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Assume that a time-harmonic elastic wave is incident onto a penetrable anisotropic 
elastic body embedded in a homogeneous isotropic background medium. The 
scattering problem is reduced to a truncated domain. Uniqueness and existence of 
weak solutions are proved by applying the Fredholm alternative and using properties 
of the Dirichlet-to-Neumann map in both two and three dimensions. The Fréchet 
derivative of the near-field solution operator with respect to the boundary of the 
scatterer is derived. As an application, a descent algorithm is designed for recovering 
the interface from the near-field data of one or several incident directions and 
frequencies. Numerical examples in 2D are presented to show the validity and 
accuracy of the algorithm.
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r é s u m é

Nous avons supposé qu’une onde élastique harmonique en temps est incident sur 
un objet élastique anisotrope pénétrable, qui s’intègre dans un milieu homogène 
isotrope. Le problème de diffusion se réduit sur un domaine tronqué. L’existence 
et l’unicité de la solution faible du problème direct qui se pose en dimension deux 
ou en dimension trois se démontre en appliquant l’alternative de Fredholm et en 
utilisant les propriétés de l’opérateur Dirichlet-to-Neumann. Nous avons calculé la 
dérivé de Fréchet d’un opérateur de near-field par rapport au bord de la dispersion. 
Pour l’application, un algorithme de la méthode de gradient est implémenté pour 
reconstruire l’interface à partir des données near-field d’une ou plusieurs directions et 
fréquences incidents. Des exemples en dimension deux sont présentés pour montrer 
la validité et la précision de l’algorithme.
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1. Introduction

Time-harmonic elastic scattering problems arise from many mechanic systems and engineering structures, 
in which the linear elasticity theory ([1]) provides an essential tool for analysis and design. For an infinite 
background medium, the boundary value problem for the Lamé system can be reduced to an equivalent 
system on a bounded domain. For instance, the finite element method for the scattering problems usually 
requires a strongly elliptic variational formulation with a nonlocal boundary condition (see e.g., [2,3]). To 
truncate the unbounded domain, one needs to derive the so-called Dirichlet-to-Neumann map (or non-
reflecting boundary condition, transparent boundary operator) on an artificial boundary as a replacement 
of the Kupradze radiation condition at infinity. In the literature, the DtN map in elastodynamics have 
been used by some physicists and engineers for simulation ([4–10]). However, properties of the transpar-
ent operator have not been sufficiently investigated yet. These properties are fundamental for the strong 
ellipticity of the variational formulation and the well-posedness (existence, uniqueness and stability) of the 
model problem. We refer to [11–13] for the treatment of the time-harmonic Helmholtz and Maxwell equa-
tions. Although a nonlocal boundary condition closely related to the DtN map was utilized in [14], mapping 
properties of the non-reflecting operator in Sobolev spaces were not involved there. In a recent paper [15], 
a special sesquilinear form, which corresponds to a special choice of the elastic parameters, has been em-
ployed to prove well-posedness of the elastic scattering problem. However, the approach of [15] relies heavily 
on the boundary condition of the scatterer and applies only to a rigid impenetrable elastic body in two 
dimensions.

This paper is concerned with both direct and inverse scattering from an anisotropic elastic body in 
a homogenous isotropic background medium. The first half is devoted to the well-posedness in a more 
general setting. We propose an equivalent variational formulation on a truncated bounded domain, and 
show the uniqueness and existence of weak solutions for both inhomogeneous penetrable anisotropic bodies 
and impenetrable scatterers with various boundary conditions. In contrast to the Helmholtz equation, the 
real part of the DtN map is not negative-definite. Nevertheless, the resulting sesquilinear form may be 
shown to be strongly elliptic. Motivated by Betti’s formula, we analyze the DtN map for the generalized 
stress operator which covers the usual stress operator and the special case discussed in [16,15]. To prove 
uniqueness, we verify the Rellich’s identity in elasticity. Our proof should be of independent interest since 
it has generalized the arguments in [15] and [17, Lemma 5.8] for special cases. The Rellich’s identity in 
periodic structures can be found in [18,16].

The second half of this paper is concerned with the inverse problem of reconstructing the shape of an 
unknown anisotropic body from near-field measurements of plane incident waves. It is well-known that 
the knowledge of DtN map cannot be used to uniquely identify general anisotropic elastic media; see e.g., 
the counter example presented in [5,19] based on the idea of transformation elastodynamics. In particular, 
two inclusions with different anisotropic elastic media may give rise to the same far-field measurements. 
In this paper the anisotropic medium is supposed to be homogeneous and known in advance, and the 
unknown inclusion needs to be recovered from the near-field data corresponding to a finite number of incident 
directions or frequencies. Relying on the variational arguments presented in the first half and those in [20]
and [21], we derive the Fréchet derivative of the solution operator with respect to the scattering surface. 
A different approach based on the integral equation was used in acoustics [22] and in elasticity [23,24]. 
The shape derivative can be used to design a nonlinear optimization approach for shape recovery from the 
data of several incident directions and frequencies. We refer to [25] for the application of shape derivative 
in reconstructing targets from multistatic response measurements given point sources with resolution and 
stability analysis. Here, we employ a descent method to find the parameters of the unknown surface in a finite 
dimensional space. At each iteration step, the forward problem needs to be solved and the correctness of the 
parameters needs to be evaluated. Numerical examples in 2D are presented to show the validity and accuracy 
of our inversion algorithms. We refer to the review article [5] and the recent monograph [26] for various 
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inverse problems in elasticity and to [27–29,15,30,31] where iterative approaches using multi-frequency data 
were developed. For the imaging methods to reconstruct small inclusions in elastic medium, see [32,33] for 
example.

It is worth noting that there are still two open problems. Firstly, how to derive a frequency-dependent 
estimate of the solution for a star-shaped rigid scatterer? Readers are referred to e.g. [11] for a wavenumber-
dependent estimate in the acoustic case, which was derived based on the use of a Rellich-type identity for 
the scalar Helmholtz equation. In linear elasticity, the lack of the negativity of the real part of the DtN map 
leads to essential difficulties in generalizing the arguments of [11]. Secondly, how to prove the well-posedness 
in a homogenous anisotropic background medium? A new radiation condition at infinity seems to be neces-
sary, which should cover the Kupradze radiation condition as a special case. In this paper, the assumption 
of the isotropic background medium has considerably simplified our arguments. The far-field asymptotics 
of the Green’s tensor for a transversely isotropic solid was recently analyzed in [34]. However, a radiation 
condition in the general case seems unavailable in the literature.

The remaining part of this paper is organized as following. In Section 2, we describe the forward scattering 
model in RN (N = 2, 3) and prove the unique solvability using variational arguments. Properties of the 
DtN map in two and three dimensions will be presented in Sections 2.3 and 2.4, respectively. In Section 3
we derive the Fréchet derivative and apply it to solve the inverse scattering problems. Numerical tests for 
both direct and inverse problems will be reported in Section 4.

2. Well-posedness of the direct scattering problems

2.1. Mathematical formulations

Suppose that a time-harmonic elastic wave uin (with the time variation of the form e−iωt where ω > 0
is a fixed frequency) is incident onto an anisotropic elastic body Ω embedded in an infinite homogeneous 
isotropic background medium in RN (N = 2, 3). It is assumed that Ω is a bounded Lipschitz domain 
and the exterior Ωc := R

N\Ω of Ω is connected. In particular, Ω is allowed to consist of a finite num-
ber of disconnected bounded components. In linear elasticity, the spatially-dependent displacement vector 
u(x) = (u1, u2, · · · , uN )�(x), where (·)� means the transpose, is governed by the following reduced Lamé 
system

N∑
j,k,l=1

∂

∂xj

(
Cijkl(x)∂uk(x)

∂xl

)
+ ω2ρ(x)ui(x) = 0 in R

N , i = 1, 2, · · · , N. (2.1)

In (2.1), u = uin + usc is the total field and usc is the scattered field; C = (Cijkl)Ni,j,k,l=1 is a fourth-rank 
constitutive material tensor of the elastic medium which is physically referred to as the stiffness tensor; ρ is a 
complex-valued function with the real part Re ρ > 0 and imaginary part Im ρ ≥ 0, denoting respectively the 
density and damping parameter of the elastic medium. The stiffness tensor satisfies the following symmetries 
for a generic anisotropic elastic material:

major symmetry: Cijkl = Cklij , minor symmetries: Cijkl = Cjikl = Cijlk, (2.2)

for all i, j, k, l = 1, 2, · · · , N . By Hooke’s law, the stress tensor σ relates to the stiffness tensor C via the 
identity σ(u) := C : ∇u, where the action of C on a matrix A = (aij) is defined as

C : A = (C : A)ij =
N∑

Cijkl akl.

k,l=1
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Hence, the elliptic system in (2.1) can be restated as

∇ · (C : ∇u) + ω2ρu = 0 in R
N . (2.3)

Note that in (2.1) we have assumed the continuity of the stress vector or traction (the normal component 
of the stress tensor) on ∂Ω, i.e., N+

C u = N−
C u where

NCu := ν · σ(u)

=

⎛⎝ N∑
j,k,l=1

νjC1jkl
∂uk

∂xl
,

N∑
j,k,l=1

νjC2jkl
∂uk

∂xl
, · · · ,

N∑
j,k,l=1

νjCNjkl
∂uk

∂xl

⎞⎠ ,

with ν = (ν1, ν2, . . . , νN )� ∈ S
N−1 denoting the exterior unit normal vector to ∂Ω and (·)± the limits taken 

from outside and inside of Ω, respectively.
Since the elastic material in Ωc is isotropic and homogeneous, one has

Cijkl(x) = λδi,jδk,l + μ(δi,kδj,l + δi,lδj,k), x ∈ Ωc. (2.4)

That is, the stiffness tensor of the background medium is characterized by the Lamé constants λ and μ
which satisfy μ > 0, Nλ + 2μ > 0. Hence, the stress tensor in Ωc takes the simple form

σ(u) = λ Idiv u + 2μ ε(u), ε(u) := 1
2
(
∇u + ∇u�) ,

where I stands for the N × N identity matrix. Assuming that ρ(x) ≡ ρ0 in Ωc, the Lamé system (2.1)
reduces to the time-harmonic Navier equation

Δ∗ u + ω2ρ0u = 0 in Ωc, Δ∗u := μΔu + (λ + μ) grad div u. (2.5)

Moreover, the surface traction NCu on ∂Ω takes the more explicit form NC u = Tλ,μu, where

Tλ,μu := 2μ∂νu + λ ν div u + μν⊥ (∂2u1 − ∂1u2), ν = (ν1, ν2)�, (2.6)

with ν⊥ := (−ν2, ν1)� in two dimensions, and

Tλ,μu := 2μ∂νu + λ ν div u + μν × curlu, ν = (ν1, ν2, ν3)�, (2.7)

in three dimensions. Here and also in what follows, we write Tλ,μu = Tu to drop the dependance of Tλ,μ on 
the Lamé constants λ and μ of the background medium. Denote by

ks := ω
√
ρ0/μ, kp := ω

√
ρ0/(λ + 2μ)

the shear and compressional wave numbers of the background material, respectively.
Since the domain Ωc is unbounded, an appropriate radiation condition at infinity must be imposed on 

usc to ensure well-posedness of the scattering problem. The scattered field in Ωc can be decomposed into 
the sum of the compressional (longitudinal) part usc

p and the shear (transversal) part usc
s as follows (in three 

dimensions):

usc = usc
p + usc

s , usc
p = − 1

k2 grad div usc, usc
s = 1

k2 curl curl usc. (2.8)

p s
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In two dimensions, the shear part of the scattered field should be modified as

usc
s = 1

k2
s

−−→
curl curl usc, (2.9)

where the two-dimensional operators curl and 
−−→
curl are defined respectively by

curl v = ∂1v2 − ∂2v1, v = (v1, v2)�,
−−→
curl f := (∂2f,−∂1f)�.

It then follows from the decompositions in (2.8) and (2.9) that

(Δ + k2
α)usc

α = 0, α = p, s, div usc
s = 0

and

curlusc
p = 0 in 3D,

−−→curlusc
p = 0 in 2D.

