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CNRS, CPT, Marseille, France

(Communicated by Allan Greenleaf)

Abstract. We study the problem of determining uniquely a time-dependent
singular potential q, appearing in the wave equation ∂2

t u−∆xu + q(t, x)u = 0

in Q = (0, T ) × Ω with T > 0 and Ω a C2 bounded domain of Rn, n ≥ 2.

We start by considering the unique determination of some general singular
time-dependent coefficients. Then, by weakening the singularities of the set of

admissible coefficients, we manage to reduce the set of data that still guaranties

unique recovery of such a coefficient. To our best knowledge, this paper is the
first claiming unique determination of unbounded time-dependent coefficients,

which is motivated by the problem of determining general nonlinear terms

appearing in nonlinear wave equations.

1. Introduction. We fix Ω a C2 bounded domain of Rn, n ≥ 2, Σ = (0, T )× ∂Ω,
Q = (0, T )× Ω with 0 < T <∞. Then, we introduce the wave equation

(1.1) ∂2
t u−∆xu+ q(t, x)u = 0, (t, x) ∈ Q,

where the potential q is assumed to be an unbounded real valued coefficient. In this
paper we study the inverse problem of determining uniquely q from observations of
some solutions of (1.1) on ∂Q.

1.1. Obstruction to uniqueness and set of full data for our problem. Let us
first recall that ∂Q = ({0}×Ω)∪Σ∪({T}×Ω). According to [45], for T > Diam(Ω),
measurements of solutions of (1.1) restricted to lateral boundary Σ determines
uniquely a time-independent potential q. Due to domain of dependence arguments,
this result can not be extended to time-dependent coefficients (see [36, Subsection
1.1]) where, even for large values of the final time T , some additional information
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on the bottom {0} × Ω and the top {T} × Ω of Q, for solutions u of (1.1), can not
be avoided. In this context, we introduce the set of data

Cq = {(u|Σ, u|t=0, ∂tu|t=0, ∂νu|Σ, u|t=T , ∂tu|t=T ) : u ∈ L2(Q), �u+ qu = 0},

where ν is the outward unit normal vector to ∂Ω, ∂ν = ν ·∇x the normal derivative
and � := ∂2

t − ∆x. We recall that [28] proved that, for q ∈ L∞(Q), the data Cq
determines uniquely q. From now on we will refer to Cq as the set of full data
for our problem and we mention that [35, 36, 37] proved recovery of bounded time-
dependent coefficients q from partial data corresponding to partial knowledge of the
set Cq. The goal of the present paper is to prove recovery of singular time-dependent
coefficients q from full and partial data.

1.2. Motivations. Our inverse problem can be seen as the determination of some
unstable properties such as some rough time evolving density of an inhomogeneous
medium from disturbances generated on the boundary and at initial time, and
measurements of the response. Moreover, singular time-dependent coefficients can
be associated to some unstable time-evolving phenomenon that can not be described
by the wave equation with bounded time-dependent coefficients or time independent
coefficients.

Let us also observe that, according to [13, 30], for parabolic equations the re-
covery of nonlinear terms, appearing in some suitable nonlinear equations, can be
reduced to the determination of time-dependent coefficients. In this context, the
information that allows to recover the nonlinear term is transferred, through a lin-
earization process, to a time-dependent coefficient depending explicitly on some
solutions of the nonlinear problem. In contrast to parabolic equations, due to the
weak regularity of solutions, it is not clear that this process allows to transfer the
recovery of nonlinear terms, appearing in a nonlinear wave equation, to a bounded
time-dependent coefficient. Thus, in order to expect an application of the strategy
set by [13, 30] to the recovery of nonlinear terms for nonlinear wave equations, it
seems important to consider recovery of singular time-dependent coefficients.

1.3. Known results. The problem of determining coefficients appearing in hyper-
bolic equations has attracted a lot of attention over the last decades. The recovery of
a time-independent potential q from measurement on the full boundary Σ has been
addressed in [45] and extended to partial boundary measurements by [18, 42]. We
recall that several authors considered this problem by using the so called bound-
ary control method introduced by [2] and extended to Riemannian manifold in
[3]. We refer to [31] for a review of the boundary control method for recovery of
time-independent coefficients and we mention its recent extension to non smooth
coefficients derived in [39]. We recall also that the stability issue for this problem
has been studied by [6, 7, 34, 49].

