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ABSTRACT
We prove a conditional stability estimate of log-type for determining
unknownboundaries froma single Cauchy data taken on an accessible sub-
boundary. Our approach relies on new interior and boundary estimates for
elliptic equations which are derived from the Carleman estimate. Stability
results for target identification of an acoustic sound-soft scatterer from one
or several far-field patterns are also obtained.
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1. Introduction andmain results

1.1. Shape identification problems

Let � ⊂ R
n, n = 2, 3 be a bounded domain with smooth boundary ∂�. Consider the elliptic

differential operator

(Au)(x) := −
n∑

i,j=1
∂i(aij(x)∂ju) +

n∑
i=1

bi(x)∂iu + c(x)u, x ∈ �, (1)

where aij = aji ∈ C3(�), bi, c ∈ W2,∞(�). We assume

c ≥ 0 in �, (2)

and there exists a positive constant σ such that
n∑

i,j=1
aij(x)ξiξj ≥ σ

n∑
i=1

ξ 2i , ξ1, . . . , ξn ∈ R, x ∈ �. (3)

Let D ⊂ � be a star-shaped subdomain such that D ⊂ �. Throughout the paper, we define the com-
plement ofD in � asDc := �\D. It is supposed that the boundaries ∂D and ∂� are both of C4-class.
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Let u = u(D) be a solution to the Dirichlet boundary value problem

Au = 0 in Dc, u|∂D = 0.

Denote by ν = (ν1, . . . ., νn) the unit outward normal vector at ∂�. For simplicity, we write ∂Au =∑n
i,j=1 aij(∂ju)νi, which will be referred to as the Neumann data of u at ∂D. The first part of this

paper concerns a stability estimate of the following inverse problemwith a single Cauchy data: Inverse
Problem 1 (IP1): Determine the shape ∂D from knowledge of the Cauchy data (u, ∂Au)|� where � ⊂
∂� is an arbitrarily chosen sub-boundary.

The above inverse problem arises from, for example, the detection of the inaccessible interior cor-
roded boundary ∂D by the measurement data taken on an accessible outer sub-boundary �. There
have been many papers on this inverse boundary problem. For reconstruction methods related to
non-destructive testing, we refer to [1–5]. It is widely acknowledged that the stability of the Cauchy
problem for elliptic equations is closely connected to the quantitative unique continuation theory.
In fact, both the stability estimate and the unique continuation property can be derived from either
Carleman estimates or three-spheres inequalities. We refer to [6–8] for the stable determination of
unknown boundaries in the case of the scalar elliptic equation and the Lamé system, which relies
essentially on three-sphere inequalities in combination with doubling inequalities on the boundary
and lower estimates of gradients of solutions. As for the Laplace operator, we refer to [9–11] where
double logarithmic conditional stability estimates were given in two and three dimensions.

The purpose of this paper is to propose an alternative method for proving conditional stability
estimates of logarithmic type. The arguments of using three-sphere and doubling inequalities are not
involved in the present paper. Our approach relies essentially on new interior and boundary stability
estimates (see Lemmas 2.1 and 2.3 in Section 2) in combination with the quantitative unique contin-
uation (see Lemma 3.1 in Section 3), all of which are verified using Carleman estimates for elliptic
equations (see Lemma 2.2). For completeness, we will provide in the appendix a proof of the ellip-
tic Carleman estimate based on the integration by parts only. This paper provides a new insight into
the stability of determining unknown boundaries with a single Cauchy data. Since Carleman esti-
mates apply to vectorial elliptic equations such as the Lamé system and the Navier-Stokes equations,
in an analogous manner, we could also establish the single logarithmic conditional stability for these
equations within the framework of this paper.

We state the stability result as follows. LetD1,D2 ⊂ � be two star-shaped domains centered at the
origin, with the boundaries parameterized in polar coordinates by

∂Dj = {(r, x̂) : r = fj(x̂)}, x̂ ∈ S
n−1 := {x ∈ R

n : |x| = 1}. (4)

Due to technical reasons, we suppose that ∂Dj are of C4-class, i.e. fj ∈ C4(S2). Let uj = u(Dj) satisfy

Auj = 0 in Dc
j ,

uj = 0 on ∂Dj,

uj = gj, ∂Auj = hj on � (5)

for j= 1,2, where gj ∈ H3(�) and hj ∈ H2(�). Since c ≥ 0 (see (2)), it is well-known that the above
boundary value problems admit unique solutions uj ∈ H4(Dc

j ).
We make the following assumptions for (IP1):
Condition A: There existM, δ > 0 such that

1/M ≤ ‖fj‖C4(S2) ≤ M, dist (∂Dj, ∂�) ≥ δ > 0 (6)

for j= 1,2. Condition B:

inf
x∈�

|gj(x)| > C0 > 0, j = 1, 2. (7)
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It is seen from Condition A and the elliptic regularity that the norm ‖uj‖H4(Dc
j )
is uniformly bounded

from above. Without loss of generality, we suppose that

‖uj‖H4(Dc
j )

≤ M, j = 1, 2, (8)

with the same constantM as in (6). The Condition B implies that uj does not vanish identically on �.
Below we state the first result of this paper.

Theorem 1.1: Under the conditions (A) and (B) there exist constants θ ∈ (0, 1) and C> 0 only
depending on M, δ and C0 such that

d(∂D1, ∂D2) ≤ C
(

1
log 1/(‖u1 − u2‖H3(�) + ‖∂A(u1 − u2)‖H2(�))

)θ

provided ‖u1 − u2‖H3(�) + ‖∂A(u1 − u2)‖H2(�) is sufficiently small. Here d(∂D1, ∂D2) is the Haus-
dorff distance defined by

d(∂D1, ∂D2) := max

(
sup
x∈∂D1

d (x, ∂D2), sup
x∈∂D2

d (x, ∂D1)

)
.

If the condition (2) is not fulfilled, additional assumptions on the geometry of D are needed in
order to get the same stability estimate. In the special case of aij(x) ≡ δij, bi = 0 and c(x) = −k2 for
some k> 0, the equation −Au = 0 reduces to the Helmholtz equation (
 + k2)u = 0 which models
the time-harmonic acoustic wave propagation in an isotropic homogeneous medium. Hence, our
inverse problem (IP1) in this case is closely related to the shape identification problem arising from
inverse obstacle scattering with a single incoming wave; see subsection 1.2 below.