The scattered field is required to satisfy the Kupradze radiation condition (see e.g. [35])

lim
r→∞

r
N−1

2

(
∂usc

p

∂r
− ikpu

sc
p

)
= 0, lim

r→∞
r

N−1
2

(
∂usc

s

∂r
− iksu

sc
s

)
= 0, r = |x| (2.10)

uniformly with respect to all x̂ = x/|x| ∈ S
N−1 := {x ∈ R

N : |x| = 1}. The radiation conditions in (2.10)
lead to the P-part (longitudinal part) u∞

p and the S-part (transversal part) u∞
s of the far-field pattern of usc, 

given by the asymptotic behavior as |x| → +∞

usc(x) = exp(ikp|x|)
|x|N−1

2
u∞
p (x̂) + exp(iks|x|)

|x|N−1
2

u∞
s (x̂) + O(|x|−N+1

2 ), (2.11)

where, with some normalization, u∞
p and u∞

s are the far-field patterns of usc
p and usc

s , respectively. We define 
the far-field pattern u∞ of the scattered field usc as the sum of u∞

p and u∞
s , that is, u∞ := u∞

p + u∞
s . Since 

u∞
p is normal to SN−1 and u∞

s is tangential to SN−1, it holds the relations

u∞
p (x̂) = (u∞(x̂) · x̂) x̂, u∞

s (x̂) =
{

x̂× u∞(x̂) × x̂ in 3D,

(x̂⊥ · u∞(x̂)) x̂⊥ in 2D.

Throughout this paper we make the following assumptions:

(A1) There exists R > 0 such that Ω ⊂ BR := {x ∈ R
N : |x| < R} and that uin satisfies the Navier 

equation (2.5) in BR.
(A2) The stiffness tensor C satisfies the uniform Legendre ellipticity condition

N∑
i,j,k,l=1

Cijkl(x) aijakl ≥ c0

N∑
i,j=1

|aij |2, aij = aji, c0 > 0, (2.12)

for all x ∈ Ω. In other words, (C(x) : A) : A ≥ c0||A||2 for all symmetry matrices A = (aij)Ni,j=1 ∈
R

N×N . Here ||A|| means the Frobenius norm of the matrix A.
(A3) ||ρ||L∞(Ω) < ∞, and ||Cijkl||L∞(Ω) < ∞ for all 1 ≤ i, j, k, l ≤ N .
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Remark 2.1. The incident wave uin is allowed to be a linear combination of pressure and shear plane waves 
of the form

uin(x, d) = cp d exp(ikpx · d) + cs d
⊥ exp(iksx · d), cp, cs ∈ C, (2.13)

with d ∈ S
N−1 being the incident direction and d⊥ ∈ S

N−1 satisfying d⊥ · d = 0. It also can be elastic point 
source waves satisfying the equation

Δ∗ uin(·; y) + ω2ρ0u
in(·; y) = δ(· − y) a in R

N\{y},

where y ∈ R
N\BR represents the location of the source and a ∈ C

N denotes the polarization direction. An 
explicit expression of uin(·; y) is given by uin(·; y) = Π(·, y)a where Π is the free-space Green’s tensor to the 
Navier equation given by

Π(x, y) = 1
μ

Φks
(x, y)I + 1

ρ0ω2 grad xgrad�
x

[
Φks

(x, y) − Φkp
(x, y)

]
, x 
= y. (2.14)

Here Φk (k = kp, ks) is the fundamental solution to the Helmholtz equation (Δ + k2)u = 0 in RN . It is 
well-known that

Φk(x; y) =

⎧⎨⎩
i
4H

(1)
0 (k|x− y|), N = 2,

eik|x−y|

4π|x−y| , N = 3,
x 
= y, (2.15)

with H(1)
0 (·) being the Hankel function of the first kind of order zero.

Let H1(BR) denote the Sobolev space of scalar functions on BR. In the following we state the uniqueness 
and existence of weak solutions to our scattering problem in the energy space XR := (H1(BR))N .

Theorem 2.2. Under the assumptions (A1)–(A3) there exists a unique solution u ∈ XR to the scattering 
problem (2.1), (2.5) and (2.10).

The proof of Theorem 2.2 will depend on the Fredholm alternative together with properties of the 
Dirichlet-to-Neumann mapping on ΓR:= ∂BR. As a consequence, we also obtain the well-posedness of the 
scattering problem due to an impenetrable elastic body with various kinds of boundary conditions.

Corollary 2.3. Consider the time-harmonic elastic scattering from an impenetrable bounded elastic body Ω
with Lipschitz boundary embedded in a homogeneous isotropic medium. Suppose that the total field satisfies 
one of the following boundary conditions on ∂Ω:

(i) The first kind (Dirichlet) boundary condition: u = 0;
(ii) The second kind (Neumann) boundary condition: Tu = 0;
(iii) The third kind boundary condition: ν · u = 0, ν × Tu = 0 in 3D, ν · u = ν⊥ · Tu = 0 in 2D;
(iv) The fourth kind boundary condition: ν × u = 0, ν · Tu = 0 in 3D, ν⊥ · u = ν · Tu = 0 in 2D;
(v) Robin boundary condition: Tu − iηu = 0, η ∈ C, Re(η) > 0.

Then the scattered field usc = u − uin is uniquely solvable in (H1
loc(RN\Ω))N .

The variational approach for proving Theorem 2.2 can be easily adapted to treat the boundary value 
problems in Corollary 2.3. We omit the details for simplicity and refer to [16] for the proof in unbounded 
periodic structures.



G. Bao et al. / J. Math. Pures Appl. 117 (2018) 263–301 269
Remark 2.4. Using integral equation methods, well-posedness of the boundary value problems in Corol-
lary 2.3 has been investigated in Kupradze [35,36] for scatterers with C2-smooth boundaries. The variational 
arguments presented here have thus relaxed the regularity of the boundary to be Lipschitz.

2.2. Variational formulation with transparent boundary operator

Let R > 0 be specified in assumption (A1). By the first Betti’s formula, it follows that for u, v ∈ XR,

−
∫
BR

[∇ · (C : ∇u) + ω2ρu] · v dx

=
∫
BR

[(C : ∇u) : ∇v − ω2ρ u · v] dx−
∫
ΓR

Tu · v ds. (2.16)

Below we introduce the Dirichlet-to-Neumann (DtN) map in a homogeneous isotropic background medium, 
allowing us to reduce the scattering problem on a bounded domain.

Definition 2.5. For any w ∈ (H1/2(ΓR))N , the DtN map T acting on w is defined as

T w := (Tvsc)|ΓR
,

where vsc ∈ (H1
loc(RN\BR))N is the unique radiating solution to the boundary value problem

Δ∗vsc + ω2ρ0v
sc = 0 in R

N\BR, vsc = w on ΓR. (2.17)

Remark 2.6. The DtN map T is well-defined, since the Dirichlet-kind boundary value problem (2.17) is 
uniquely solvable in (H1

loc(RN\BR))N ; see Remarks 2.12 and 2.16 for the explicit expressions in terms of 
special functions.

To obtain an equivalent variational formulation of (2.1), we shall apply Betti’s identity (2.16) to a solution 
u = uin + usc in BR and use the relation

Tu = Tuin + Tusc = Tuin + T usc = f + T u, f := (Tuin − T uin)|ΓR
.

Then the variational formulation reads as follows: find u = (u1, · · · , uN ) ∈ XR such that

a(u, v) =
∫
ΓR

f · v ds for all v = (v1, v2, · · · , vN )� ∈ XR, (2.18)

where the sesquilinear form a(·, ·) : XR ×XR → C is defined by

a(u, v) :=
∫
BR

⎧⎨⎩
N∑

i,j,k,l=1

Cijkl
∂uk

∂xl

∂vi
∂xj

− ω2 ρ uivi

⎫⎬⎭ dx−
∫
ΓR

T u · v ds. (2.19)

Remark 2.7. The variational problem (2.18) and the scattering problem (2.1), (2.5), (2.10) are equivalent 
in the following sense. If usc ∈ (H1

loc(RN ))N is a solution of the scattering problem (2.1), (2.5) and (2.10), 
then the restriction of the total field u to BR, i.e., u|BR

, satisfies the variational problem (2.18). Conversely, 
a solution u ∈ XR of (2.18) can be extended to a solution u = uin + usc of the Lamé system in |x| > R, 
where usc is defined as the unique radiating solution to the isotropic Lamé system in |x| > R satisfying the 
Dirichlet boundary value usc = u − uin on ΓR.
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In the following lemma, we show properties of the DtN map T which play an essential role in our 
uniqueness and existence proofs. The two and three dimensional proofs will be carried out in the subsequent 
Sections 2.3 and 2.4, respectively.

Lemma 2.8.

(i) T is a bounded operator from (H1/2(ΓR))N to (H−1/2(ΓR))N .
(ii) The operator −T can be decomposed into the sum of a positive operator T1 and a compact operator T2, 

that is, −T = T1 + T2 on (H1/2(ΓR))N .

Let X ′
R denote the dual of XR with respect to the inner product of (L2(BR))N . By the boundedness 

of ρ, Cijkl (see Assumption (A3)) and T , there exists a continuous linear operator A : XR → X ′
R associated 

with the sesquilinear form a such that

a(u, v) =< Au, v > for all v ∈ XR. (2.20)

Here and henceforth the notation < ·, · > denotes the duality between X ′
R and XR. By Assumption (A1) 

and Lemma 2.8 (ii), there exists F ∈ X ′
R such that∫

ΓR

f · v ds =< F , v > for all v ∈ XR.

Hence the variational formulation (2.18) can be written as an operator equation of finding u ∈ XR such 
that

Au = F in X ′
R.

Below we recall the definition of strong ellipticity.

Definition 2.9. A bounded sesquilinear form a(·, ·) on some Hilbert space X is called strongly elliptic if there 
exists a compact form q(·, ·) such that

|Re a(u, u)| ≥ C ||u||2X − q(u, u) for all u ∈ X.

The following theorem establishes the strong ellipticity of the sesquilinear form a defined by (2.19).

Theorem 2.10. The sesquilinear form a(·, ·) is strongly elliptic over XR under the Assumption (A2). More-
over, the operator A : XR → X ′

R defined by (2.20) is a Fredholm operator with index zero.

Proof. We may rewrite the form a as the sum a = a1 + a2, where the sesquilinear forms aj (j = 1, 2) are 
defined as

a1(u, v) :=
∫
BR

⎧⎨⎩
N∑

i,j,k,l=1

Cijkl
∂uk

∂xl

∂vi
∂xj

⎫⎬⎭ dx +
∫
ΓR

T1u · v ds,

a2(u, v) := −ω2
∫
BR

ρ u · v dx +
∫
ΓR

T2u · v ds,

Note that Tj (j = 1, 2) are the operators given by Lemma 2.8. It is seen from the uniform Legendre ellipticity 
condition and Lemma 2.8 (ii) that a1 is coercive over XR. The compact embedding of XR into (L2(BR))N



G. Bao et al. / J. Math. Pures Appl. 117 (2018) 263–301 271
and the compactness of T2 give the compactness of the form a2. Hence a(·, ·) is strongly elliptic over XR

and thus A is a Fredholm operator with index zero. �
Proof of Theorem 2.2. Using Theorem 2.10 and applying the Fredholm alternative, we only need to prove 
the uniqueness of our scattering problem. Letting uin ≡ 0 (which implies that f = 0 in X ′

R) and taking the 
imaginary part of (2.18) with v = usc we get

Im
∫
ΓR

T usc · usc ds = 0.