Some authors considered also the problem of determining time-dependent coeffi-
cients appearing in wave equations. Without being exhaustive, we mention here the
work of [4, 8, 19, 28, 44, 46, 47, 48, 51] and we refer to [37] for the description of these
results. In addition to these works, we mention the papers [35, 36, 37], where the first
author proved uniqueness and stability in the recovery of several time-dependent co-
efficients from partial knowledge of the full set of data Cq. More recently, [38] proved
unique determination of such coefficients on Riemannian manifolds. We mention
also the work of [50] who determined some information about time-dependent coef-
ficients from the Dirichlet-to-Neumann map on a cylinder-like Lorentzian manifold
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related to the wave equation. We refer to the work [12, 14, 22, 23, 40] for deter-
mination of time-dependent coefficients appearing in fractional diffusion, parabolic
and Schrödinger equations.

In all the above mentioned results, only the recovery of time-dependent coeffi-
cients, that are at least bounded, has been considered. There have been several
works dealing with recovery of non-smooth coefficients appearing in elliptic equa-
tions such as [1, 11, 17, 21, 25, 26]. Nevertheless, to our best knowledge, except
the present paper, there is no work in the mathematical literature dealing with the
recovery of singular time-dependent coefficients q even from the important set of
full data Cq.

1.4. Main results. The main purpose of this paper is to prove the unique global
determination of a time-dependent and unbounded coefficient q from observations
of solutions on ∂Q. More precisely, we would like to prove unique recovery of an
unbounded coefficient q ∈ Lp1(0, T ;Lp2(Ω)), p1 > 1, p2 ∈ [n,+∞) \ {2}, from
partial knowledge of the full set of data Cq. We start by considering the recovery
of a general coefficient q from restriction of Cq only on the bottom t = 0 and top
t = T of Q. More precisely, for q ∈ Lp1(0, T ;Lp2(Ω)), p1 > 1, p2 ∈ [n,+∞) \ {2},
we consider the recovery of q from the set of data

Cq(0) :={(u|Σ, ∂tu|t=0, ∂νu, u|t=T , ∂tu|t=T ) :

u ∈ K(Q),�u+ qu = 0, u|t=0 = 0, u|Σ ∈ H1(Σ)},

or the set of data

Cq(T ) :={(u|Σ, ut=0, ∂tu|t=0, ∂νu, u|t=T ) :

u ∈ K(Q), �u+ qu = 0, u|Σ ∈ H1(Σ)},

where K(Q) = C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)). In addition, assuming that T >
Diam(Ω), we prove the recovery of q from

Cq(0, T ) := {(u|Σ, ∂tu|t=0, ∂νu, u|t=T ) :

u ∈ K(Q), �u+ qu = 0, u|t=0 = 0, u|Σ ∈ H1(Σ)}.

Our first main result can be stated as follows

Theorem 1.1. Let p1 ∈ (1,+∞), p2 ∈ [n,+∞) \ {2} and let q1, q2 ∈ Lp1(0, T ;Lp2

(Ω)). Then, either of the following conditions:

(1.2) Cq1(0) = Cq2(0),

(1.3) Cq1(T ) = Cq2(T ),

implies that q1 = q2. Moreover, assuming that T > Diam(Ω), the condition

(1.4) Cq1(0, T ) = Cq2(0, T )

implies that q1 = q2.