1.2. Inverse scattering problems

In this section, we present a local stability result for target identification of a sound-soft obstacle from
a single far-field patternwith a priori assumptions on the underlying scatterer. LetD1,D2 ∈ R

n be two
distinct sound-soft obstacles embedded in an isotropic homogeneous medium. Assume an incoming
plane wave of the form uin(x) = exp(ikα · x) with the direction α ∈ S

n−1 := {x ∈ R
n : |x| = 1} is

incident ontoDj, where k> 0 is the wavenumber. Denote by uj = uj(Dj) the total field corresponding
to Dj. Then the scattered field uscj := uj − uin satisfies the boundary value problem

(
 + k2)uscj = 0 in R
n\D̄j, uscj = −uin on ∂Dj, (9)

and the Sommerfeld radiation condition

lim
|x|→∞

|x|n−1/2

{
∂uscj
∂|x| − ikuscj

}
= 0, j = 1, 2. (10)

In particular, the Sommerfeld radiation condition (10) leads to the asymptotic expansion

usc(x) = eik|x|

|x|(n−1)/2 u∞(x̂) + O
(

1
|x|n/2

)
, |x| → +∞, (11)

uniformly in all directions x̂ := x/|x| ∈ S
n−1. The function u∞(x̂) is an analytic function defined

on S
n−1 and is referred to as the far-field pattern or the scattering amplitude. The vector x̂ ∈ S

n−1 is
called the observation direction of the far field. The inverse obstacle scattering problem with a single
far-field pattern can be stated as
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Inverse Problem 2 (IP2): Determine the boundary ∂D from the far-field pattern u∞(x̂) for all x̂ ∈
S
n−1 with fixed k> 0 and α ∈ S

n−1.
It remains a long-standing open problem whether a single Cauchy data (or equivalently, a sin-

gle far-field pattern) can uniquely determine the boundary of a general sound-soft scatterer; see e.g.
Colton andKress [12, Chapter 5.1]. Local uniqueness results were obtained in [13,14] under the small-
ness and closeness assumptions. Correspondingly, local stability estimates of the double logarithmic
type were verified in [15,16] under these a priori assumptions. Note that the arguments of [16] are
closest to those of [6] using three-spheres inequalities, and that in [16] a sharper upper bound of the
closeness of two sound-soft obstacles was derived from the Faber-Krahn inequality. As a by-product
of the proof of Theorem 1.1, we present a novel approach to the stable determination of the boundary
of a soft obstacle from a single far-field pattern.

Let BR(z) = {x ∈ R
n : |x − z| ≤ R} and BR = BR(O). Clearly, B1 is the unit ball in R

n. Denote by
Vol(D) the volume of D in R

n. We assume one of the following a priori conditions holds:
Condition C:

Dj ⊂ BR with kR < ηn, n = 1, 2, (12)

where ηn denotes the first root of the spherical Bessel function (n= 3) or Bessel function (n= 2) of
the first order. Condition D: There exist two bounded domains D± ⊂ R

n such that

D− ⊂ Dj ⊂ D+, Vol (D+\D−) ≤
(ηn

k

)n
Vol(B1), (13)

where ηn is defined as in condition C.
The stability of the inverse problem (IP2) is stated as follows.

Theorem 1.2: Suppose that Dj(j = 1, 2) are sound-soft obstacles with C4-smooth star-shaped bound-
aries centered at the origin (4)which satisfy the uniform smoothness assumption 1/M ≤ ‖fj‖C4(S2) ≤ M
for some M> 0. Assume further that Dj fulfill either the smallness condition C or the closeness type
condition D. Then the Hausdorff distance of ∂D1 and ∂D2 can be estimated by

d (∂D1, ∂D2) ≤ C
∣∣∣∣ log 


1 + log(e + log 1/
)

∣∣∣∣−θ

, 
 = ‖u∞
1 − u∞

2 ‖L2(Sn−1),

where e := limn→+∞(1 + 1/n)n and the constants θ ∈ (0, 1), C> 0 depend on the wavenumber k, the
a priori data M and the regions D± in (13) or the radius R in (12).

Remark 1.1: (i) The upper bounds in (12) and (13) are derived from the Faber-Krahn inequality
which provides a lower bound for the first Dirichlet eigenvalue λ1(�) of the Laplace equation
over a bounded domain � ⊂ R

n, i.e.

λ1(�) ≥ λ1(B1)
[
Vol (B1)
Vol (�)

]2/n
. (14)

The inequality (14) has been used in [17] to improve the local uniqueness results of [13,14].
(ii) The rate in Theorem 1.2 is stronger than the double logarithmic rate of [15], but weaker than a

single logarithmic estimate. The same stability result was derived in [15] for sound-soft obstacles
with analytic boundaries. In [8], a single log stability estimate was proved with different a priori
assumptions on unknown domains.

The proofs of Theorems 1.1 and 1.2 will be carried out in Section 4. Stability estimates for inverse
scattering with several incoming plane waves will be addressed at the end of Section 4.
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2. Interior and boundary estimates

2.1. Interior stability estimate and elliptic Carleman estimate

We introduce some notation before stating our interior estimate. Given y = (y1, . . . , yn) ∈ �, λ > 0
and a unit vector ν ∈ S

n−1, we denote by �(y, λ, ν) a paraboloidal domain with the vertex located at
y and the axis parallel to ν which is congruent to yn < −λ

∑n−1
j=1 y2j . For δ > 0, set

�(y, λ, ν) + δν := {x : x − δν ∈ �(y, λ, ν)} =
⋃

x∈�(y,λ,ν)

{x + δν}, (15)

that is, the translation of�(y, λ, ν) along the direction ν. Note that there are exactly two paraboloidal
domains �(y, λ, ν) determined by y, λ and ν. In this paper, �(y, λ, ν) is always chosen such that
�(y, λ, ν) + δν ⊂ �(y, λ, ν) for any δ > 0. Since�(y, λ, ν) ∩ �may have several connected compo-
nents if � is not convex, we make the convention that the paraboloidal domain �(y, λ, ν) always
means the connected component of �(y, λ, ν) ∩ � whose boundary contains y. Analogously, the
notation �(y, λ, ν) ∩ ∂� always means the intersection of the boundary of this connected domain
with ∂�. This convention also applies to the paraboloidal domain �(y, λ, ν) + δν for δ > 0. An
essential ingredient in our analysis is the following solution estimate in the level sets �(y, λ, ν) + δν.

Lemma 2.1 (interior estimate): Let � ⊂ R
n be a bounded domain with the boundary ∂� of C2-

class. Let y ∈ �, γ = ∂� ∩ �(y, λ, ν) and � = min{t : y + tν ∈ ∂�, t > 0}. For 0 < δ < �, set�δ :=
(�(y, λ, ν) + δν) ∩ � (see Figure 1). Suppose that u ∈ H2(�) is a solution to the elliptic Equation (1).
Then there exist constants C> 0 and κ ∈ (0, 1), which depend on �, δ, λ, aij, bi and c, such that

‖u‖H1(�δ)

≤ C
(‖u‖H1(γ ) + ‖∂νu‖L2(γ )

)+ C
(‖u‖H1(γ ) + ‖∂νu‖L2(γ )

)κ ‖u‖1−κ
H1(�)

.

Here C and κ do not depend on γ .

Lemma 2.1 yields a stability estimate for u provided that ‖u‖H1(�) is bounded which is called
a conditional stability estimate. Further, it implies that a solution to the elliptic Equation (1) with
vanishing Cauchy data on an arbitrary non-empty open sub-boundary of ∂�must vanish identically.
Lemma 2.1 was proved in [18] by applying the following elliptic Carleman estimate.