By the analogue of Rellich’s lemma in elasticity (see Lemmas 2.14 and 2.17 below) we obtain usc ≡ 0 in BR. 
This proves the uniqueness and Theorem 2.2. �

The remaining part of this section will be devoted to the proof of properties of the DtN map in a more 
general setting. We shall consider the generalized stress vector (cf. (2.6))

T̃λ̃,μ̃u :=
{

(μ + μ̃)ν · gradu + λ̃ν divu− μ̃ν⊥curlu, if N = 2,
(μ + μ̃)ν · gradu + λ̃ν divu + μ̃ν × curlu, if N = 3,

(2.21)

where λ̃, μ̃ ∈ R satisfying λ̃ + μ̃ = λ + μ. In the present paper we assume that

(λ− μ)(λ + 2μ)
λ + 3μ < λ̃ < λ + 2μ. (2.22)

The assumption (2.22) will be used later for proving Lemma 2.13 (ii) and Lemma 2.17 (ii). We emphasize 
that the above condition (2.22) covers at least the following three cases:

Case (i): λ̃ = λ, μ̃ = μ.
Case (ii): λ̃ = λ + μ, μ̃ = 0.
Case (iii): λ̃ = (λ + 2μ)(λ + μ)/(λ + 3μ), μ̃ = μ(λ + μ)/(λ + 3μ).

Note that the usual surface traction coincides with T̃λ̃,μ̃ in the case (i). Properties of the DtN map in case (ii) 
were analyzed in [18] on a line and in [15] on a circle.

The generalized DtN map T̃ corresponding to (2.21) is defined as

T̃ w = (T̃λ̃,μ̃ v
sc)|ΓR

, w ∈ (H1/2(ΓR))N ,

where vsc ∈ (H1
loc(Ωc))N is the radiating solution to the isotropic homogeneous Navier equation (2.5) in 

|x| ≥ R.

2.3. Properties of DtN map in 2D

In this section we verify Lemma 2.8 and the Rellich’s identity for the generalized DtN map T̃ in R2. 
For this purpose, the surface vector harmonics in R2 are needed. Denote by (r, θx) the polar coordinates of 
x = (x1, x2)� ∈ R

2, and by r̂, θ̂ ∈ S
1 the unit vectors under the polar coordinates such that

r̂ = (cos θ, sin θ)�, θ̂ = (− sin θ, cos θ)�, θ ∈ [0, 2π).

Let P n and Sn be the surface vector harmonics in two-dimensions defined as

P n(x̂) := einθx r̂, Sn(x̂) := einθx θ̂, x̂ = x/|x| ∈ S
1. (2.23)
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Below we shall derive a series representation of the generalized DtN map. The solution vsc can be split 
into the sum of a pressure part with vanishing curl and a shear part with vanishing divergence, that is,

vsc = gradψp +
−−→
curlψs in |x| ≥ R, (2.24)

where ψp and ψs are both scalar functions. It then follows that

Δψα + k2
αψα = 0, lim

r→∞
r1/2

(
∂ψα

∂r
− ikαψα

)
= 0, α = p, s. (2.25)

The solutions of (2.25) can be expressed as

ψα(x) =
∞∑

n=−∞

H
(1)
n (kαr)

H
(1)
n (kαR)

ψn
α einθx , r = |x| ≥ R, α = p, s, (2.26)

where ψn
α ∈ C stand for the Fourier coefficients of ψα|ΓR

and H(1)
n is the Hankel function of the first kind 

of order n. Set

tα := kαR, γα := H
(1)
n

′
(tα)

H
(1)
n (tα)

, βα := H
(1)
n

′′
(tα)

H
(1)
n (tα)

, α = p, s.

Let (·, ·) be the L2 inner product on the unit circle given by

(u, v) := 1
2π

2π∫
0

u · v dθ for all u, v ∈ (L2(S1))2.

Due to the orthogonality relations between P n and Sn, it is easy to derive from (2.24) and (2.26) that

(vsc|ΓR
,P n) = 1

R

[
tpγpψ

n
p + inψn

s

]
, (vsc|ΓR

,Sn) = 1
R

[
inψn

p − tsγsψ
n
s

]
.

Equivalently, the previous relations can be written in the matrix form

An

[
ψn
p

ψn
s

]
= R

[(vsc|ΓR
,P n)

(vsc|ΓR
,Sn)

]
, An :=

[
tpγp in

in −tsγs

]
. (2.27)

Lemma 2.11. The matrix An is invertible for all n ∈ Z and R > 0. Its inverse is given by

A−1
n = 1

Λn

[
−tsγs −in

−in tpγp

]
, Λn := det(An) = n2 − tptsγpγs. (2.28)

Proof. It’s sufficient to prove that Λn 
= 0. We write Λn as

Λn = n2 − In(tP ) In(ts), In(z) := zH(1)
n

′
(z)/H(1)

n (z).

Making use of the Wronskian identity for Bessel and Neumann functions (see, e.g., [12, Chapter 3.4]), it is 
easy to derive that

Im (In(z)) = 2
(1) 2

for all n ∈ Z, z > 0.

π|Hn (z)|
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This implies that, for any fixed n ∈ Z,

Re (Λn) = n2 − Re (In(tP )) Re (In(ts)) + Im (In(tP )) Im (In(ts)),

Im (Λn) = −Re (In(tP )) Im (In(ts)) − Im (In(tP )) Re (In(ts))

cannot vanish simultaneously. Hence, Λn 
= 0. �
Remark 2.12. The unique radiating solution vsc to the boundary value problem (2.17) can be represented 
as the series (2.24) and (2.26), where the coefficients ψn

p and ψn
s are given by[

ψn
p

ψn
s

]
= RA−1

n

[
(w,P n)
(w,Sn)

]
.

Now, we turn to investigating the generalized stress vector (cf. (2.21))

T̃ vsc = (μ + μ̃) r̂ · grad vsc + λ̃ r̂ div vsc − μ̃ θ̂ curl vsc on |x| = R.

Inserting (2.24) into the previous identity and using the relations

grad = r̂
∂

∂r
+ 1

r
θ̂
∂

∂θ
, r̂ · grad = ∂

∂r
,

−−→
curl = −θ̂

∂

∂r
+ 1

r
r̂
∂

∂θ
,

we obtain via straightforward calculations that

r̂ · T̃ vsc = (μ + μ̃) r̂ · ∂

∂r

[
r̂
∂ψp

∂r
+ 1

r
θ̂
∂ψp

∂θ
− θ̂

∂ψs

∂r
+ 1

r
r̂
∂ψs

∂θ

]
+ λ̃ div curlψp

= (μ + μ̃)
(
∂2ψp

∂r2 − 1
r2

∂ψs

∂θ
+ 1

r

∂2ψs

∂r∂θ

)
+ λ̃Δψp,

θ̂ · T̃ vsc = (μ + μ̃) θ̂ · ∂

∂r

[
r̂
∂ψp

∂r
+ 1

r
θ̂
∂ψp

∂θ
− θ̂

∂ψs

∂r
+ 1

r
r̂
∂ψs

∂θ

]
− μ̃ curl−−→curlψs

= (μ + μ̃)
(
− 1
r2

∂ψp

∂θ
+ 1

r

∂2ψp

∂r∂θ
− ∂2ψs

∂r2

)
+ μ̃Δψs.

This implies that ⎡⎣
(
T̃ vsc|ΓR

,P n

)
(
T̃ vsc|ΓR

,Sn

)
⎤⎦ = 1

R2 Bn

[
ψn
p

ψn
s

]
(2.29)

where

Bn :=
[

(μ + μ̃)t2pβp − λ̃t2p i(μ + μ̃)n (tsγs − 1)
i(μ + μ̃)n (tpγp − 1) − (μ + μ̃) t2sβs − μ̃t2s

]
. (2.30)

Combining (2.29) with (2.27) gives the relation⎡⎣
(
T̃ (vsc|ΓR

),P n

)
(
T̃ (vsc|ΓR

),Sn

)
⎤⎦ = Wn

[(vsc|ΓR
,P n)

(vsc|ΓR
,Sn)

]
, Wn := 1

R
BnA

−1
n . (2.31)

Properties of the two-dimensional DtN map are summarized in the subsequent two lemmas.
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Lemma 2.13. Let w =
∑

n∈Z
wn

pP n + wn
sSn ∈ (H1/2(ΓR))2. Then,

(i) The generalized DtN operator T̃ takes the form

T̃ w =
∑
n∈Z

Wn

[
wn

p

wn
s

]

in the orthogonal basis {(P n, Sn) : n ∈ Z}. Moreover, T̃ is a bounded linear operator from (Hs(ΓR))2
to (Hs−1(ΓR))2 for all s ∈ R.

(ii) For sufficiently large M > 0, the real part of the operator

−T̃1w := −
∑

|n|≥M

Wn

[
wn

p

wn
s

]

is positive over (H1/2(ΓR))2, and T̃ − T̃1 is a compact operator.

Proof. (i) We only need to show the boundedness of T̃ . Recall that

||w||(Hs(ΓR))2 =
(∑

n∈Z

(1 + |n|)2s|wn|2
)1/2

, wn := [wn
p , w

n
s ]�,

||T̃ w||(Hs−1(ΓR))2 =
(∑

n∈Z

(1 + |n|)2(s−1)|Wnw
n|2

)1/2

.

Hence, it suffices to estimate the max norm of the matrix Wn bounded by

||Wn||max ≤ C |n|, (2.32)

for some constant C > 0 uniformly in all n ∈ Z, so that |Wnw
n|2 ≤ C2 |n|2|wn|2.

It holds that

H(1)
n

′′
(z)

=
(
H

(1)
n−1(z) −

n

z
H(1)

n (z)
)′

= −H(1)
n (z) + n− 1

z
H

(1)
n−1(z) + n

z2H
(1)
n (z) − n

z

(
H

(1)
n−1(z) −

n

z
H(1)

n (z)
)

= n2 + n− z2

z2 H(1)
n (z) − 1

z
H

(1)
n−1(z)

= n2 + n− z2

z2 H(1)
n (z) − 1

z

(
H(1)

n

′
(z) + n

z
H(1)

n (z)
)

=
(
n2

z2 − 1
)
H(1)

n (z) − 1
z
H(1)

n

′
(z),

giving rise to the identities

βp = n2

t2
− 1 − 1

t
γp, βs = n2

t2
− 1 − 1

t
γs. (2.33)
p p s s
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From the expressions of A−1
n and Bn we get the entries W (i,j)

n of Wn, given by

W (1,1)
n = 1

RΛn

{
−tsγs

[
(μ + μ̃)t2pβp − λ̃t2p

]
+ n2(μ + μ̃)(tsγs − 1)

}
= 1

RΛn

[
−(μ + μ̃)Λn + ω2ρ0R

2tsγs
]
,

W (2,2)
n = 1

RΛn

{
n2(μ + μ̃)(tpγp − 1) − tpγp

[
(μ + μ̃)t2sβs + μ̃t2s

]}
= 1

RΛn

[
−(μ + μ̃) Λn + ω2ρ0R

2tpγp
]
,

W (1,2)
n = 1

RΛn

{
−in

[
(μ + μ̃)t2pβp − λ̃t2p

]
+ intpγp(μ + μ̃)(tsγs − 1)

}
= 1

RΛn

[
−in(μ + μ̃) Λn + inω2ρ0R

2] ,
W (2,1)

n = 1
RΛn

{
−in(μ + μ̃)tsγs(tpγp − 1) + in

[
(μ + μ̃)t2sβs + μ̃t2s

]}
= 1

RΛn

[
in(μ + μ̃) Λn − inω2ρ0R

2] ,
in which we have used (2.33) and the fact that λ̃ + μ̃ = λ + μ.

From the series expansions of the Bessel and Neumann functions (see, e.g., [12, Chapter 3]) we know

H(1)
n (z) = (n− 2)!

iπ

(
2
z

)n−1
[
(n− 1)

(
2
z

)2

+ 1 + O

(
1
n

)]
, n → +∞.

This implies that

H
(1)
n−1(z)

H
(1)
n (z)

= z

2n− 4
1 + (n− 2)

( 2
z

)2 + O
( 1
n

)
1 + (n− 1)

( 2
z

)2 + O
( 1
n

)
=
[
z

2n + O

(
1
n2

)][
1 + O

(
1
n

)]
= z

2n + O

(
1
n2

)
. (2.34)

The asymptotic behavior (2.34) together with the relation H(1)
n

′
= −n/zH

(1)
n + H

(1)
n−1 leads to

H
(1)
n

′
(z)

H
(1)
n (z)

= −n

z
+ z

2n + O

(
1
n2

)
, n → +∞.