We consider also the recovery of a time-dependent and unbounded coefficient q
from restriction of the data Cq on the lateral boundary Σ. Namely, for all ω ∈
Sn−1 = {x ∈ Rn : |x| = 1} we recall that the ω-shadowed and ω-illuminated faces
of ∂Ω corresponds to the portions

∂Ω+,ω := {x ∈ ∂Ω : ν(x) · ω > 0}, ∂Ω−,ω := {x ∈ ∂Ω : ν(x) · ω ≤ 0}.
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Here and in the remaining parts of this paper, for all ` ∈ N∗, · is the scalar product
in R` given by

x · y = x1y1 + . . .+ x`y`, x = (x1, . . . , x`) ∈ R`, y = (y1, . . . , y`) ∈ R`.
We consider also the parts of Σ associated to these two portions of ∂Ω defined by
Σ±,ω := (0, T )× ∂Ω±,ω. We set ω0 ∈ Sn−1 and we introduce V = (0, T )× V ′ with
V ′ a neighborhood of ∂Ω−,ω0

in ∂Ω. Then, we study the recovery of q ∈ Lp(Q),
p > n+ 1, from the data

Cq(T, V ) = {(u|Σ, u|t=0, ∂tu|t=0, ∂νu|V , u|t=T ) : u ∈ H1(Q), �u+ qu = 0}
and the determination of a time-dependent coefficient q ∈ L∞(0, T ;Lp(Ω)), p > n,
from the data

Cq(0, T, V ) ={(u|Σ, ∂tu|t=0, ∂νu|V , u|t=T ) :

u ∈ L2(0, T ;H1(Ω)), �u+ qu = 0, u|t=0 = 0}.
We give a more rigorous definition of these sets in Section 2. Our two last results
can be stated as follows.

Theorem 1.2. Let p ∈ (n+ 1,+∞) and let q1, q2 ∈ Lp(Q). Then, the condition

(1.5) Cq1(T, V ) = Cq2(T, V )

implies that q1 = q2.

Theorem 1.3. Let p ∈ (n,+∞) and let q1, q2 ∈ L∞(0, T ;Lp(Ω)). Then, the
condition

(1.6) Cq1(0, T, V ) = Cq2(0, T, V )

implies that q1 = q2.

To our best knowledge the results of Theorem 1.1, 1.2 and 1.3 are the first
claiming unique determination of unbounded time-dependent coefficients for the
wave equation. In Theorem 1.1, we prove recovery of coefficients q, that can admit
some quite important singularities, by making restriction on the set of full data Cq
on the bottom t = 0 and the top t = T of Q. While, in Theorem 1.2 and 1.3, we
consider less singular time-dependent coefficients, in order to restrict the data on
the lateral boundary Σ = (0, T )× ∂Ω.

We mention also that the uniqueness result of Theorem 1.3 is stated with data
close to the one of [35, 36], who established determination of general class of bounded
time-dependent potentials from, what seems to be, the weakest conditions so far.
More precisely, the result of [35, 36] differs from Theorem 1.3 by the restriction
on the Dirichlet input ([35, 36] consider Dirichlet boundary conditions restricted
to a neighborhood of the ω0-shadowed face, while in Theorem 1.3 we consider the
Dirichlet input on the full boundary).

In the present paper we consider two different approaches which depend mainly
on the restriction that we make on the set of full data Cq. For Theorem 1.1, we use
geometric optics solutions corresponding to oscillating solutions of the form

(1.7) u(t, x) =

N∑
j=1

aj(t, x)eiλψj(t,x) +Rλ(t, x), (t, x) ∈ Q,

with λ > 1 a large parameter, Rλ a remainder term that admits a decay with respect
to the parameter λ and ψj , j = 1, .., N , real valued. For N = 1, these solutions
correspond to a classical tool for proving determination of time independent or
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time-dependent coefficients (e.g. [4, 5, 6, 8, 44, 46, 45]). In a similar way to [38],
we consider in Theorem 1.1 solutions of the form (1.7) with N = 2 in order to be
able to restrict the data at t = 0 and t = T while avoiding a “reflection”. It seems
that in the approach set so far for the construction of solutions of the form (1.7),
the decay of the remainder term Rλ relies in an important way to the fact that the
coefficient q is bounded (or time independent). In this paper, we prove how this
construction can be extended to unbounded time-dependent coefficients.