Figure 1. Configurations of�(y, λ, ν) ∩ � and (�(y, λ, ν) + δν) ∩ � =: �δ with y ∈ � and γ := ∂� ∩ �(y, λ, ν).
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Lemma 2.2 (Carleman estimate): Let � ⊂ R
n be a bounded domain with the boundary ∂� of C2-

class, and let D ⊂ � be a domain such that D ⊂ � and ∂D is of C2-class. Suppose that d ∈ C2(�)

satisfies |∇d| �= 0 on � and set

ϕ(x) := eλd(x), x ∈ �,

with a positive parameter λ > 0. Then there exists positive constants λ0, s0(λ) and C(s0, λ) such that∫
D
{sλ2ϕ|∇u|2 + s3λ4ϕ3u2}e2sϕ dx

≤ C
∫
D

|Au|2e2sϕ dx + CeC(λ)s
∫

∂D
(|∇u|2 + |u|2) ds

for all s > s0, λ ≥ λ0 and for all u ∈ H2(D). Here the constants s0,C are dependent on λ, but inde-
pendent of s and the geometry of D, and they are bounded provided that max1≤i,j≤n ‖aij‖C3(�),
max1≤i≤n ‖bi‖W2,∞(�), ‖c‖W2,∞(�), ‖d‖C2(�) are bounded.

In particular, fixing λ > 0 sufficiently large, we can rewrite the above estimate as∫
D
{s|∇u|2 + s3u2}e2sϕ dx

≤ C
∫
D

|Au|2e2sϕ dx + CeCs
∫

∂D
(|∇u|2 + |u|2) ds (16)

for all s > s0 and all u ∈ H2(D).

For clarity, we shall present the proof of Lemma 2.2 in the Appendix.We emphasize that the proofs
of our interior estimate (see Lemma 2.1) and the estimate at a boundary point (see Lemma 2.3) both
rely heavily on the Carleman estimate (16).

2.2. Stability at a boundary point

For a boundary point x0 ∈ ∂�, let ν = ν(x0) be the unit normal vector pointing into the interior of
�. Given λ > 0 sufficiently large, we denote by �(x0, λ, ν) the paraboloidal domain with the vertex
located at x0 and the axis parallel to ν which is congruent to xn < −λ

∑n−1
i=1 x2i . Further, one can

observe that ∂� intersects with �(x0, λ, ν) tangentially at x0. Moreover, we assume that the surface
� := {�(x0, λ, ν) ∩ ∂�} \ {x0} is a non-empty connected relatively open subset of ∂� and there exists
x̃ ∈ � such that x0̃x is parallel to ν (Figure 2). We set � = |x0̃x|. Assume that ∂� is of C4-class and
u ∈ H4(�) is a solution to (1). Next, we discuss a conditional stability estimate of u at the boundary
point x0.

Lemma 2.3: (i) There exist constants C2 > 0 and κ1 ∈ (0, 1), which depend on �, λ, max1≤i,j≤n
‖aij‖C3(�), max1≤i≤n ‖bi‖W2,∞(�), ‖c‖W2,∞(�), such that

|u(x0)| ≤ C2 max{1, ‖u‖H3(�)}
{(

1
| log 1/
|

) 1
2

+ 
κ1

}
, (17)

with 
 := ‖u1 − u2‖H3(�) + ‖∂A(u1 − u2)‖H2(�). Here, the constants C2 and κ1 are independent
of the choice of x0, and can be chosen uniformly in � ∈ [�0, �1], where �0, �1 > 0 are arbitrarily
fixed such that �0 < �1.

(ii) If 
 ≤ 1/e, then the estimate in the first assertion can be rewritten as

|u(x0)| ≤ C2 max{1, ‖u‖H3(�)}
(

1
log 1/


)min{ 12 ,κ1}
.
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Figure 2. Configurations of�(x0, λ, ν)with x0 ∈ ∂� and � := ∂� ∩ �(x0, λ, ν).

Proof: (i) By the Sobolev embedding we have |u(x0)| ≤ C2 ‖u‖H3(�), whence the first assertion
follows if 
 ≥ 1. Hence, it remains to prove the lemma under the assumption that 
 ≤ 1.

Without loss of generality, after translation and rotation, we can define the paraboloidal domain
�(x0, λ, ν) as

�(x0, λ, ν) = {(x′, xn) : xn < −λ

n−1∑
i=1

x2i + �}, λ, � > 0

with ν = (0, . . . , 0,−1), x0 = (0, . . . , 0, �). Further, we may assume that the line segment x0O is
parallel to ν where the origin O is located at �. Set

d(x) = −xn − λ

n−1∑
i=1

x2i + �, Dt := {x ∈ �(x0, λ, ν) ∩ � : d(x) > t} for 0 ≤ t < l/2.

We note thatDt2 ⊂ Dt1 if t1 < t2 andDt = (�(x0, λ, ν) + tν) ∩ �. In particular,D0 = �(x0, λ, ν) ∩
�. We can always choose a cut-off function χt ∈ C∞(Rn) such that 0 ≤ χt ≤ 1 and

χt(x) =
{
1, x ∈ Dt ,
0, x ∈ D0 \ Dt/2,

‖χt‖C2(Rn) ≤ C3/t2, 0<t < l/2. (18)

In fact, we may choose χ̃ ∈ C∞(Rn) such that 0 ≤ χ̃ ≤ 1 and

χ̃(η) =
{
1, η ≥ 1,
0, η ≤ 0.

Then the function χt(x) = χ̃((2d(x) − t)/t) satisfies (18). Set v := χtu. Using the fact thatD2t ⊂ D0
and applying the Carleman estimate (16) to v in D0, we obtain∫

D2t

(s|∇v|2 + s3v2)e2sϕ dx

≤
∫
D0

(s|∇v|2 + s3v2)e2sϕ dx
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≤ C
∫
D0

∣∣∣∣∣∣
n∑

i,j=1
aij((∂iχt)∂ju + (∂jχt)∂iu + (∂i∂jχt)u) +

n∑
i=1

bi(∂iχt)u

∣∣∣∣∣∣
2

e2sϕ dx

+ CeCs
∫

�

(|∇v|2 + v2) ds

≤ C
∫
Dt/2\Dt

∣∣∣∣∣∣
n∑

i,j=1
aij((∂iχt)∂ju + (∂jχt)∂iu + (∂i∂jχt)u) +

n∑
i=1

bi(∂iχt)u

∣∣∣∣∣∣
2

e2sϕ dx

+ CeCs
∫

�

(|∇u|2 + u2) ds

where ϕ(x) = exp(λ d(x)), λ > 0 is sufficiently large and s > s0 for some s0 > 0. Since ϕ(x) ≥
exp(2λt) in D2t and ϕ(x) ≤ exp(λt) in Dt/2\Dt , it can be derived from the previous relation that

‖u‖2H1(D2t)
≤ C4

t4
e−2sr(t)‖u‖2H1(�)

+ C5eC0s(‖u‖2H1(�)
+ ‖∂Au‖2L2(�)

) (19)

for all s ≥ s0, with r(t) := e2λt − eλt . Analogously, applying the Carleman estimate to vi = χt∂iu and
vij = χt∂i∂ju, 1 ≤ i, j ≤ n we can obtain

‖∇u‖2H1(D2t)
+ ‖∇2u‖2H1(D2t)

≤ C4

t4
e−2sr(t)M2 + C5eC0s 
2, s ≥ s0, (20)

where ‖u‖H3(�) ≤ M. Combining (19) and (20) gives

‖u‖2H3(D2t)
≤ C4

t4
e−2sr(t)M2 + C5eC0s
2, s ≥ s0, (21)

Choose t0 = min(1, �0/4). By the Sobolev embedding theorem, there exists a constant C6 =
C6(t) > 0 such that

‖u‖C1(D2t)
≤ C6(t) ‖u‖H3(D2t), 0 ≤ t ≤ t0.