Since H(1)
−n(z) = (−1)nH(1)

n (z), we obtain as |n| → ∞ that

γα = H
(1)
n

′
(tα)

H
(1)
n (tα)

= −|n|
tα

+ tα
2|n| + O

(
1
n2

)
, α = p, s, (2.35)

Λn =
R2(k2

p + k2
s) + O( 1 ) = R2ρ0ω

2(λ + 3μ) + O

(
1
)
. (2.36)
2 |n| 2μ(λ + 2μ) |n|
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Inserting (2.35) and (2.36) into the expression of W (i,j)
n yields

W (1,1)
n = −2μ(λ + 2μ)

R(λ + 3μ) |n| + O(1),

W (2,2)
n = −2μ(λ + 2μ)

R(λ + 3μ) |n| + O(1),

W (1,2)
n = i [(μ + μ̃)(λ + 3μ) − 2μ(λ + 2μ)]

R(λ + 3μ) |n| + O(1),

W (2,1)
n = − i [(μ + μ̃)(λ + 3μ) − 2μ(λ + 2μ)]

R(λ + 3μ) |n| + O(1),

from which the estimate (2.32) follows directly.
(ii) Define W̃n := −(Wn +W ∗

n)/2, where (·)∗ means the conjugate transpose of a matrix. For sufficiently 
large |n|, we have

W̃ (1,1)
n = 2μ(λ + 2μ)

R(λ + 3μ) |n| + O(1) > 0,

det (W̃n) = 4μ2(λ + 2μ)2 − [(λ− λ̃)(λ + 3μ) + 2μ2]2

R2(λ + 3μ)2 n2 + O(n).

Under the assumption (2.22) on λ̃, we see

4μ2(λ + 2μ)2 − [(λ− λ̃)(λ + 3μ) + 2μ2]2 > 0,

implying that det (W̃n) > 0 for sufficiently large |n|. Hence, there exists M > 0 such that W̃n is positive 
definite over C2 for all |n| ≥ M . This proves the positivity of the operator −Re T̃1 defined in Lemma 2.13. 
Finally, T̃ − T̃1 is compact since it is a finite dimensional operator over (H1/2(ΓR))2. �

Below we verify the analogue of Rellich’s lemma in plane elasticity. It was used in the uniqueness proof 
of Theorem 2.2.

Lemma 2.14. Let usc be a radiating solution to the Navier equation (2.5) in |x| ≥ R. Suppose that

Im

⎛⎝ ∫
ΓR

T̃ (usc|ΓR
) · usc ds

⎞⎠ = 0.

Then usc ≡ 0 in |x| ≥ R.

Proof. Assume that usc can be decomposed into the form of (2.24) and (2.26) with the coefficients Ψn =
(ψn

p , ψ
n
s )� ∈ C

2. It follows from (2.27) and (2.29) that

∫
ΓR

T̃ (usc|ΓR
) · usc ds =

∑
n∈Z

(
R−2BnΨn, R

−1AnΨn

)
= R−3

∑
(A∗

nBnΨn,Ψn) . (2.37)

n∈Z



G. Bao et al. / J. Math. Pures Appl. 117 (2018) 263–301 277
Using again the relations in (2.33), straightforward calculations show that

A∗
nBn =

[
tpγp −in

−in −tsγs

] [
(μ + μ̃)t2pβp − λ̃t2p i(μ + μ̃)n (tsγs − 1)
i(μ + μ̃)n (tpγp − 1) − (μ + μ̃) t2sβs − μ̃t2s

]
= :

[
a11 a12
a21 a22

]
. (2.38)

Recalling λ̃ + μ̃ = λ + μ and making use of the relations

t2α βα = n2 − t2α − tαγα, Im (γα) = − 2
|H(1)

n (tα)|2πtα
< 0, α = p, s,

we obtain

Im (a11) = −Im (γp)(λ + 2μ)t3p = 2ω2R2

π|H(1)
n (kpR)|2

> 0,

Im (a22) = −Im (γs)μt3s = 2ω2R2

π|H(1)
n (ksR)|2

> 0,

a12 = a21.

This implies that

Im (A∗
nBn) = (A∗

nBn) − (A∗
nBn)∗

2i = 2ω2R2

π

[
1/|H(1)

n (kpR)|2 0
0 1/|H(1)

n (ksR)|2

]
.

Now, we conclude from (2.37) and (2.38) that

0 = 2ω2

πR

∑
n∈Z

⎛⎝∣∣∣∣∣ ψn
p

H
(1)
n (kpR)

∣∣∣∣∣
2

+

∣∣∣∣∣ ψn
s

H
(1)
n (ksR)

∣∣∣∣∣
2
⎞⎠

implying that ψn
s = ψn

p = 0 for all n ∈ Z. Therefore, usc ≡ 0 in |x| ≥ R. �
2.4. Properties of DtN map in 3D

The aim of this section is to derive properties of the generalized DtN map in 3D, following the lines in 
the previous section. Denote by (r, θ, φ) the spherical coordinates of x = (x1, x2, x3)� ∈ R

3. The coordinate 
θ ∈ [0, π] corresponds to the angle from the z-axis, whereas φ ∈ [0, 2π) corresponds to the polar angle in 
the (x, y)-plane. Let

r̂ = (cos θ sinφ, sin θ sinφ, cosφ)�,

θ̂ = (− sin θ, cos θ, 0)�,

φ̂ = (cos θ cosφ, sin θ cosφ,− sinφ)�

be the unit vectors in the spherical coordinates. In 3D, we need the nm-th spherical harmonic functions

Ynm(x̂) := Ynm(θ, φ) =

√
(2n + 1)(n− |m|)!

4π(n + |m|)! P |m|
n (cos θ)eimφ, x̂ := x/|x| ∈ S

2
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for all n ∈ N and m = −n, · · · , n, where Pm
n is the m-th associated Legendre function of order n. Let unm

and V nm be the vector spherical harmonics defined as

unm(x̂) := ∇S2Ynm(x̂)√
δn

, V nm(x̂) := x̂× unm(x̂), (2.39)

where δn := n(n + 1) and ∇S2 denotes the surface gradient on S2. They form a complete orthonormal basis 
in the L2-tangent space of the unit sphere

L2
T (S2) :=

{
ϕ ∈ (L2(S2))3 : x̂ · ϕ(x̂) = 0

}
, (2.40)

and satisfy the following equations for any f(r) ∈ C1(R+):

curl (f(r)V nm) = −
√
δnf(r)
r

Ynmr̂ − 1
r

∂(rf(r))
∂r

unm, (2.41)

r̂ × curl (f(r)V nm) = −1
r

∂(rf(r))
∂r

V nm, (2.42)

r̂ × curl (f(r)Ynmr̂) =
√
δnf(r)
r

unm, (2.43)

div (f(r)unm) = −
√
δnf(r)
r

Ynm. (2.44)

Denote

∑
m,n

:=
∞∑

n=0

n∑
m=−n

.

As done in 2D, we split a radiating solution vsc to the Navier equation (2.5) into its compressional and 
shear parts,

vsc = gradψp + ψs, divψs = 0, (2.45)

where ψp is a scalar function satisfying

Δψp + k2
p = 0, lim

r→∞
r

(
∂ψp

∂r
− ikpψp

)
= 0, (2.46)

and the vector function ψs fulfills

curl curlψs − k2
sψs = 0, lim

r→∞
r

(
∂ψs

∂r
− iksψs

)
= 0. (2.47)

The solutions of (2.46) and (2.47) in |x| ≥ R can be expressed as

ψp =
∑
m,n

h
(1)
n (kpr)

h
(1)
n (kpR)

ψnm
p Ynm(θ, φ), (2.48)

ψs =
∑{

h
(1)
n (ksr)

h
(1)(k R)

ψnm
s,1 V nm(θ, φ) + curl

[
h

(1)
n (ksr)

h
(1)(k R)

ψnm
s,2 V nm(θ, φ)

]}
, (2.49)
m,n n s n s
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where ψnm
p , ψnm

s,j (j = 1, 2) ∈ C and h(1)
n is the spherical Bessel function of the third kind of order n. A direct 

calculation implies that

vsc(x) =
∑
m,n

h
(1)
n (ksr)

h
(1)
n (ksR)

ψnm
s,1 V nm(θ, φ)

+
∑
m,n

{√
δnh

(1)
n (kpr)

rh
(1)
n (kpR)

ψnm
p −

[
h

(1)
n (ksr)

rh
(1)
n (ksR)

+ ksh
(1)
n

′
(ksr)

h
(1)
n (ksR)

]
ψnm
s,2

}
unm(θ, φ)

+
∑
m,n

{
kph

(1)
n

′
(kpr)

h
(1)
n (kpR)

ψnm
p −

√
δnh

(1)
n (ksr)

rh
(1)
n (ksR)

ψnm
s,2

}
Ynm(θ, φ)r̂. (2.50)

Analogous to the 2D case, we set

tα := kαR, γα := h
(1)
n

′
(tα)

h
(1)
n (tα)

, βα := h
(1)
n

′′
(tα)

h
(1)
n (tα)

, α = p, s. (2.51)

Due to the orthogonality relations for unm, V nm and Ynmr̂ we derive from (2.50) that

(vsc|ΓR
,V nm) = ψnm

s,1 ,

(vsc|ΓR
, unm) = 1

R

[√
δnψ

nm
p − (1 + tsγs)ψnm

s,2

]
,

(vsc|ΓR
, Ynmr̂) = 1

R

(
tpγpψ

nm
p −

√
δnψ

nm
s,2

)
.

In other words,

An

⎡⎣ψnm
s,1

ψnm
s,2

ψnm
p

⎤⎦ = R

⎡⎣ (vsc|ΓR
,V nm)

(vsc|ΓR
, unm)

(vsc|ΓR
, Ynmr̂)

⎤⎦ , An :=

⎡⎢⎣R 0 0
0 −1 − tsγs

√
δn

0 −
√
δn tpγp

⎤⎥⎦ . (2.52)

Lemma 2.15. The matrix An is invertible for all n ≥ 0, R > 0, kp > 0 and ks > 0. Its inverse is given by

A−1
n =

⎡⎢⎢⎣
1
R 0 0
0 tpγp

Λn
−

√
δn

Λn

0
√
δn

Λn

−1−tsγs

Λn

⎤⎥⎥⎦ , Λn := δn − tpγp(1 + tsγs). (2.53)

Proof. It is sufficient to prove that det(An) 
= 0, or equivalently, Λn 
= 0. Setting In(z) := zh
(1)
n

′
(z)/h(1)

n (z), 
we have Λn = δn − In(tp) − In(tp)In(ts). Recalling from [13, Theorem 2.6.1] that

1 ≤ −Re In(z) ≤ n + 1, 0 < Im In(z) = 1
z|h(1)

n (z)|2
≤ z for all z > 0, (2.54)

we obtain

Im (Λn) = −Im In(tp)(1 + Re (In(ts)) − Re In(tp)Im In(ts) > 0. �
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The equation (2.52) implies the following remark.

Remark 2.16. The unique radiating solution vsc to the boundary value problem (2.17) can be represented 
in the form of (2.24) and (2.26), where the coefficients ψn,m

p and ψn,m
s,j (j = 1, 2) are given by

⎡⎣ψnm
s,1

ψnm
s,2

ψnm
p

⎤⎦ = RA−1
n

⎡⎣ (w,V nm)
(w, unm)
(w, Ynmr̂)

⎤⎦ .

