reference 3D-kite and
its possible orientations. It is found in Fig. 6(e)-(g) that the most prominent indicating be-
havior identifies the size, shape and position of the ball. For comparison, Fig. 7 is also
displayed to show the indicating behavior of W2.
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4 Reconstructing multiple multiscale scatterers

The elastic scatterer with multiscale components is of the following form

Ω(m) :=Ω(s)∪Ω(e), (4.1)

where Ω(s) given in (2.3) and Ω(e) given in (3.2) represent, respectively, the collections
of small-size and regular-size scatterers. For Ω(m) introduced above, we assume that
dist(Ω(s)∪Ω(e))≫ 1, which is also a technique consideration on reducing multiple scat-
tering effect. Next, under the a priori knowledge that the base scatterer class A in (3.1) is
known in advance, we consider how to recover the multiple multiscale scatterer compo-
nents of Ω(m).

The whole reconstruction procedure is a two-step process. More specifically, we shall
adopt Algorithm 1 and Algorithm 2 to reconstruct the small and extended scatterer com-
ponents, respectively. However, reconstructing the small components is really difficult,
since the contribution of small scatterer components to the far-field patterns is too small
to extract. Therefore, a local tuning technique is also incorporated in the second step of
the multiscale reconstruction scheme. The exact definition of local tuning could be seen

in [20]. In what follows, Ω̂(e) is the reconstructed image of the extended scatterer Ω(e),

whereas
̂̂
Ω(e) is an adjustment of Ω̂(e) by locally adjusting the position, orientation and

size of each component of Ω̂(e). With these notations, we now formulate the scheme of
reconstructing multiple multiscale scatterers in Algorithm 3.

In the following, we verify the multiscale scheme by a numerical example.

Example 4.1. Let the true scatterer be composed of a small rigid ball and a regular-size
traction-free 3D-kite. The small ball is located at (−3,0,0) whose radius is 0.1, and the
3D-kite is located at (3,0,0) as shown in Fig. 8. We assume the augmented base scatterer
class is the same with the one in Example 3.1. Let µ=1, and λ=2, we detect the scatterer
by impinging the incident wave with α=1, β=0 and ω=2π. In the following, we only
present the results by using W2 since it possesses better decaying properties.

First, we extract the information of the regular-size component using the indicator
function W2(z) by computing the inner product with a priori known far-field data associ-
ated with those reference scatterer components with different orientations and sizes. We
plot in Fig. 9(a)-(d) the indicator function values of Wm(z) in one-to-one correspondence
with the four orientations of the reference 3D-kite as shown in Fig. 4. It can be observed
in Fig. 9(c) that the regular-size component in our locating target is the 3D-kite rotated
by 180 degrees. Then we build a local tuning mesh to reconstruct the small components
in the unknown multiscale scatterers. Fig. 9(g) shows that the small ball is located at
(−3,0,0); Meanwhile, from the results in Fig. 9(e)-(g), we could correct the position of
the 3D-kite to be (3,0,0).
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Algorithm 3 Scheme for locating multiple multiscale scatterers Ω(m)

Step 1 For an unknown scatterer Ω(m) with multiple components in (2.3), collect u∞
p , u∞

s

and u∞ by sending a single detecting plane wave (1.1);

Step 2 Select a sampling region with a mesh Th containing Ω(m);

Step 3 Apply Algorithm 2 to reconstruct approximately the extended scatterer Ω(e), de-

noted by Ω̂(e);

Step 4 For Ω̂(e) obtained above, select a local-tuning mesh L;

Step 5 For a tune-up
̂̂
Ω(e) relative to the local tuning mesh L calculate

ũ∞
τ (x̂) :=u∞

τ (x̂;Ω(m))−u∞
τ (x̂;,

̂̂
Ω(e)). (4.2)

Apply Algorithm 1 with ũ∞
τ (x̂) as the far-field data to locate the significant local

maximum points on Th\L;

Step 6 Repeat Step 5 by running through all the local tune-ups relative to L. Locate the
clustered local maximum points on Th\L, which correspond to the small scatterer
components;

Step 7 Update Ω̂(e) to the local tune-up
̂̂
Ω(e) which generates the clustered local maximum

points in Step 6.

5 Two-stage fast imaging of multiple multiscale scatterers

In this section, we consider to speed up the multiple multiscale imaging scheme. As can
be observed in the numerical results in last section, one could get several bright spots by
evaluating the indicator functions, which characterize the scatterer components. Since
the decay of the spots is very fast, the locations we get are accurate. However, to capture
the small spots, we have to take a rather fine grid, which brings us a huge computational
cost, though most of the cost is spent on sampling in the irrelevant region (The region that
is far away from all the scatterer components). Therefore, it is wise to trim most of the
irrelevant region before evaluating the indicator values on the fine grid. In the following,
we develop a two-stage strategy to realize this idea.

The coarse stage: coarse grid with u∞
p

It has been analyzed in [25] that, the average decay radius of Im or Wm around each center
of the components is in inverse proportion to the wave number. Supposing λ > 0 and
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Figure 8: Reonstruting multiple multisale satterers: true satterer.

recalling the fact that ks/kp =
√
(λ+2µ)/µ, we have ks >

√
2kp. Thus we could extract

u∞
p from u∞ and detect the unknown inclusions by evaluating I1 or W1. In light of the

slow decay compared to I1 or W1, the corresponding spots posses larger radius, which
enable us to take a coarse grid to capture the scatterer components.