Recall that Dt is defined by a translation of D0 and that D2t0 �= ∅, D2t0 ⊂ D2t ⊂ D0. Since λ > 0 is
sufficiently large, we may suppose that D2t are Lipschitz domains with uniformly bounded Lipschitz
constants in all t ∈ [0, t0]. This allows us to choose a constant C7 > 0 such that

‖u‖C1(D2t)
≤ C7 ‖u‖H3(D2t), for all 0 ≤ t ≤ t0.

It then follows from (21) that

‖u‖C1(D2t) ≤ C8

t2
e−sr(t)M + C8eC0s
 (22)

for all s ≥ 0 and all 0 < t ≤ t0. We find a value s minimizing the right-hand side of (22), that is, we
choose s ≥ s0 such that

e−sr(t)M = eC0s 
.

Consequently, we have

‖u‖C1(D2t)
≤ C9

t2
MC0/(C0+r(t))
r(t)/(C0+r(t)) ≤ C9

t2
M1


r(t)/(C0+r(t)) (23)

for all 0 < t ≤ t0, where we setM1 := max{M, 1}.
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For simplicity we write ∂n = ∂/∂xn . Since (0, . . . , 0, � − 2t) ∈ D2t , we observe from (23) that

|∂nu(0, . . . , 0, � − 2t)| ≤ C9

t2
M1 
r(t)/(C0+r(t)), 0 < t ≤ t0. (24)

Using the inequalities

e2λt − 2eλt + 1 ≥ 0, eλt − λt − 1 ≥ 0 for all t > 0,

it is easy to check that

r(t)
C0 + r(t)

≤ eλt − 1
C0 + eλ�0 − eλ�0/2

≤ λ

C0 + eλ�0 − eλ�0/2
t ≡ C10t (25)

for some C10 > 0. Since 
 ≤ 1, we have by (24) and (25) that

|∂nu(0, . . . , 0, � − 2t)| ≤ C9

t2
M1


C10t , 0 < t ≤ t0.

Hence,

|∂nu(0, . . . , 0, � − 2t)| = |∂nu(0, . . . , 0, � − 2t)|3/4 |∂nu(0, . . . , 0, � − 2t)|1/4

≤ ‖u‖3/4
C1(�)

(
C9 t−2M1


C10t
)1/4

≤ M3/4M1/4
1 C1/4

9 t−1/2
C10t/4

≤ C11M1 t−1/2 
C12t ,

where we have used again the Sobolev embedding ‖u‖C1(�) ≤ C ‖u‖H3(�). Therefore, by (23) we
obtain

|u(x0)| = |u(0, . . . , 0, �)| =
∣∣∣∣u(0, . . . , 0, � − 2t0) +

∫ 0

t0

∂

∂t
(u(0, . . . , 0, � − 2t)) dt

∣∣∣∣
≤ ‖u‖C(D2t0 )

+
∫ t0

0
2C11M1 t−1/2 
C12t dt

≤ C13‖u‖H2(D2t0 )
+
∫ t0

0
C13M1 t−1/2 exp

(
−
(
C12 log

1



)
t
)

dt

≤ C14

t20
M1


r(t0)

C0+r(t0) + C13M1

∫ ∞

0
t−1/2 exp

(
−
(
C12 log

1



)
t
)

dt

= C15M1

κ1 + C15M1

�
( 1
2
)

(
C12 log 1




) 1
2

≤ C16M1

{(
1

log 1/


)1/2
+ 
κ1

}
from which the stability estimate (17) follows.

(ii) The second assertion follows straightforwardly from (17) in combination with the inequality


 ≤ 1/e
log 1




<
1

log 1



for all 0 ≤ 
 ≤ 1
e
.

�
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3. Quantitative unique continuation

The aim of this section is to verify the quantitative unique continuation for solutions of the ellip-
tic equation Au= 0 (see (1)). Set m = [n/2] + 2, where the notation [a] denotes the largest natural
number not exceeding a> 0. Lemma 3.1 will be used in the subsequent section for the proofs of
Theorems 1.1 and 1.2.

Lemma 3.1: (Quantitative unique continuation) Let Au= 0 in � and ‖u‖Hm(�) ≤ M, where M> 0 is
an a priori bound. We assume there exists z ∈ � such that |u(z)| > C0. Suppose further that

|u(x)| < δ for all x ∈ Br(y) ⊂ �, (26)

for some y ∈ � and δ, r > 0. Then an upper bound of the radius r can be estimated by

r ≤ C/Cκ
0 δθ ,

where κ , θ and C are positive constants depending only on the space dimension, the region � and the
distance between z and ∂�.

The unique continuation follows directly from Lemma 3.1.

Corollary 3.1: Let Au= 0 in � and u ≡ 0 in Br(y) ⊂ � for some r> 0, y ∈ �. Then u ≡ 0.

Proof: Assume on the contrary that |u(z)| > C0 > 0 for some z ∈ �. Since u ≡ 0 in Br(y), we have
|u(x)| < δ for any δ > 0 and for all x ∈ Br(y). Applying Lemma 3.1 we see r ≤ C/Cκ

0 δθ for all δ > 0.
Now, letting δ → 0 yields the relation r= 0, which contradicts the fact that r> 0. Hence u ≡ 0 in
�. �

Below we carry out the proof of Lemma 3.1, relying on the interior estimate in Lemma 2.1.

Proof of Lemma 3.1.: For notational convenience, wewrite x′ = (x2, . . . , xn) so that x = (x1, x′), z =
(z1, z′) ∈ R

n. Without loss of generality, we suppose that y coincides with the originO, |z′| = 0, z1 >

0 and 0< r< 1. Using the interior estimate (see [19]), it follows from (26) that

‖∇u‖L∞(Br/2) ≤ (C1/r)‖u‖L∞(Br) ≤ C1δ/r, (27)

where the constant C1 > 0 is independent of r. Hence,

‖u‖W1,∞(Br/2) ≤ C1δ(1 + 1/r). (28)

Wemay always choose a paraboloidal domain�(x0, λ, ν)with x0 ∈ � ∩ R
n+, ν = (−1, 0, . . . , 0) such

that for some r0, δ0 > 0

Brr0(z) ⊂ {�(x0, λ, ν) + δ0ν} ∩ {� ∩ R
n
+} =: �δ0 .

Note that the point x0 and the parameters λ, r0 and δ involved are dependent only on the geometry
of � and the distance between z and ∂�. Applying Lemma 2.1 to �δ0 yields

‖u‖H1(Brr0 (z))
≤ ‖u‖H1(�δ0 )

≤ C2 (‖u‖H1(γ ) + ‖∂νu‖L2(γ ))
κ (29)

for some κ ∈ (0, 1] and C2 > 0 independent of γ = {�(y, λ, ν) + δ0ν} ∩ {� ∩ {(0, x′)}}. Further,
without loss of generality we may suppose that γ ⊂ {(0, x′) : |x′| < r/2}. Otherwise, this can be
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achieved by constructing a finite number of paraboloidal domains �(yj, λj, νj) with yj ∈ � and uni-
formly bounded parameters λj and νj, and then our arguments should be applied successively to each
paraboloidal domain.