We now consider the generalized stress operator

T̃ vsc = (μ + μ̃)r̂ · grad vsc + λ̃r̂ div vsc + μ̃r̂ × curl vsc, (2.55)

where λ̃, ̃μ ∈ R satisfying λ̃+ μ̃ = λ +μ. Using the notation introduced in (2.51), the first and second terms 
on the right hand side of (2.55) can be rewritten respectively as

(r̂ · grad vsc)
∣∣
ΓR

=
(
∂vsc

∂r

) ∣∣∣∣
ΓR

=
∑
m,n

tsγs
R

ψnm
s,1 V nm(θ, φ)

+
∑
m,n

1
R2

[√
δn (tpγp − 1)ψnm

p +
(
1 − tsγs − t2sβs

)
ψnm
s,2

]
unm(θ, φ)

+
∑
m,n

1
R2

[
t2pβpψ

nm
p +

√
δn (1 − tsγs)ψnm

s,2

]
Ynm(θ, φ)r̂,

and

(r̂ div vsc)
∣∣
ΓR

= (r̂Δψp)
∣∣
ΓR

=
(
−k2

pψpr̂
) ∣∣

ΓR
= −

∑
m,n

t2p
R2ψ

nm
p Ynm(θ, φ)r̂.

Since h(1)
n (ksr)V nm(θ, φ) is a radiating solution of (2.47) and

r̂ × V nm = r̂ (r̂ · unm) − unm(r̂ · r̂) = −unm,

the third term of T̃ vsc in (2.55) takes the form

(r̂ × curl vsc)
∣∣
ΓR

= (r̂ × curlψs)
∣∣
ΓR

=
∑
m,n

r̂ × curl
[
h

(1)
n (ksr)

h
(1)
n (ksR)

ψnm
s,1 V nm(θ, φ)

]

+
∑
m,n

{
r̂ × curl curl

[
ψnm
s,2

h
(1)
n (ksr)

h
(1)
n (ksR)

V nm(θ, φ)
]}

= −
∑
m,n

1
R

(1 + tsγs)ψnm
s,1 V nm(θ, φ)

−
∑ t2s

R2ψ
nm
s,2 unm(θ, φ).
m,n
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Therefore,

(
T̃ vsc|ΓR

,V nm

)
= 1

R
(μtsγs − μ̃)ψnm

s,1 ,(
T̃ vsc|ΓR

, unm

)
= 1

R2

√
δn(μ + μ̃) (tpγp − 1)ψnm

p

+ 1
R2

[
(μ + μ̃)

(
1 − tsγs − t2sβs

)
− μ̃t2s

]
ψnm
s,2 ,(

T̃ vsc|ΓR
, Ynmr̂

)
= 1

R2

{[
(μ + μ̃)t2pβp − λ̃t2p

]
ψnm
p +

√
δn(μ + μ̃) (1 − tsγs)ψnm

s,2

}
.

Set the matrices Bn to be⎡⎢⎣R (μtsγs − μ̃) 0 0
0 (μ + μ̃)

(
1 − tsγs − t2sβs

)
− μ̃t2s

√
δn(μ + μ̃) (tpγp − 1)

0
√
δn(μ + μ̃) (1 − tsγs) (μ + μ̃)t2pβp − λ̃t2p

⎤⎥⎦ , (2.56)

and define Wn := 1/RBnA
−1
n . Then we obtain

⎡⎢⎢⎢⎣
(
T̃ vsc|ΓR

,V nm

)
(
T̃ vsc|ΓR

, unm

)
(
T̃ vsc|ΓR

, Ynmr̂
)
⎤⎥⎥⎥⎦ = Bn

⎡⎣ψnm
s,1

ψnm
s,2

ψnm
p

⎤⎦ = Wn

⎡⎣ (vsc|ΓR
,V nm)

(vsc|ΓR
, unm)

(vsc|ΓR
, Ynmr̂)

⎤⎦ . (2.57)

The above identity links the generalized stress operator T̃ vsc|ΓR
and vsc|ΓR

in the coordinate system 
(V nm, unm, Ynmr̂) of the vector space (L2(S2))3. Below we shall investigate properties of the three 
dimensional DtN map T̃ using (2.57).

Lemma 2.17.

(i) T̃ is a bounded linear operator from (Hs(ΓR))3 to (Hs−1(ΓR))3 for all s ∈ R.
(ii) The matrix −ReWn is positive definite for sufficiently large n > 0. Hence T̃ is the sum of a positive 

operator and a compact operator over (H1/2(ΓR))3.
(iii) Lemma 2.14 remains valid for the generalized DtN map T̃ in 3D.

Proof. (i) We only need to show that the max norm of the matrix Wn is bounded by

||Wn||max = R−1||Bn A−1
n ||max ≤ C n, (2.58)

for some constant C > 0 uniformly in all n > 0, where the matrices An and Bn are given by (2.53) and 
(2.56), respectively. For this purpose we need to derive the asymptotics of each entry W (i,j)

n (1 ≤ i, j ≤ 3) 
of Wn. In three dimensions, it holds that

h(1)
n

′′
(z)

=
(
h

(1)
n−1(z) −

n + 1
z

h(1)
n (z)

)′

= −h(1)
n (z) + n− 1

h
(1)
n−1(z) + n + 1

2 h(1)
n (z) − n + 1

(
h

(1)
n−1(z) −

n + 1
h(1)
n (z)

)

z z z z
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= (n + 1)2 + n + 1 − z2

z2 h(1)
n (z) − 2

z
h

(1)
n−1(z)

= (n + 1)2 + n + 1 − z2

z2 h(1)
n (z) − 2

z

(
h(1)
n

′
(z) + n + 1

z
h(1)
n (z)

)
=
(
δn
z2 − 1

)
h(1)
n (z) − 2

z
h(1)
n

′
(z),

implying that

βp = δn
t2p

− 1 − 2
tp
γp, βs = δn

t2s
− 1 − 2

ts
γs. (2.59)

Note that the relations in (2.59) differ from those in two dimensions; cf. (2.33). Using the expressions of Bn

and An, we obtain the entries of Wn via straightforward calculations

W (1,1)
n = μtsγs − μ̃

R
,

W (1,2)
n = W (2,1)

n = W (1,3)
n = W (3,1)

n = 0,

W (2,2)
n = 1

RΛn

[
(μ + μ̃)(tptsγpγs − δn + tpγp) + μt2stpγp

]
,

W (3,3)
n = 1

RΛn

[
t2p(λ + 2μ)(1 + tsγs) + 2(μ + μ̃)(tptsγpγs − δn + tpγp)

]
,

W (2,3)
n = 1

RΛn

[√
δn(μ + μ̃)(δn − tptsγpγs − tpγp) − μt2s

√
δn

]
,

W (3,2)
n = 1

RΛn

[√
δn(μ + μ̃)(δn − tptsγpγs − tpγp) − (λ + 2μ)t2p

√
δn

]
,

in which we have used the relation (2.59) and the fact that λ̃ + μ̃ = λ + μ. Now, we need to derive the 
asymptotics of W (i,j)

n (1 ≤ i, j ≤ 3) as n tends to infinity. From the series expansions of the spherical Bessel 
and Neumann functions we know

h(1)
n (z) = 1

i
1 · 3 · · · · · (2n− 1)

[
1

zn+1 + 1
2zn−1(2n− 1) + O

(
1
n2

)]
, n → +∞.

Then

h
(1)
n−1(z)
h

(1)
n (z)

= 1
2n− 1

1
zn + 1

2zn−2(2n−3) + O
( 1
n2

)
1

zn+1 + 1
2zn−1(2n−1) + O

( 1
n2

)
=
[

1
2n + O

(
1
n2

)][
z + O

(
1
n

)]
= z

2n + O

(
1
n2

)
,

which further leads to

h
(1)
n

′
(z)

(1) = z

2n − n + 1
z

+ O

(
1
n2

)
, n → +∞.
hn (z)



G. Bao et al. / J. Math. Pures Appl. 117 (2018) 263–301 283
Therefore, as n → +∞,

W (1,1)
n = − μ

R
n− μ + μ̃

R
+ O

(
1
n

)
,

W (2,2)
n = −2μ(λ + 2μ)

R(λ + 3μ) n + O(1),

W (3,3)
n = −2μ(λ + 2μ)

R(λ + 3μ) n + O(1),

W (2,3)
n = [(μ + μ̃)(λ + 3μ) − 2μ(λ + 2μ)]

R(λ + 3μ) n + O(1),

W (3,2)
n = [(μ + μ̃)(λ + 3μ) − 2μ(λ + 2μ)]

R(λ + 3μ) n + O(1).

This proves (2.58) and thus the first assertion.
(ii) Set W̃n := −(Wn + W ∗

n)/2 for n ≥ 0. For sufficiently large n > 0, we have

W̃ (1,1)
n = μ

R
n + μ + μ̃

R
+ O

(
1
n

)
> 0,

W̃ (1,1)
n W̃ (2,2)

n = 2μ2(λ + 2μ)
R2(λ + 3μ) n

2 + O(n) > 0,

det (W̃n) = W̃ (1,1)
n

(
4μ2(λ + 2μ)2 − [(λ− λ̃)(λ + 3μ) + 2μ2]2

R2(λ + 3μ)2 n2 + O(n)
)
.

Recalling the assumption (2.22) on λ̃ we see

4μ2(λ + 2μ)2 − [(λ− λ̃)(λ + 3μ) + 2μ2]2 > 0.

This implies that det W̃n is positive definite over C3 for sufficiently large n. The proof of the second assertion 
is compete.

(iii) Assume that a radiating solution vsc to the Navier equation (2.5) admits the series expansion (2.45), 
(2.48) and (2.49) with the vector coefficient Ψnm := (ψnm

s,1 , ψ
nm
s,2 , ψ

nm
p )� ∈ C

3. Making use of (2.52) and the 
first relation in (2.57), we get∫

ΓR

T̃ (vsc|ΓR
) · vsc ds =

∑
m,n

〈
R−2Bnm

n , R−1AnΨnm
〉

= R−3
∑
m,n

〈A∗
nBnΨnm,Ψnm〉 .

Here 〈·, ·〉 denotes the inner product over C3. Hence,∑
m,n

〈Im (A∗
nBn)Ψnm,Ψnm〉 = 0. (2.60)

To evaluate the product of A∗
n and Bn we need the identities (cf. (2.54), (2.59))

Im (tαγα) = 1/(tα|h(1)
n (tα)|2) > 0, t2αβα = δn − t2α − 2tαγα, α = p, s. (2.61)
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Since

A∗
n =

⎡⎢⎣R 0 0
0 −1 − tsγs −

√
δn

0
√
δn tpγp

⎤⎥⎦ ,

direct calculations show that

Im (A∗
nBn) = R2

⎡⎣μIm (tsγs) 0 0
0 ω2Im (tsγs) 0
0 0 ω2Im (tsγs)

⎤⎦ .

This together with (2.60) and the first relation in (2.61) yields |Ψnm| = 0 for all n ≥ 0, m = −n, · · · , n. 
Therefore, vsc ≡ 0 in |x| ≥ R. �
3. Reconstruction of multiple anisotropic obstacles

In this section, we consider the inverse scattering problem of reconstructing the support of multiple 
unknown anisotropic obstacles from near-field measurement data. We first derive the Fréchet derivative 
of the near-field solution operator, which maps the boundaries of several disconnected scatterers to the 
measurement data. Then, as an application, we design an iterative approach to the inverse problem using 
the data of one or several incident directions and frequencies.

3.1. Fréchet derivative of the solution operator

Suppose that Ω = ∪N0
i=1Ωj is a union of several disconnected bounded components Ωj ⊂ R

N . Each 
component Ωj is supposed to be occupied by an anisotropic elastic obstacle with constant density ρj > 0 and 
constant stiffness tensor Cj = (Cj,klmn)Nk,l,m,n=1. Assume that the boundary Γj of Ωj is C2. Let Ω0 := BR\Ω. 
Denote by ρ0 > 0 and C0 = (C0,klmn)Nk,l,m,n=1 the density and stiffness tensor of the homogeneous isotropic 
background medium. Set

u :=

⎧⎨⎩uj , x ∈ Ωj ,

usc + uin, x ∈ R
N\Ω.