The fine stage: fine grid with u∞
s

In the fine stage, in order to extract the accurate information of the unknown bodies, we
continue the reconstruction by using u∞

s . That is, we first choose an appropriate threshold
value. Comparing the values on the coarse mesh to the threshold value, we could further
trim some irrelevant region and thus approach the locations of the scatterer components
with I2 or W2.

We formulate the above two-stage multiscale sampling procedure in Algorithm 4.
In the sequel, we present a numerical example to verify the effectiveness of the scheme
proposed in Algorithm 4.

Example 5.1. The geometries considered in this example are composed of a 3D-kite and
a regular tetrahedron, which are shown as in Fig. 10. The 3D-kite is located at (0,3,3); the
tetrahedron is located at (0,−3,−3), and the side length of the tetrahedron is 0.1.
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Algorithm 4 Scheme for the Two-stage Multiscale Reconstructing

Step 1 Determine the parameters: H0, h0, c1, c2;

Step 2 For the admissible reference scatterer class A in (3.1), formulate the augmented admissible
Ah in (3.6); collect in advance the P-part (m = 1), S-part (m = 2) or the full far-field data
(m=3) associated with the admissible reference scatterer class Ah corresponding to a single
incident plane wave of the form (1.1). Reorder Ah if necessary to make it satisfy assumption
(ii), and also verify the generic assumption (i);

Step 3 For an unknown scatterer Ω(m) in (3.2), collect the P-part, S-part or the full far-field data by
sending the same detecting plane wave;

Step 4 Select a sampling region with a coarse mesh TH0
containing Ω(m);

Step 5 Set j=1;

Step 6 For each sampling point z ∈ TH0
, calculate W

j
1(z) according to available far-field data for

Ω(e);

Step 7 Locate all those significant local maximum points of W
j
1(z) satisfying W

j
1(z)≈ 1 for the

scatterer components of the form z+Σ̃j. Let z
H0
η , η=1, ··· ,η0 be the local maximum points

found in this step;

Step 8 For each zH0
η , find a cube Cube(η, c1) s.t., (i) zH0

η ∈ Cube(η), (ii) for those nodes zj(j =

1,2, ··· , ln) of the coarse mesh which are contained in Cube(η), W
j
1(zj)> c1, (iii) For another

cube ˜Cube(η) which satisfies (i) and (ii), we have Cube(η)⊂ ˜Cube(η);

Step 9 Refine
η0∪

η=1
Cube(η) to obtain a fine mesh T j

h0
;

Step 10 Adopt the indicator W
j
2 on T η

h0
to find zh0

η , η=1, ··· ,η0 as the way stated in Step 6-7;

Step 11 Update the far-field patterns according to the formulae (3.10)-(3.12);

Step 12 If j = l′, namely, the maximum number of the reference scatterers reaches, then stop the
reconstruction; otherwise set j= j+1, and go to Step 7.

Step 13 For Ω̂(e) obtained above, select a local-tuning mesh L;

Step 14 For a tune-up
̂̂
Ω(e) relative to the local tuning mesh L calculate(4.2); Apply Algorithm 1

with ũ∞
p (x̂) (Use I1(z)) to locate the significant local maximum points on TH0

\L;

Step 15 Repeat Step 14 by running through all the local tune-ups relative to L;

Step 16 Update Ω̂(e) to the local tune-up
̂̂
Ω(e), which generates the clustered local maximum points

in Step 15; Let z̃
H0
η (η = 1, ··· ,η1) denote the clustered local maximum points, build cube

Cube(η, c2) around each z̃
H0
η (η=1, ··· ,η1);

Step 17 Refine Cube(η, c2) and correct the position of the small scatterers by implementing Algo-

rithm 1 with ũ∞
s (x̂) (Use I2(z)) on the fine grid.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 9: Reonstruting multiple multisale satterers: reonstrution result.

First, we adopt the low-frequency information, that is, we use W1 to locate the ex-
tended component. In Fig. 11(a)-(b), we display the isosurface of W1=0.8 when the right
base far-field pattern (The far-field pattern of a 3D-kite with rotation 180 degrees) is cho-
sen. From the theoretical analysis and inversion algorithms mentioned above, we could
know that the center of the 3D-kite is surrounded in the isosurface. Then as stated in
Algorithm 4, we properly choose a cube (see in Fig. 11(c)) covering the isosurface. Refine
the cube (see in Fig. 11(d)) and continue the sampling process with W2, we could get the
values of the nodes on the fine grid. We display the isosurface W2 = 0.8 in Fig. 11(e),
from which a more accurate position information of the 3D-kite could be obtained. In
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(b) (c)

Figure 10: Reonstruting multisale satterers with the two-stage sampling: true satterer.

Fig. 11(g)-(h), we also display the slice x=0 of I1 and I2 when the contribution of the 3D-
kite is properly subtract from the corresponding far-field pattern. Observing the bright
spots in Fig. 11(g)-(h), we could find the necessity of two-stage sampling in the local
tuning process, since the size of the bright spot is much smaller in Fig. 11(h).
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