Combining the estimates in (28) and (29), we obtain

‖u‖H1(Brr0 (z))
≤ C2(C1δ(1 + 1/r) r(n−1)/2)κ ≤ C3 δκ (1 + rn−3)κ/2, (30)

where C3 > 0 does not depend on δ. Moreover, recalling the inequality (rn−3)κ/2 ≤ Cr−κ for all r ∈
(0, 1], it holds that

‖u‖H1(Brr0 (z))
≤ C4δ

κ r−κ , C4 > 0.

Now, applying Lemma 3.2 below we obtain form = [n/2] + 1 and θ = 1/m ∈ (0, 1) that

‖u‖L∞(Brr0 (z)) ≤ C (rr0)−m−n/2‖u‖θ
H1(Brr0 (z))

≤ C r−m− n
2

0 r−m− n
2 r−κθ δκθ

= C r−μ1δμ2

where μ1 = m + n
2 + κθ > 0 and μ2 = κθ ∈ (0, 1). Since |u(z)| > C0 > 0, we have

(rr0)n CnC0 ≤ ‖u1‖L∞(Brr0 (z)) < Cr−μ1δμ2 ,

leading to the relation

rn+μ1 ≤ CC−1
0 δμ2 .

Finally, an upper bound of r can be estimated by

r ≤ C δμ2/(n+μ1) C−1/(n+μ1)
0 .

The proof of the lemma is complete. �

In proving the quantitative unique continuation we have used the following result.

Lemma 3.2: Let Br = Br(O) ⊂ R
n for some r ∈ (0, 1). Suppose that

‖u‖Hm+1(Br) ≤ M, m := [n/2] + 1.

Then there exists a constant C = C(M, n) > 0 such that

‖u‖L∞(Br) ≤ C r−m−n/2 ‖u‖1/mH1(Br)
. (31)

Proof: By change of variables y = x/r and ũ(y) := u(ry), we have∫
Br

∑
|α|≤m

|∂α
x u|2 dx =

∫
B1

∑
|α|≤m

|∂α
y ũ|2rn−2α dy.
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Hence there exist C0,C1 > 0 independent of r ∈ (0, 1) such that

C0r
n
2 ‖̃u‖Hm(B1) ≤ ‖u‖Hm(Br) ≤ C1 r

n
2−m‖̃u‖Hm(B1). (32)

Letm = [n2 ] + 1 andm′ = [n2 ] + 2. In B1 we have the interpolation inequality

‖̃u‖Hm(B1) ≤ C‖̃u‖
m′−m
m′−1
H1(B1)

‖̃u‖
m−1
m′−1
Hm′

(B1)
= C‖̃u‖1/mH1(B1)

‖̃u‖1−1/m
Hm′

(B1)
.

Using (32), we get

‖u‖Hm(Br) ≤ C2 r−m‖u‖1/mH1(Br)
‖u‖1−1/m

Hm′
(Br)

. (33)

Moreover, applying the Sobolev embedding theorem yields

‖̃u‖L∞(B1) ≤ C3‖̃u‖Hm(B1).

Together with the definition of ũ and the first inequality in (32), this implies that

‖u‖L∞(Br) ≤ C3 C−1
0 r−

n
2 ‖u‖Hm(Br).

We use (33) to estimate the right-hand side of the previous inequality to obtain

‖u‖L∞(Br) ≤ C4 r−m− n
2 ‖u‖1/mH1(Br)

‖u‖1−1/m
Hm′

(Br)
≤ C5 r−m− n

2 ‖u‖1/mH1(Br)
,

which proves (31). �

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1: Set

u = u1 − u2 inDc
1 ∩ Dc

2

and


 := ‖u1 − u2‖H3(�) + ‖∂A(u1 − u2)‖H2(�).

Let �0 = {x : dist (x, ∂�) < δ/2} where δ is the a priori data given in (6); see Figure 3. Since the
parameter λ > 0 of the parabolic domain�(y, λ, ν) in Lemma 2.1 can be chosen arbitrarily large, we
can always construct a family of paraboloidal domains to prove that

‖u‖H1(�0) ≤ C1

κ1 ,

where the constants κ1 ∈ (0, 1] and C1 > 0 depend on ∂� and the data M, δ involved in Condition
A. We set �0 = ∂�0 \ ∂�. By the interpolation inequality and Condition A, we find

‖u‖H7/2(�0) ≤ C‖u‖1/6H1(�0)
‖u‖5/6H4(�0)

≤ CM5/6‖u‖1/6H1(�0)
≤ C2 
κ2 .

Applying the trace theorem gives

‖u‖H3(�0) + ‖∂Au‖H2(�0) ≤ C3 
κ2 ,

whereC3 > 0 depends on ∂�, δ andM. Let E be any connected component ofDc
1\Dc

2; see the shadow
area in Figure 3. Since D1 and D2 are star-shaped centered at the origin, the boundary ∂E ∩ ∂D2 can
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Figure 3. Illustration of two sub-boundaries ∂D1, ∂D2 and the domain E := Dc1\D
c
2.

be connected to �0 in� \ (D1 ∪ D2). We apply Lemma 2.3 (ii) to the region� \ (D1 ∪ D2) to obtain
an estimate of u on ∂E ∩ ∂D2:

‖u‖L∞(∂E∩∂D2) ≤ C4

(
1

log 1/(‖u‖H3(�0) + ‖∂Au‖H2(�0))

)κ3

≤ C5

(
1

log 1/


)κ3

,

for some κ3 ∈ (0, 1/2], where 
 > 0 is supposed to be sufficiently small. Since u2 = 0 on ∂D2, we
have

‖u1‖L∞(∂E∩∂D2) ≤ C5

(
1

log 1/


)κ3

.

Using the fact that u1 = 0 on ∂D1, the previous inequality can be written as

‖u1‖L∞(∂E) ≤ C5

(
1

log 1/


)κ3

. (34)

We set Br(z) := {x ∈ R
n; |x − z| < r}. Let

r0 = sup{r : Br(z) ⊂ Ewith some z ∈ E}.