(3.62)

We assume there is an a priori information that the unknown elastic scatterers Ωj , j = 1, · · · , N0, are 
embedded in the region BR for some R > 0. The variational formulation for the forward scattering problem 
in the truncated domain BR reads as follows: find u ∈ XR := (H1(BR))N such that

a(u, v) =
∫
ΓR

f · v ds for all v ∈ XR, f := (Tuin − T uin)|ΓR
, (3.63)

where

a(u, v) :=
N0∑
j=0

AΩj
(u, v) −

∫
ΓR

T u · v ds

AΩj
(u, v) :=

∫ ⎛⎝ N∑
k,l,m,n=1

Cj,klmn
∂um

∂xn

∂vk
∂xl

− ρj ω
2u · v

⎞⎠ dx, j = 0, 1, · · · , N0.
Ωj
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Here T is the DtN map introduced in the previous section. We study the following inverse problem:

(IP): Determine the boundaries Γ1, · · · , ΓN0 from knowledge of multi-frequency near-field measurements 
u|ΓR

corresponding to the incident plane wave (2.13) with one or several incident directions.

Let u ∈ XR be the unique solution to the variational problem (3.63). Since each boundary Γj is C2, we 
have u ∈ (H2(BR))N . In this paper we define the near-field solution operator J as

J : (Γ1, · · · ,ΓN0) → u|ΓR
. (3.64)

The mapping J is obviously nonlinear. To define the Fréchet derivative of J with respect to the boundary 
Γ = ∪N0

j=1Γj , we assume that the function

hj = (hj,1, · · · , hj,N )� ∈ (C1(Γj))N , ‖hj‖(C1(Γj))N � 1

is a small perturbation of Γj . The perturbed boundary is given by

Γj,h := {y ∈ R
N : y = x + hj(x), x ∈ Γj}.

Definition 3.1. The solution operator J is called Fréchet differentiable at Γ if there exists a linear bounded 
operator J ′

Γ : (C1(Γ1))N × · · · × (C1(ΓN0))N → (L2(ΓR))N such that

‖J (Γ1,h, · · · ,ΓN0,h) − J (Γ1, · · · ,ΓN0) − J ′
Γ(h1, · · · , hN0)‖(L2(ΓR))N

= o

⎛⎝ N0∑
j=1

‖hj‖(C1(Γj))N

⎞⎠ .

The operator J ′
Γ is called the Fréchet derivative of J at Γ.

Given hj ∈ (C1(Γj))N , there exists an extension of hj , which we still denote by hj , such that 
hj ∈ (C1(RN ))N , ‖hj‖(C1(RN ))N ≤ c‖hj‖(C1(Γj))N and supp (hj) ⊂ Kj , where Kj is a domain satisfying 

Γj ⊂ Kj ⊂⊂ BR\
(
∪N0
i=1,i �=jΩi

)
. Define the functions

h(x) :=
N0∑
j=1

hj(x), y = ξh(x) = x + h(x), x ∈ R
N .

For small perturbations, ξh is a diffeomorphism between Γj and Γj,h. The inverse map of ξh is denoted 
by ηh. Corresponding to Ωj (j = 0, 1, · · · , N0), we define

Ωj,h := {y ∈ R
N : y = ξh(x), x ∈ Ωj}, j = 1, 2, · · · , N0, Ω0,h := BR\∪N0

j=1Ωj,h.

The differentiability of J at Γ is stated as following.

Theorem 3.2. Let u (see (3.62)) be the unique solution of the variational problem (3.63), and let 
hj ∈ (C1(Γj))N , j = 1, · · · , N0, be sufficiently small perturbations. Then the solution operator J is Fréchet 
differentiable at Γ. Further, the Fréchet derivative J ′

Γ is given by J ′
Γ(h1, · · · , hN0) = ũ0|ΓR

, where ũ0 together 
with ũj (j = 1, · · · , N0) is the unique weak solution of the boundary value problem:
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∇ · (Cj : ∇ũj) + ρjω
2ũj = 0 in Ωj , j = 0, 1, · · · , N0, (3.65)

ũj − ũ0 − fj = 0 on Γj , j = 1, · · · , N0, (3.66)

N−
C ũj −N+

C ũ0 − gj = 0 on Γj , j = 1, · · · , N0, (3.67)

T ũ0 − T ũ0 = 0 on ΓR, (3.68)

where

fj = −(hj · ν)
[
∂−
ν uj − ∂+

ν (usc + uin)
]
|Γj

(3.69)

and the expressions of gj ∈ (H−1/2(Γj))N rely on the space dimensions. In 2D, we have

gj = ω2(hj · ν)
[
ρju

−
j − ρ0(usc + uin)+

]
− ∂τ

[(
(σj(uj))− − (σ0(usc + uin))+

)
(hj,2,−hj,1)�

]
, (3.70)

where ∂τ = ν⊥ · ∇ is the tangential derivative. In 3D, it holds that

gj = ω2(hj · ν)
[
ρju

−
j − ρ0(usc + uin)+

]
− divΓj

((Aj −A0,j) × ν) , (3.71)

where divΓ is the surface divergence operator on Γ and Aj ∈ C
N×N are defined by

A0,j = (σ0(usc + uin))+Mhj
, Aj = (σj(uj))−Mhj

, j = 1, · · · , N0, (3.72)

with

Mhj
:=

⎡⎣ 0 −hj,3 hj,2
−hj,3 0 hj,1
hj,2 hj,1 0

⎤⎦ , j = 1, · · · , N0.

Proof. Set the space

H := {(v, w) ∈ (H1(Ω))N × (H1(Ω0))N : v = w on Γj , j = 1, · · · , N0}.

The variational problem of (3.65)–(3.68) can be formulated as the problem of finding ũ0 ∈ (H1(Ω0))N , 
ũj ∈ (H1(Ωj))N such that ũj − ũ0 = fj on Γj , j = 1, · · · , N0, and

N0∑
j=0

AΩj
(ũj , v) −

∫
ΓR

T ũ0 · w ds =
N0∑
j=1

∫
Γj

gj · w ds for all (v, w) ∈ H. (3.73)

It follows from the regularity of u that fj ∈ (H1/2(Γj))N and gj ∈ (H−1/2(Γj))N . Let f̂j ∈ (H1(Ωj))N be 
the trace lifting functions of fj. Then the variational formulation (3.73) search for ũ0 ∈ (H1(Ω0))N and 
ûj = ũj − f̂j ∈ (H1(Ωj))N such that ûj = ũ0 on Γj , j = 1, · · · , N0 and

N0∑
j=0

AΩj
(ûj , v) −

∫
ΓR

T ũ0 · w ds

=
N0∑
j=1

∫
gj · w ds−

N0∑
j=1

AΩj
(f̂j , v) for all (v, w) ∈ H. (3.74)
Γj
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Applying Lemma 2.8 and Theorem 2.10, we see that the above variational equation (3.74) admits a unique 
solution. For the given functions hj ∈ (C1(Γj))N , we extend them to BR in the same way as before. Let 
Jηh and Jξh be the Jacobian matrices of the transforms ηh and ξh, respectively. It then follows that

Jξh = I + ∇h, Jηh = I −∇h + O
(
‖h‖2

(C1(BR))N
)
,

det(Jξh) = 1 + ∇ · h + O
(
‖h‖2

(C1(BR))N
)
.

Consider the perturbed variational problem: find uh ∈ XR such that

N0∑
j=0

AΩj,h
(uh, vh) −

∫
ΓR

T uh · vh ds =
∫
ΓR

f · vh ds for all vh ∈ XR. (3.75)

Here f = (Tuin − T uin)|ΓR
. Define û = (û1, · · · , ̂uN )� := (uh ◦ ξh)(x). Then we have

N0∑
j=0

AΩj,h
(uh, vh)

=
N0∑
j=0

∫
Ωj

N∑
k,l,m,n=1

Cj,klmn∇�ûmJηh(:, n)Jηh(:, l)�∇v̂k det(Jξh) dx

−
N0∑
j=0

ρjω
2
∫
Ωj

û · v̂ det(Jξh) dx

where A(:, n) means the n-th column of the matrix A. From the stability of the direct scattering problem 
it follows that û converges to u in XR as ‖h‖(C1(BR))N → 0. Let w ∈ XR be the solution of the variational 
problem

a(w, v) =
N0∑
j=0

bj(u, v, h) for all v ∈ XR,

where

bj(u, v, h)

:=
∫
Ωj

N∑
k,l,m,n=1

Cj,klmn

[
∂um

∂xn

∂h�

∂xl
∇vk + ∇�um

∂h

∂xn

∂vk
∂xl

− (∇ · h)∂um

∂xn

∂vk
∂xl

]
dx

+ ρj ω
2
∫
Ωj

(∇ · h)u · v dx. (3.76)

Then it’s easy to prove that

sup
v∈XR

a(û− u− w, v)/‖v‖XR
= o

(
‖h‖(C1(BR))N

)
.

Applying the trace theorem it follows that a(û − u − w)/‖h‖(C1(BR))N tends to zero in (H1/2(ΓR))N as 
‖h‖(C1(B ))N tends to zero. By Definition 3.1, we get
R
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J ′
Γ(h1, · · · , hN0) = w|ΓR

.

Hence, it only remains to prove that w = ũ0 on ΓR.
Below we are going to calculate bj(u, v, h) for j = 0, 1, · · · , N0. Set (v, w) ∈ H. Using integration by parts 

and the relation

(∇ · h)(u · v) = ∇ · [(u · v)h] − (h · ∇u) · v − (h · ∇v) · u,

the last term of (3.76) can be written as

ρjω
2
∫
Ωj

(∇ · h)u · v dx = ρjω
2
∫
Γj

(h · ν)(u · v)ds

− ρjω
2
∫
Ωj

[(h · ∇uj) · v + (h · ∇v) · u] dx for j ≥ 1. (3.77)

To compute the first integral on the right hand of (3.76), we need the identities

∂um

∂xn

∂h�

∂xl
∇vk = ∂

∂xl

(
∂um

∂xn
h�∇vk

)
− ∂2um

∂xl∂xn

(
h�∇vk

)
− ∂um

∂xn
h�∇

(
∂vk
∂xl

)
,

∇�um
∂h

∂xn

∂vk
∂xl

= ∂

∂xn

(
h�∇um

) ∂vk
∂xl

−∇ ·
(
h
∂um

∂xn

∂vk
∂xl

)
+ (∇ · h)∂um

∂xn

∂vk
∂xl

+ ∂um

∂xn
h�∇

(
∂vk
∂xl

)
.

Making use of the previous two identities and applying again the integration by parts, it follows for j ≥ 1
that

∫
Ωj

N∑
k,l,m,n=1

Cj,klmn

[
∂um

∂xn

∂h�

∂xl
∇vk + ∇�um

∂h

∂xn

∂vk
∂xl

− (∇ · h)∂um

∂xn

∂vk
∂xl

]
dx

=
∫
Ωj

∇ · [(h · ∇v) · σj(u) − h(σj(u) : ∇v)] dx + ρjω
2
∫
Ωj

(h · ∇v) · u dx

+
∫
Ωj

N∑
k,l,m,n=1

Cj,klmn
∂

∂xn
(h · ∇um)∂vk

∂xl
dx

=
∫
Γj

[(hj · ∇v) · (ν · σj(uj)) − (hj · ν)(σj(uj) : ∇v)] ds + ρjω
2
∫
Ωj

(h · ∇v) · u dx

+
∫
Ωj

N∑
k,l,m,n=1

Cj,klmn
∂

∂xn
(h · ∇um)∂vk

∂xl
dx. (3.78)

Next, we proceed with the space dimensions. In two dimensions (i.e., N = 2), we have

(hj · ∇v) · (ν · σj(uj)) − (hj · ν)(σj(uj) : ∇v) = σj(uj)(hj,2,−hj,1)� · ∂τv on Γj .
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Therefore, combining (3.76), (3.77) and (3.78) yields

bj(u, v, h) = AΩj
(h · ∇u, v) + ρjω

2
∫
Γj

(hj · ν)(uj · v)ds

−
∫
Γj

∂τ
[
(σj(uj))−(hj,2,−hj,1)�

]
· vds,

for j ≥ 1. When j = 0, we obtain in a similar manner that

b0(u, v, h) = AΩ0(h · ∇u, v)

−
N0∑
j=1

ρ0ω
2
∫
Γj

(hj · ν)[(usc + uin) · w]ds

+
N0∑
j=1

∫
Γj

∂τ
[
(σ0(usc + uin))+(hj,2,−hj,1)�

]
· wds.