The approach used for Theorem 1.1 allows in a quite straightforward way to
restrict the data on the bottom t = 0 and on the top t = T of Q. Nevertheless, it is
not clear how one can extend this approach to restriction on the lateral boundary Σ
without requiring additional smoothness or geometrical assumptions. Indeed, this
construction works quite well for restricting data on a flat part of ∂Q but it seems
to require more complex local construction and some geometrical assumptions for
restricting the data on more general boundary. For this reason, in order to consider
restriction on Σ, we use a different approach where the oscillating solutions (1.7)
are replaced by exponentially growing and exponentially decaying solutions. The
idea of this approach, which is inspired by [7, 35, 36, 37] (see also [10, 33] for elliptic
equations), consists of combining results of density of products of solutions with
Carleman estimates with linear weight in order to be able to restrict at the same
time the data on the bottom t = 0, on the top t = T and on the lateral boundary
Σ of Q. For the construction of these solutions, we use Carleman estimates in
negative order Sobolev space. To our best knowledge this is the first extension of
this approach to singular time-dependent coefficients.

1.5. Outline. This paper is organized as follows. In Section 2, we start with some
preliminary results and we define the set of data Cq(0), Cq(T ), Cq(0, T ), Cq(T, V )
and Cq(0, T, V ). In Section 3, we prove Theorem 1.1 by mean of geometric optics
solutions of the form (1.7). Then, Section 4 and Section 5 are respectively devoted
to the proof of Theorem 1.2 and Theorem 1.3.

2. Preliminary results. In this section we give a rigorous definition of the set
of data Cq(T, V ), Cq(0, T, V ) and we introduce some properties of (1.1) for any
q ∈ Lp1(Q), with p1 > n + 1, or, for q ∈ L∞(0, T ;Lp2(Ω)), with p2 > n. We start
by considering some results that require some functional spaces borrowed from [36].
We introduce the space

H�(Q) = {u ∈ H1(Q) : �u = (∂2
t −∆x)u ∈ L2(Q)},

H�,∗(Q) = {u ∈ L2(0, T ;H1(Ω)) : �u = (∂2
t −∆x)u ∈ L2(Q)},

with the norm

‖u‖2H�(Q) = ‖u‖2H1(Q) +
∥∥(∂2

t −∆x)u
∥∥2

L2(Q)
,

‖u‖2H�,∗(Q) = ‖u‖2L2(0,T ;H1(Ω)) +
∥∥(∂2

t −∆x)u
∥∥2

L2(Q)
.

We define also the space

S = {u ∈ H1(Q) : (∂2
t −∆x)u = 0}

(resp S∗ = {u ∈ L2(0, T ;H1(Ω)) : (∂2
t −∆x)u = 0})

considered as a subset of H1(Q) (resp L2(0, T ;H1(Ω))). According to [36, Propo-
sition 4], the maps

τ0w = (w|Σ, w|t=0, ∂tw|t=0), τ1w = (∂νw|Σ, w|t=T , ∂tw|t=T ), w ∈ C∞(Q),
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can be extended continuously to τ0 : H�,∗(Q)→ H−3(0, T ;H−
1
2 (∂Ω))×H−2(Ω)×

H−4(Ω), τ1 : H�,∗(Q) → H−3(0, T ;H−
3
2 (∂Ω)) × H−2(Ω) × H−4(Ω). For all w ∈

C∞(Q) we fix also

τ0w = (τ0,1w, τ0,2w, τ0,3w), τ1w = (τ1,1w, τ1,2w, τ1,3w),

with

τ0,1w = w|Σ, τ0,2w = w|t=0, τ0,3w = ∂tw|t=0,

τ1,1w = ∂νw|Σ, τ1,2w = w|t=T , τ1,3w = ∂tw|t=T .

Using these operators, we define

H := {τ0u : u ∈ H�(Q)} ⊂ H−3(0, T ;H−
1
2 (∂Ω))×H−2(Ω)×H−4(Ω),

H∗ := {(τ0,1u, τ0,3u) : u ∈ H�,∗(Q), τ0,2u = 0} ⊂ H−3(0, T ;H−
1
2 (∂Ω))×H−4(Ω).