That is, r0 is the radius of the inscribed ball in E. Suppose that Br0(z0) ⊂ E for some z0 ∈ E. The
maximum principle in E yields

‖u1‖L∞(Br0 (z0)) ≤ ‖u1‖L∞(E) ≤ C5

(
1

log 1/


)κ3

:= δ0. (35)

On the other hand, it is seen formCondition B that there existC0 > 0 and z ∈ �ε such that |u1(z)| ≥
C0/2. Now applying the quantitative unique continuation, we see that

r0 ≤ C δκ
0 ≤ C

(
1

log 1/


)θ

(36)

for some κ , θ ∈ (0, 1). Note that the constant C depends on the a priori bounds involved in Condi-
tions A and B, the region � and the upper bounds of the coefficients in equation (1). Note that the
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estimate (36) applies to the radius of the inscribed ball in any connected component of Dc
1\Dc

2 and
Dc
1\Dc

2. Without loss of generality we suppose that

d(∂D1, ∂D2) = |z1 − z2| =: ρ, z1 ∈ ∂D1, z2 ∈ ∂D2, (37)

and that

ρ = sup
x∈∂D2

d(x, ∂D1). (38)

Then the line segment connecting z1 and z2 is contained in E and is orthogonal to the tangent plane
of ∂D1 at z1. Hence, we can always find a finite cone contained in E with the vertex at z1 and the
axis parallel to z1z2. Moreover, the opening angle and the height of this cone both depend on ρ and
the a priori bound M> 0. This implies that the ratio of ρ and r0 can be bounded by some constant
depending on M only. Hence, the Hausdorff distance can also be bounded by the right-hand side
of (36). This finishes the proof of Theorem 1.1. �

Proof of Theorem 1.2: Let D ⊂ R
n be the unbounded connected component of (Rn\D1) ∩

(Rn\D2). Analogously to the proof of Theorem 1.1, we set

u := u1 − u2 in D, 
 := ‖u∞
1 − u∞

2 ‖L2(Sn−1).

We first estimate the near field data inD from the far-field pattern. By [15], there exist a radiusR1 > R
and a constant C> 0 such that

‖u‖L2(BR1+1\BR1 ) ≤ C 
α(
),

where the function α : R
+ → R is defined as

α(
) := (1 + log(− log 
 + e))−1.

Setting � := BR1+1/2 and � = ∂� = {|x| = R1 + 1/2}, it follows from the interior elliptic esti-
mate that

‖u‖H3(�) + ‖∂νu‖H2(�) ≤ C 
α(
).

Now, we may restrict our discussions to the bounded domain �, following the lines in the proof of
Theorem 1.1. For this purpose, it is necessary to check the conditions A and B for the inverse problem
(IP1). By well-posedness of the forward scattering and the uniform C4-smoothness assumption of
∂Dj, there exist M, δ > 0 such that the relations in (6) hold. On the other hand, since |uin(x)| = 1
and uscj decays at infinity, the boundary � can be chosen depending on the a priori data only such
that (see e.g. [20, Corollary 3.3])

|uj(x)| > 1/2 for all x ∈ �, j = 1, 2,

which implies Condition B in (7). Arguing as in the proof of Theorem 1.1, we get (cf. (34))

‖u1‖L∞(∂E) ≤ C |α(
) log 
|−θ := δ0, θ ∈ (0, 1), (39)

where the region E ⊂ � is defined as in the proof of Theorem 1.1. Under Conditions C and D, k2
is not a Dirichlet eigenvalue of −
 in E. Hence the estimate (35) still holds with δ0 given by (39).
Consequently,

d(∂D1, ∂D2) ≤ C |α(
) log 
|−θ , (40)

for some θ ∈ (0, 1). �
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We conclude this section by a remark on the stability estimate of the inverse scattering problem
with several incoming waves. Condition C or D ensures uniqueness to the inverse scattering problem
with a single incoming wave. Without these two conditions, one can get the same estimate from the
far-field data of a finite number of incident directionsαj ∈ S

n−1 at a fixed frequency or a finite number
of frequencies kj ∈ R+ with fixed incident direction.More precisely, the smallness and closeness type
assumptions in Theorem 1.2 can be removed in the following cases:

Case (a): 
 = max{‖u∞
1 (x̂;αj, k) − u∞

2 (x̂;αj, k)‖L2(Sn−1) : j = 1, 2, . . .N1 + 1}
whereN1 :=

∑
tml<k∗R(2m + 1). Here, for the dimension n= 3 andm = 0, 1, . . ., we denote the posi-

tive zeros of the spherical Bessel functions jm by tml, l = 0, 1, . . . .; for n = 2, tml are the positive zeros
of the Bessel functions Jm. The number R> 0 is the radius of a ball centered at the origin which
contains Dj inside.

Case (b): 
 = max{‖u∞
1 (x̂;α, kj) − u∞

2 (x̂;α, kj)‖L2(Sn−1) : j = 1, 2, . . .N2 + 1}
where kj := k∗ + (j − 1)(k∗ − k∗)/N2 with k∗ < k∗ and N2 :=

∑
tml<k∗R(2m + 1).
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Appendix. Proof of Carleman estimate
In this section, we give a direct derivation of the Carleman estimate for the elliptic operator A, i.e. Lemma 2.2. There is
an approach based on the general theory (e.g. [21–23]), but we present a direct proof which is based on integration by
parts. One can refer to [24,25] for similar direct derivation of a parabolic Carleman estimate and to [26] for a hyperbolic
Carleman estimate.

Thanks to the large parameter s, it is sufficient to prove the Carleman estimate in the case of bi = c = 0, 1 ≤ i ≤ n,
i.e. to verify Lemma 2.2 for the principal part of the elliptic operator A, given by

(A0u)(x) ≡ −
n∑

i,j=1
aij(x)∂i∂ju = f , x ∈ �.

In fact, regarding the lower-order part
∑n

i=1 bi∂iu + cu as the right-hand side, we can absorb the weighted L2-norms
of the lower-order part into the left-hand side by applying the Carleman estimate forA0 and taking the parameter s> 0
sufficiently large.

Let D ⊂ � and ϕ(x) = eλd(x) be given as in Lemma 2.2. For notational simplicity we set

σ(x) =
n∑

i,j=1
aij(x)(∂id)(x)(∂jd)(x), x ∈ D.

Define

w(x) := esϕ(x)u(x)

and

Pw(x, t) := esϕA0(e−sϕw) = esϕA0u = esϕ f .

Below we give some technical remarks on the proof of the Carleman estimate. The derivation argument consists of
three steps:

Step 1: Decomposition of the differential operator P into the sum of P1 and P2, where P1 is composed of the second-
order and zeroth-order terms in x, whereas P2 is composed of first-order terms in x. Here the terms in Pw are classified
by the highest order of s, λ and ϕ.

Step 2: Estimation of
∫
D 2(P1w)(P2w) dx from below.

Step 3: Derivation of an estimate for the term∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx,

which appears in the lower bound of
∫
D 2(P1w)(P2w) dx in Step 2.

Moreover the estimate in the second step produces the estimate of u with desirable order of s, λ,ϕ but not the term
of∇u. This is caused by the different orders of the derivatives of terms under consideration. Therefore, another estimate
in the third step is necessary. Such kind of double estimates have been used in proving the observability inequality of the
time-dependent wave equation by the multiplier method. As for the multiplier method, the two estimates are obtained



APPLICABLE ANALYSIS 17

from (see e.g. Komornik [27, p. 36–39]): ∫ T

0

∫
�

(∂2t v − 
v)(h(x) · ∇v) dx dt

and ∫ T

0

∫
�

(∂2t v − 
v)v dx dt

respectively, with a suitable vector-valued function h(x), and then the estimates are summed up to obtain an L2-estimate
of v. The second estimate for the wave equation via the multiplier method is similar to the third step in our case.