Now define ũ = w− h · ∇u and set ũj := ũ|Ωj
for j = 0, 1, · · · , N0. We conclude that ũ0|ΓR

= w|ΓR
and the 

formula (3.73) holds with such ũ. Furthermore, we have the transmission conditions

ũj − ũ0 = −hj · [∇uj −∇(usc + uin)] = −(hj · ν)[∂−
ν uj − ∂+

ν (usc + uin)] on Γj ,

since uj − usc = uin on Γj . This proves the relation J ′
Γ(h1, · · · , hN0) = ũ0|ΓR

in two dimensions.
If N = 3, we recall the tangential gradient ∇Γ for a scalar function u and the surface divergence divΓ for 

a vector function v by

∇u = ∇Γ u + ν∂ν u, ∇ · v = divΓ v + ν · ∂ν v. (3.79)

In this case, the first integrand on the right hand side of (3.78) can be rewritten as

(hj · ∇v) · (ν · σj(uj)) − (hj · ν)(σj(uj) : ∇v) =
3∑

i=1
(Aj(i, :))� · (ν ×∇ vi)

=
3∑

i=1
∇Γ vi · ((Aj(i, :))� × ν),

where the matrix Aj is given by (3.72). Hence, by integration by part we find

bj(u, v, h)

= AΩj
(h · ∇u, v) + ρjω

2
∫
Γj

(hj · ν)(uj · v)ds−
∫
Γj

divΓj
(Aj × ν) · vds (3.80)

for j ≥ 1. Analogously,

b0(u, v, h) = AΩ0(h · ∇u,w)

−
N0∑
j=1

⎧⎪⎨⎪⎩ρ0ω
2
∫

(hj · ν)[(usc + uin) · w]ds−
∫

divΓj
(A0,j × ν) · wds

⎫⎪⎬⎪⎭ . (3.81)

Γj Γj
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From (3.80) and (3.81) we conclude the variational formulation (3.73) still holds with ũ = w − h · ∇u in 
three dimensions. Moreover, we get ũ0|ΓR

= w|ΓR
and the transmission conditions (3.66) due to the fact 

that divΓj
uj = divΓj

(usc − uin). This completes the proof. �
3.2. Inversion algorithm in 2D

In this subsection we design a descent algorithm for the inverse problem in two dimensions. Assume that 
Γl (l = 1, 2, · · · , N0) is a star-shaped boundary that can be parameterized by γl(θ) as follows

Γl = {x : x = γ(l)(θ) := (a(l)
1 , a

(l)
2 )� + r(l)(θ)(cos θ, sin θ)�, θ ∈ [0, 2π]}

where the function r(l) is 2π-periodic and twice continuously differentiable. Let the Fourier series expansion 
of r(l) be given by

r(l)(θ) = α
(l)
0 +

∞∑
m=1

[
α

(l)
2m−1 cos(mθ) + α

(l)
2m sin(mθ)

]
.

We approximate the unknown boundary Γl by the surface

Γ(l)
M = {x : x = γ(l)(θ) := (a(l)

1 , a
(l)
2 )� + r

(l)
M (θ)(cos θ, sin θ)�, θ ∈ [0, 2π]},

r
(l)
M (θ) = α

(l)
0 +

M∑
m=1

[
α

(l)
2m−1 cos(mθ) + α

(l)
2m sin(mθ)

]
, (3.82)

in a finite dimensional space. The function r(l)
M is a truncated series of r(l). For large M , the surface Γ(l)

M

differs from Γl only in those high frequency modes of m > M . Evidently, there are totally 2M +3 unknown 
parameters for Γ(l)

M , which we denote by

Λ(l) = (Λ(l)
1 , · · · ,Λ(l)

2M+3)
� := (a(l)

1 , a
(l)
2 , α

(l)
0 , α

(l)
1 , α

(l)
2 , · · · , α(l)

2M−1, α
(l)
2M )� ∈ C

2M+3.

Assume that the measurement points {zi}Nmea
i=1 are uniformly distributed on ΓR, that is, zi = R(cos θi, sin θi)�

with θi = (i − 1)2π/Nmea. We use the notation u(·, d, ω) to denote the dependence of the total field on the 
incident direction d and frequency ω. It is supposed that the measured data are available over a finite number
of frequencies ωl ∈ [ωmin, ωmax] (l = 1, 2, · · · , K) and several incident directions dj (j = 1, · · · , Ninc). Hence, 
we have the data set of the total field

Umea := {u(zi, dj , ωl) : i = 1, · · · , Nmea, j = 1, · · · , Ninc, l = 1, · · · ,K}.

Then we consider the following modified inverse problem:

(IP′): Determine the parameter vector Λ(j) of the boundary Γj , j = 1, · · · , N0, from knowledge of the 
near-field data set Umea.

The inverse problem can be formulated as the nonlinear operator equation

J (Λ(1), · · · ,Λ(N0)) = Umea, (3.83)

where J is the solution operator for all incident directions dj and frequencies ωl. The data set can be 
rewritten as Umea = ∪Nmea

i=1 umea(zi), where
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umea(zi) := {u(zi, dj , ωl) : j = 1, · · · , Ninc, l = 1, · · · ,K}

is the data set at zi ∈ ΓR over all dj and ωl. Let Ji be the solution operator mapping the boundary to 
umea(zi), i.e., Ji(Λ(1), · · · , Λ(N0)) = umea(zi).

To solve the problem (3.83), we consider the objective function

F (Λ(1), · · · ,Λ(N0)) = 1
2‖J (Λ(1), · · · ,Λ(N0)) − Umea‖2

l2 .

Then the inverse problem (IP′) can be formulated as the minimization problem

min
Λ(1),··· ,Λ(N0)∈C2M+3

F (Λ(1), · · · ,Λ(N0)).

To apply the descent method, it is necessary to compute the gradient of the objective function. A direct 
calculation yields that

∂F (Λ(1), · · · ,Λ(N0))
∂Λ(l)

n

= Re
{

Nmea∑
i=1

∂Ji(Λ(1), · · · ,Λ(N0))
∂Λ(l)

n

·
[
Ji(Λ(1), · · · ,Λ(N0)) − umea(zi)

]}
.

Set

∇Λ(l)F :=
(
∂F (Λ(1), · · · ,Λ(N0))

∂Λ(l)
1

, · · · , ∂F (Λ(1), · · · ,Λ(N0))
∂Λ(l)

2M+3

)�

, l = 1, 2, · · · , N0.

The calculation of ∇Λ(l)F is based on Theorem 3.3 below, which is a consequence of Theorem 3.2.

Theorem 3.3. Let u be the unique solution of the variational problem (3.73) with fixed incident direction and 
frequency. Then the operator Ji is differentiable in Λ(l)

n and its derivatives are given by

∂Ji(Λ(1), · · · ,Λ(N0))
∂Λ(l)

n

= ũ0(zi), l = 1, · · · , N0, n = 1, · · · , 2M + 3, i = 1, · · · , Nmea,

where ũ0, together with ũj (j = 1, · · · , N0), is the unique weak solution of the boundary value problem:

∇ · (Cj : ∇ũj) + ρjω
2ũj = 0 in Ωj , j = 0, 1, · · · , N0,

ũj − ũ0 − fj = 0 on Γj , j = 1, · · · , N0,

N−
C ũj −N+

C ũ0 − gj = 0 on Γj , j = 1, · · · , N0,

T ũ0 − T ũ0 = 0 on ΓR.

Here, fj = gj = 0 for j = 1, · · · , N0, j 
= l, and

fl = −(hl · ν)
[
∂−
ν ul − ∂+

ν (usc + uin)
]
,

gl = ω2(hl · ν)
[
ρlul

− − ρ0(usc + uin)+
]

− ∂τ
[(

(σl(ul))− − (σ0(usc + uin))+
)
(hl,2,−hl,1)�

]
,
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where ul := u|Ωl
and the functions hl,1, hl,2 are defined in the following way relying on n:

hl,1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 1,
0, n = 2,
cos θ, n = 3,
cos((n− 2)θ/2) cos θ, n = 4, 6, 8, · · · , 2M + 2,
sin((n− 3)θ/2) cos θ, n = 5, 7, 9, · · · , 2M + 3,

hl,2(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, n = 1,
1, n = 2,
sin θ, n = 3,
cos((n− 2)θ/2) sin θ, n = 4, 6, 8, · · · , 2M + 2,
sin((n− 3)θ/2) sin θ, n = 5, 7, 9, · · · , 2M + 3.

We now propose an algorithm based on the descent method to reconstruct the coefficient vectors Λ(l), 
l = 1, · · · , N0. We assume the number N0 of the disconnected components is known in advance. For 
notational convenience we denote by Λ(l,i,j,m) the solution of the inverse problem at the i-th iteration 
step reconstructed from the data set at the frequency ωm with the incident direction dj . Our approach 
consists of the following steps:

Step 1. Collect the near-field data over all frequencies ωm, m = 1, · · · , K and all incident directions dj , 
j = 1, · · · , Ninc.

Step 2. Set initial approximations Λ(l,0,0,0) for every l = 1, · · · , N0.
Step 3. For all l = 1, · · · , N0, update the coefficient vector by the iterative formula

Λ(l,i+1,j,m) = Λ(l,i,j,m) − ε∇Λ(l,i,j,m)F, i = 0, · · · , L− 1,

where ε and L > 0 are the step size and total number of iterations, respectively.
Step 4. For all l = 1, · · · , N0, set Λ(l,0,j+1,m) = Λ(l,L,j,m) and repeat Step 3 until the last incident directions 

dNinc
is reached.

Step 5. For all l = 1, · · · , N0, set Λ(l,0,0,m+1) = Λ(l,L,Ninc,m). Repeat Step 3 from the smallest frequency ω1
and end up with the highest frequency ωK .

4. Numerical examples

In this section, we present several numerical examples in 2D to verify the efficiency and validity of the 
finite element method solving direct scattering problems and the reconstruction scheme for inverse scattering 
problems.

4.1. Numerical solutions to direct scattering problems

Firstly, we introduce an analytic solution to the elastic wave equation in a homogeneous anisotropic 
medium; see [37, Chapter 1.7.1] for the details. Such a solution will be used to verify the accuracy of our 
numerical scheme. For simplicity we assume that Ω consists of one component only, i.e., N0 = 1.

In 2D, the symmetry of the stiffness tensor C = {Cijkl}2
i,j,k,l=1 leads to at most 6 different elements of 

stiffness. Using the Voigt notation for tensor indices, i.e.,
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ij = 11 22 12, 21

⇓ ⇓ ⇓ ⇓
α = 1 2 3

one can rewrite the stiffness tensor as

Cijkl ⇒ Cαβ =

⎡⎣C11 C12 C13
C12 C22 C23
C13 C23 C33

⎤⎦ .