Proof of Lemma 2.2: Step 1. Let ν = ν(x) be the outward unit normal vector to ∂D. Simple calculations show that

Pw = −
n∑

i,j=1
aij ∂i∂jw + 2sλϕ

n∑
i,j=1

aij ∂id ∂jw

− s2λ2ϕ2σw + sλ2ϕσw + sλϕw
n∑

i,j=1
aij∂i∂jd

in D. Note that in the previous identity we have specified all the dependency of coefficients on s, λ and ϕ. The last two
terms in Pw can be rewritten as A1 w, where A1 = A1(x; s, λ,ϕ, σ) is defined as

A1(x; s, λ,ϕ, σ) := sλ2ϕσ + sλϕ

n∑
i,j=1

aij∂i∂jd =: sλ2ϕ a1(x; s, λ),

a1(x; s, λ) := σ + (1/λ)

n∑
i,j=1

aij∂i∂jd.

Hence,

Pw = −
n∑

i,j=1
aij(x)∂i∂jw + 2sλϕ

n∑
i,j=1

aij(x)(∂id)∂jw − s2λ2ϕ2σw + A1w.

We note that a1 depends on s and λ, and

|a1(x; s, λ)| ≤ C for x ∈ D and all sufficiently large λ > 0 and s > 0.

Here and henceforth by C,C1, etc., we denote generic constants which are dependent on λ, but independent of s and
the geometry of D, and are bounded provided that max1≤i,j≤n ‖aij‖C3(�), max1≤i≤n ‖bi‖W2,∞(�), ‖c‖W2,∞(�), ‖d‖C2(�)

are bounded.
Taking into account the orders of (s, λ,ϕ), we split P into the sum of P1 and P2, where P1 is composed of second-

order and zeroth-order terms in x, whereas P2 is composed of first-order terms in x. That is,

P1w := −
n∑

i,j=1
aij(x)∂i∂jw − s2λ2ϕ2wσ(x) + A1w,

P2w := 2sλϕ

n∑
i,j=1

aij(x)(∂id)∂jw.

By ‖fesϕ‖2L2(D)
= ‖P1w + P2w‖2L2(D)

, we have

2
∫
D
(P1w)(P2w) dx ≤

∫
D
f 2e2sϕ dx. (A1)

Step 2: We need to derive a lower bound of the left-hand side of (A1). Clearly, we have∫
D
(P1w)(P2w) dx =

3∑
k=1

Jk,

where

J1 := −
n∑

i,j=1

∫
D
aij(∂i∂jw)2sλϕ

n∑
k,�=1

ak�(∂kd)(∂�w) dx,
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J2 := −
∫
D
2s3λ3ϕ3σw

n∑
i,j=1

aij(∂id)(∂jw) dx,

J3 :=
∫
D
(A1w)2sλϕ

n∑
i,j=1

aij(∂id)(∂jw) dx. (A2)

Now, applying integration by parts, aij = aji and u ∈ H2(D) and assuming that λ > 1 and s> 1 are sufficiently large,
we reduce all the derivatives of w to w, ∂iw. We continue the estimation of Jk, k = 1, 2, 3 as follows. First,

J1 = −
n∑

i,j=1

n∑
k,�=1

∫
D
2sλϕaijak�(∂kd)(∂�w)(∂i∂jw) dx

= 2sλ
∫
D

n∑
i,j=1

n∑
k,�=1

λ(∂id)ϕaijak�(∂kd)(∂�w)(∂jw) dx

+ 2sλ
∫
D

n∑
i,j=1

n∑
k,�=1

ϕ∂i(aijak�∂kd)(∂�w)(∂iw) dx

+ 2sλ
∫
D

n∑
i,j=1

n∑
k,�=1

ϕaijak�(∂kd)(∂i∂�w)(∂jw) dx

:= J(1)1 + J(2)1 + J(3)1 .

The first and third terms in J1 can be estimated by

J(1)1 = 2sλ2
∫
D

ϕ

∣∣∣∣∣∣
n∑

i,j=1
aij(∂id)(∂jw)

∣∣∣∣∣∣
2

dx ≥ 0,

and

J(3)1 =
∫
D
2sλ

n∑
k,�=1

⎛⎝∑
i>j

ϕaijak�(∂kd){(∂i∂�w)(∂jw) + (∂j∂�w)(∂iw)} dx

+
n∑

k,�=1

n∑
i=1

ϕaiiak�(∂kd)(∂i∂�w)(∂iw)

⎞⎠ dx

= sλ
n∑

i,j=1

n∑
k,�=1

∫
D

ϕaijak�(∂kd)∂�((∂iw)(∂jw)) dx

= sλ
∫

∂D

n∑
i,j=1

n∑
k,�=1

ϕaijak�(∂kd)(∂iw)(∂jw)ν� ds

− sλ2
∫
D

ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx

− sλ
∫
D

ϕ

n∑
i,j=1

n∑
k,�=1

∂�(aijak�∂kd)(∂iw)(∂jw) dx.

Hence, we can estimate J1 from below by

J1 ≥ −
∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx

− C
∫
D
sλϕ|∇w|2 dx + 2sλ2

∫
D

ϕ

∣∣∣∣∣∣
n∑

i,j=1
aij(∂id)(∂jw)

∣∣∣∣∣∣
2

dx
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+ sλ
∫

∂D

n∑
i,j=1

n∑
k,�=1

ϕaijak�(∂kd)(∂iw)(∂jw)ν�dS

≥ −
∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx − C
∫
D
sλϕ|∇w|2 dx

− Csλ
∫

∂D
ϕ|∇w|2 ds. (A3)

On the other hand, the other two terms J2 and J3 in the integral
∫
D 2(P1w)(P2w) dx can be estimated by

J2 = −
∫
D
2s3λ3ϕ3σw

n∑
i,j=1

aij(∂id)(∂jw) dx

= −
∫
D
s3λ3ϕ3

n∑
i,j=1

σaij(∂id)∂j(w2) dx

=
∫
D
s3λ3

n∑
i,j=1

3ϕ2{λ(∂jd)ϕ}σaij(∂id)w2 dx

+
∫
D
s3λ3ϕ3

n∑
i,j=1

∂j(σaij∂id)w2 dx −
∫

∂D

n∑
i,j=1

s3λ3ϕ3σaij(∂id)w2νjdS

≥
∫
D
3s3λ4ϕ3σ 2w2 dx − C

∫
D
s3λ3ϕ3w2 dx − C

∫
∂D

s3λ3ϕ3w2 ds (A4)

and

|J3| =
∣∣∣∣∣∣
∫
D
(sλ2ϕa1) (2sλϕw)

n∑
i,j=1

aij(∂id)(∂jw) dx

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫
D
2a1s2λ3ϕ2

n∑
i,j=1

aij(∂id)w(∂jw) dx

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∫
D
a1s2λ3ϕ2

n∑
i,j=1

aij(∂id)∂j(w2) dx

∣∣∣∣∣∣
=
∣∣∣∣∣∣−
∫
D

n∑
i,j=1

∂j(a1s2λ3ϕ2aij(∂id))w2 dx +
∫

∂D

n∑
i,j=1

a1s2λ3ϕ2aij(∂id)w2νjdS

∣∣∣∣∣∣
≤ C

∫
D
s2λ4ϕ2w2 dx + C

∫
∂D

s2λ3ϕ2w2ds. (A5)

Hence, combining (A2)–(A5) we obtain∫
D
(P1w)(P2w) dx ≥ 3

∫
D
s3λ4ϕ3σ 2w2 dx −

∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw)dx

− C
∫
D
sλϕ|∇w|2 dx − C

∫
D
(s3λ3ϕ3 + s2λ4ϕ2)w2 dx

− C
∫

∂D
sλϕ|∇w|2dS − C

∫
∂D

(s3λ3ϕ3 + s2λ3ϕ2)w2 ds.

Rearranging the terms in the previous inequality yields

3
∫
D
s3λ4ϕ3σ 2w2 dx −

∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx



20 J. ELSCHNER ET AL.

≤ 1
2

∫
D
f 2e2sϕ dx + C

∫
D
sλϕ|∇w|2 dx

+ C
∫
D
(s3λ3ϕ3 + s2λ4ϕ2)w2 dx

+ C
∫

∂D
(sλϕ|∇w|2 + (s3λ3ϕ3 + s2λ3ϕ2)w2) ds. (A6)

Step 3. The first and the second terms on the left-hand side of (A6) have different signs, so we need another estimate.
In this step will obtain another estimation of∫

D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx

by means of ∫
D
(P1w + P2w)(sλ2ϕσw) dx.

Here the factor sλ2ϕσw is necessary for obtaining the term of |∇w|2 with the desirable (s, λ,ϕ)-factor sλ2ϕ. That is,
multiplying sλ2ϕσw to both sides of the equation

2sλϕ

n∑
i,j=1

aij(∂id)(∂jw) −
n∑

i,j=1
aij∂i∂jw − s2λ2ϕ2σw + A1w = fesϕ ,

we obtain ∫
D
fesϕsλ2ϕσwdx =

4∑
k=1

Ik, (A7)

where

I1 :=
∫
D
2sλϕ

n∑
i,j=1

aij(∂id)(∂jw)sλ2ϕσw dx,

I2 := −
∫
D

⎛⎝ n∑
i,j=1

aij∂i∂jw

⎞⎠ sλ2ϕσw dx,

I3 := −
∫
D
s3λ4ϕ3σ 2w2 dx,

I4 :=
∫
D
(A1w)(sλ2ϕσw) dx.

Now, using integration by parts and the relation ∂iϕ = λ(∂id)ϕ, we estimate the terms Ij (j= 1,2,3,4) as follows.

|I1| =
∣∣∣∣∣∣
∫
D
s2λ3ϕ2σ

n∑
i,j=1

aij(∂id)∂j(w2) dx

∣∣∣∣∣∣
=
∣∣∣∣∣∣−
∫
D

n∑
i,j=1

s2λ3{2λ(∂jd)ϕ2}σaij(∂id)w2 dx

−
n∑

i,j=1
s2λ3ϕ2∂j(σaij(∂id))w2 dx +

∫
∂D

n∑
i,j=1

s2λ3ϕ2σaij(∂id)w2νjdS |

≤ C
∫
D
s2λ4ϕ2w2 dx + C

∫
∂D

s2λ3ϕ2w2 ds; (A8)

I2 = −
∫
D
sλ2

n∑
i,j=1

ϕσaijw(∂i∂jw) dx

=
∫
D
sλ2

n∑
i,j=1

ϕσaij(∂iw)(∂jw) dx +
∫
D
sλ2

n∑
i,j=1

∂i(ϕσaij)w(∂jw) dx



APPLICABLE ANALYSIS 21

−
∫

∂D
sλ2

n∑
i,j=1

ϕσaijw(∂jw)νi ds

≥
∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx − C
∫
D
sλ3ϕ|∇w||w| dx

− C
∫

∂D
sλ2ϕ|w||∇w| ds; (A9)

I3 = −
∫
D
s3λ4ϕ3σ 2w2 dx; (A10)

|I4| ≤ C
∣∣∣∣∫

D
(sλ2ϕ) (sλ2ϕσw2) dx

∣∣∣∣ ≤ C
∫
D
s2λ4ϕ2w2 dx. (A11)

Hence, by (A7)–(A11) we obtain∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx −
∫
D
s3λ4ϕ3σ 2w2 dx

≤ C
∫
D

|fesϕsλ2ϕσw| dx + C
∫
D
s2λ4ϕ2w2 dx + C

∫
D
sλ3ϕ|∇w||w| dx

+ C
∫

∂D
(s2λ3ϕ2w2 + sλ2ϕ|w||∇w|) ds. (A12)

Since
sλ3ϕ|∇w||w| = (sλ2ϕ|w|)(λ|∇w|) ≤ (1/2)s2λ4ϕ2w2 + (1/2)λ2|∇w|2,

we have ∫
D
sλ3ϕ|∇w||w| dx ≤ (1/2)

∫
D
(s2λ4ϕ2w2 + λ2|∇w|2) dx. (A13)

Furthermore, using the inequalities

sλ2ϕ|w||∇w| = (s1/2λ1/2ϕ1/2|∇w|)(s1/2λ 3
2 ϕ1/2w)

≤ (1/2)sλϕ|∇w|2 + (1/2)sλ3ϕw2,

|fesϕsλ2ϕσw| ≤ (1/2)f 2e2sϕ + (1/2)s2λ4ϕ2σ 2w2

≤ (1/2)f 2e2sϕ + Cs2λ4ϕ2w2,

it follows from (A12) and (A13) that∫
D
sλ2ϕσ

n∑
i,j=1

aij(∂iw)(∂jw) dx −
∫
D
s3λ4ϕ3σ 2w2 dx

≤ C
∫
D
f 2e2sϕdx + C

∫
D
s2λ4ϕ2w2 dx + C

∫
D

λ2|∇w|2 dx

+ C
∫

∂D
(sλϕ|∇w|2 + (sλ3ϕ + s2λ3ϕ2)w2) ds. (A14)

End of the proof. Multiplying (A14) by two, adding the resulting expression to (A6), and making use of (3) and the
relation σ0 ≡ inf (x,t)∈Q σ(x, t) > 0, we obtain∫

D
s3λ4ϕ3σ 2

0w
2 dx +

∫
D
sλ2ϕ|∇w|2 dx

≤ C
∫
D
f 2e2sϕ dx + C

∫
D
(sλϕ + λ2)|∇w|2 dx

+ C
∫
D
(s3λ3ϕ3 + s2λ4ϕ2)w2 dx

+ C
∫

∂D
(sλϕ|∇w|2 + (s3λ3ϕ3 + s2λ3ϕ2 + sλ3ϕ)w2) ds. (A15)
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Therefore, taking λ > 0 and s> 0 sufficiently large, we can absorb the second and the third terms on the right-hand
side of (A15) into the left-hand side. Consequently, it follows that∫

D
s3λ4ϕ3w2 dx +

∫
D
sλ2ϕ|∇w|2 dx

≤ C
∫
D
f 2e2sϕ dx + C

∫
∂D

(sλϕ|∇w|2 + s3λ3ϕ3w2) ds.

Noting w = uesϕ , we have ∫
D
(sλ2ϕ|∇u|2 + s3λ4ϕ3u2)e2sϕ dx

≤ C
∫
D
f 2e2sϕ dxd + CeC(λ)s

∫
∂D

(|∇u|2 + u2) ds,

which finishes the proof of the Carleman estimate. �
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