In particular, we have

Cαβ =

⎡⎣λ + 2μ λ 0
λ λ + 2μ 0
0 0 μ

⎤⎦ ,

if the elastic medium is homogeneous isotropic with Lamé constants λ and μ.
In a homogeneous anisotropic medium, we consider the propagation of a plane wave which is perpendicular 

to a fixed unit vector d = (d1, d2)� ∈ S
1. The plane wave takes the form

u = p e
i ω
vp

x·d
, (4.84)

where p = (p1, p2)� and vp are the polarization vector and phase velocity to be determined, respectively. 
Inserting the solution (4.84) into the elastic equation (2.3) gives

AC p = ρ v2
p p,

where

AC =

⎧⎨⎩
2∑

k,l=1

Cikljdkdl

⎫⎬⎭
2

i,j=1

=
[
C11 C13
C13 C33

]
d2
1 +

[
2C13 C12 + C33

C12 + C33 2C23

]
d1d2 +

[
C33 C23
C23 C22

]
d2
2. (4.85)

It follows from the uniform Legendre ellipticity condition of C that the matrix AC is positive definite. Thus, 
the eigenvectors of AC give the vector p with the corresponding eigenvalue ρv2

p.
In order to check whether our code provides the true solution, we consider the elastic transmission 

problem: Given f ∈ (H1/2(Γ))2 and g ∈ (H−1/2(Γ))2, find u ∈ (H1(Ω))2 and usc ∈ (H1
loc(Ωc))2 such that

∇ · (C : ∇u) + ρω2u = 0 in Ω, (4.86)

Δ∗usc + ρ0ω
2usc = 0 in Ωc, (4.87)

u− usc = f on ∂Ω, (4.88)

N−
C u− Tλ,μu

sc = g on ∂Ω, (4.89)

and the scattered field usc satisfies the Kupradze radiation condition. If Ω is specified as a homogeneous 
isotropic medium characterized by the density ρ1 > 0 and the Lamé constants λ1 and μ1 are such that 
μ1 > 0 and λ1 + μ1 > 0, then the problem (4.86)–(4.89) is reduced to
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Δ∗
1u + ρ1ω

2u = 0 in Ω, (4.90)

Δ∗usc + ρ0ω
2usc = 0 in Ωc, (4.91)

u− usc = f on ∂Ω, (4.92)

Tλ1,μ1u− Tλ,μu
sc = g on ∂Ω, (4.93)

where Δ∗
1 := μ1Δ + (λ1 + μ1)grad div.

We modify the definition of the far-field pattern of the total displacement (2.11) as

u∞(x̂) = u∞
p (x̂) x̂ + u∞

s (x̂) x̂⊥,

where u∞
p (x̂) = u∞(x̂) · x̂, u∞

s (x̂) = u∞(x̂) · x̂⊥ are two scalar functions given by the asymptotic behavior

usc = exp(ikpx + iπ/4)√
8πkp|x|

u∞
p (x̂) x̂ + exp(iksx + iπ/4)√

8πks|x|
u∞
s (x̂) x̂⊥ + O(|x|−3/2).

We decompose the scattered field into

usc = gradΨp +
−−→
curlΨs,

where

Ψp =
∑
n∈Z

Ψn
p H

(1)
n (kp|x|)einθx , Ψs =

∑
n∈Z

Ψn
s H

(1)
n (ks|x|)einθx , Ψn

p , Ψn
s ∈ C.

Then it follows from the asymptotic behavior of Hankel functions that

u∞
p (x̂) = u∞

p (θ) = 4kp
∑
n∈Z

Ψn
p e

in(θ−π/2),

u∞
s (x̂) = u∞

s (θ) = −4ks
∑
n∈Z

Ψn
s e

in(θ−π/2).

In numerical computations, the computational domains Ω and Ω0 are discretized by uniform triangle 
elements and we employ piecewise linear basis functions to construct the finite element space of (H1(Ω))2
and (H1(Ω0))2.

Example 1. In the first example, Ω is specified as a homogeneous isotropic medium and we consider the 
problem (4.90)–(4.93). Let f and g be such that the analytic solution of the above boundary value problem 
is given by

u(x) = ∇J0(kp,1|x|), x ∈ Ω, usc(x) = ∇H
(1)
0 (kp|x|), x ∈ Ωc,

where kp,1 = ω
√
ρ1/(λ1 + 2μ1). We choose λ1 = 2, μ1 = 3, ρ1 = 3, λ = 1, μ = 2, ρ0 = 1 and the boundary 

∂Ω is selected to be a circle

∂Ω = {x ∈ R
2 : |x| = 1},

or a rounded-triangle-shaped curve

∂Ω = {x ∈ R
2 : x = (2 + 0.5 cos 3t)(cos t, sin t)�, t ∈ [0, 2π)}.
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Table 1
Numerical errors for Example 1 where Γ is a circle, h0 = 0.4304 and R = 2.

ω h E0 Order E1 Order
1 h0 1.55E-2 – 2.29E-1 –

h0/2 3.97E-3 1.97 1.07E-1 1.10
h0/4 1.00E-3 1.99 5.22E-2 1.04

3 h0 1.52E-1 – 6.66E-1 –
h0/2 3.81E-2 2.00 2.95E-1 1.17
h0/4 9.62E-3 1.99 1.43E-1 1.04

Table 2
Numerical errors for Example 1 where Γ is a rounded-triangle-shaped curve, 
h0 = 1.1474 and R = 5.

ω h E0 Order E1 Order
1 h0 3.03E-2 – 1.56E-1 –

h0/2 6.83E-3 2.15 7.16E-2 1.12
h0/4 1.79E-3 1.93 3.56E-2 1.01

3 h0 5.22E-1 – 1.94E0 –
h0/2 1.32E-1 1.98 7.81E-1 1.31
h0/4 3.59E-2 1.88 3.75E-1 1.06

Table 3
Numerical errors for Example 2 where Γ is a circle, h0 = 0.4304 and R = 2.

ω h E0 Order E1 Order
1 h0 1.95E-2 – 2.46E-1 –

h0/2 5.11E-3 1.93 1.15E-1 1.10
h0/4 1.32E-3 1.95 5.60E-2 1.04

3 h0 2.86E-1 – 1.27E0 –
h0/2 8.62E-2 1.73 5.15E-1 1.30
h0/4 2.32E-2 1.89 2.28E-1 1.18

Denote U = (u, usc) and Uh = (uh, usc
h ) the exact and numerical solutions, respectively. The numerical 

errors (see Tables 1 and 2)

E0 = ‖U − Uh‖(L2(Ω))2×(L2(Ω0))2 , E1 = ‖U − Uh‖(H1(Ω))2×(H1(Ω0))2 , (4.94)

indicate the convergence order

E0 = O(h2), E1 = O(h), (4.95)

where h denotes the finite element mesh size for discretizing our variational formulation.

Example 2. In this example, Ω is supposed to be a homogeneous anisotropic medium. Consider the problem 
(4.86)–(4.89) and let f and g be such that the analytic solution is given by

u(x) = pe
i ω
vp

x·d
, x ∈ Ω, usc(x) = ∇H

(1)
0 (kp|x|), x ∈ Ωc,

where d = (
√

2/2, 
√

2/2)� and ρv2
p is the first eigenvalue of the matrix AC (see (4.85)). We choose

C11 = 10.5, C22 = 13, C33 = 4.75, C12 = 3.25, C13 = −0.65, C23 = −1.52,

ρ = 3, λ = 1, μ = 2, ρ0 = 1.

The boundary ∂Ω is selected to be a circle or a rounded-triangle-shaped curve given in Example 1. In Tables 3
and 4 we illustrate the numerical errors of E0 and E1 (see (4.94)) which also indicate the convergence order 
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Table 4
Numerical errors for Example 2 where Γ is a rounded-triangle-shaped curve, 
h0 = 1.1474 and R = 5.

ω h E0 Order E1 Order
1 h0 9.08E-2 – 3.12E-1 –

h0/2 2.26E-2 1.97 1.30E-1 1.10
h0/4 5.87E-3 1.99 6.30E-2 1.04

3 h0 1.82E0 – 5.78E0 –
h0/2 5.73E-1 2.00 2.04E0 1.17
h0/4 1.59E-1 1.99 7.35E-1 1.04

Fig. 1. Real parts of the numerical solutions uh = (uh,1, uh,2)�, usc
h = (usc

h,1, usc
h,2)

� and exact solutions u = (u1, u2)�, usc =
(usc

1 , usc
2 )� for Example 2. We set ω = 3, h = 0.1076 and R = 2.

(4.95). We plot the numerical solutions in Figs. 1 and 2 from which it can be seen that they are in a good 
agreement with the exact ones. To compare the errors for far-field patterns, we observe that the exact 
far-field pattern takes the explicit form u∞(x̂) = 4kpx̂. From Figs. 3 and 4 it can be seen that the numerical 
far-field patterns provide good approximations to the exact ones.

4.2. Numerical solutions to inverse scattering problems

We consider the reconstruction of multiple anisotropic elastic bodies in 2D using the inversion algorithm 
described in Section 3. Set ρ0 = 2000 Kg/m3, cp =

√
(λ + 2μ)/ρ0 = 3000 m/s, cs =

√
μ/ρ0 = 1800 m/s and 

R = 5 m. The number of measurement points and iterations are taken as Nmea = 64, L = 10, respectively. 
For each frequency, we set the step size as ε = 0.005/kp. The boundary of the unknown anisotropic obstacles 
together with the initial guess are illustrated in Fig. 5, in which Obstacle 1 is kite-shaped and Obstacle 2 
is an ellipse. The density of the anisotropic medium is selected as ρ = 2400 Kg/m3. We choose the stiffness 
tensor as

Cklmn ⇒ Cαβ =
[6 8 2

8 21 10
]
× 1010 Pa.
2 10 30
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Fig. 2. Imaginary parts of the numerical solutions uh = (uh,1, uh,2)�, usc
h = (usc

h,1, usc
h,2)

� and exact solutions u = (u1, u2)�, 
usc = (usc

1 , usc
2 )� for Example 2. We set ω = 3, h = 0.2869 and R = 5.

Fig. 3. Exact and numerical far-field pattern u∞ = (u∞
1 , u∞

2 )� for Example 2 when Γ is a circle.

Fig. 4. Exact and numerical far-field pattern u∞ = (u∞
1 , u∞

2 )� for Example 2 when Γ is a rounded-triangle-shaped curve.
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Fig. 5. The obstacles to be reconstructed and initial guess.

Fig. 6. Reconstruction results from four incident directions at distinct frequencies. We set M = 10.

To examine the reconstruction results, we compute the residual error RErrori+1, i = 0, · · · , K of the total 
field where

RErrori+1 =
∥∥JN (Λ(1,L,Ninc,i), · · · ,Λ(N,L,Ninc,i)) − Umea

∥∥
l2

‖Umea‖l2
.

In the first experiment, we use four incident plane waves (i.e., Ninc = 4) incited at two frequencies 
ω1 = 5 kHz and ω2 = 6 kHz (i.e. K = 2). The reconstruction results at each frequency are shown in Fig. 6. 
For different choice of M (see (3.82)), the residual errors listed in Table 5 indicates that the residual error 
decreases as frequency increases. Note that the errors corresponding to M = 10 and M = 20 are almost the 
same, because the underlying scatterers possess smooth boundaries.

In the second experiment, we use the data generated by one fixed direction d = (−
√

2/2, 
√

2/2)� (i.e., 
Ninc = 1) and by three distinct frequencies ω1 = 5 kHz, ω2 = 6 kHz and ω3 = 7 kHz (i.e., K = 3). In 
this case the number of iterations at each frequency is set as L = 20. The parameter M for truncating the 
Fourier series is taken as M = 20. The reconstruction results shown in Fig. 7 are very satisfactory.
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Table 5
Change of residual reconstruction errors with respect to frequen-
cies.

M RError1 RError2 RError3
10 0.3042 0.0656 0.0521
20 0.3042 0.0738 0.0528

Fig. 7. Reconstruction result from the data of one incident direction and three frequencies.

Fig. 8. Reconstruction results from limited-view measurement data.

Finally, we discuss the limited-view case. Assume that the measurement surface S is confined to an open 
arc in R2. We shall consider the following two different curves

Si := {x ∈ R
2 : x = R(cos θ, sin θ)�, θ ∈ Ii}, i = 1, 2,

with I1 = [0, π] and I2 = [π/2, 3π/2]. The other settings and parameters are the same as the second example. 
Due to the limited number of observation angles, it is expected to accurately reconstruct part of the elastic 
inclusion only. We present the numerical reconstructions in Fig. 8 and the residual reconstruction errors in 
Table 6. It can be seen from Fig. 8 that the interface within the scope of observation angles can be better 
reconstructed than the remaining part which cannot be ‘seen’.
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Table 6
Change of residual reconstruction errors with respect to frequen-
cies for limited-view case.
S RError1 RError2 RError3 RError4
S1 0.3275 0.0920 0.0667 0.0670
S2 0.3474 0.1026 0.0541 0.0503
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