In view of [36, Proposition 1], it is clear that the restriction of τ0 to S (resp S∗) is
one to one and onto. Therefore, we can consider on H (resp H∗) the norm

‖(f, v0, v1)‖H =
∥∥(τ0|S)−1(f, v0, v1)

∥∥
H1(Q)

, (f, v0, v1) ∈ H,

(resp ‖(f, v1)‖H∗ =
∥∥(τ0|S∗)

−1(f, 0, v1)
∥∥
L2(0,T ;H1(Ω))

, (f, v1) ∈ H∗).

We consider now the initial boundary value problem (IBVP in short)

(2.1)

 ∂2
t v −∆xv + qv = F (t, x), (t, x) ∈ Q,

v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ Ω
v(t, x) = 0, (t, x) ∈ Σ.

We have the following well-posedness result for this IBVP when q is unbounded.

Proposition 1. Let p1 ∈ (1,+∞) and p2 ∈ [n,+∞) \ {2}. For q ∈ Lp1(0, T ;Lp2

(Ω)), v0 ∈ H1
0 (Ω), v1 ∈ L2(Ω) and F ∈ Lp1(0, T ;L2(Ω)), problem (2.1) admits a

unique solution v ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) which satisfies

(2.2)
‖v‖C([0,T ];H1

0 (Ω)) +‖v‖C1([0,T ];L2(Ω)) ≤ C(‖v0‖H1(Ω) +‖v1‖L2(Ω) +‖F‖Lp1 (0,T ;L2(Ω))),

with C depending only on p1, p2, n, T , Ω and any M ≥ ‖q‖Lp1 (0,T ;Lp2 (Ω)).

Proof. According to the second part of the proof of [43, Theorem 8.1, Chapter 3],
[43, Remark 8.2, Chapter 3] and [43, Theorem 8.3, Chapter 3], the proof of this
proposition will be completed if we show that for any v ∈W 2,∞(0, T ;H1

0 (Ω)) solving
(2.1) the a priori estimate (2.2) holds true. Without lost of generality we assume
that v is real valued. From now on we consider this estimate. We define the energy
E(t) at time t ∈ [0, T ] by

E(t) :=

∫
Ω

(
|∂tv(t, x)|2 + |∇xv(t, x)|2

)
dx.

Multiplying (2.1) by ∂tv and integrating by parts we get
(2.3)

E(t)− E(0) = −2

∫ t

0

∫
Ω

q(s, x)v(s, x)∂tv(s, x)dxds+ 2

∫ t

0

∫
Ω

F (s, x)∂tv(s, x)dxds.

On the other hand, we have

(2.4)

∣∣∣∣∫ t

0

∫
Ω

q(s, x)v(s, x)∂tv(s, x)dxds

∣∣∣∣ ≤ ∫ t

0

‖qv(s, ·)‖L2(Ω) ‖∂tv(s, ·)‖L2(Ω) ds.
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Let us observe that, since v ∈ C([0, T ];H1(Ω)) and since, for n ≥ 3, we have

2 <
2p2

p2 − 2
=

2n

n− 2 n
p2

≤ 2n

n− 2
,

the Sobolev embedding theorem implies

(2.5) ‖v(t, ·)‖
L

2p2
p2−2 (Ω)

≤ C ‖v(t, ·)‖H1(Ω) , t ∈ (0, T ),

with C depending only on Ω, p2, n. Moreover, since v|Σ = 0, an application of the
Poincaré inequality yields

(2.6) ‖v(t, ·)‖H1(Ω) ≤ C ‖∇xv(t, ·)‖L2(Ω) ≤ CE(t)
1
2 , t ∈ (0, T ),

with C depending only on Ω, p2, n. Therefore, combining (2.5)-(2.6) with the
Hölder inequality, for all s ∈ (0, T ), we get

‖qv(s, ·)‖L2(Ω) ≤ ‖q(s, ·)‖Lp2 (Ω) ‖v(s, ·)‖
L

2p2
p2−2 (Ω)

≤ C ‖q(s, ·)‖Lp2 (Ω)E(s)
1
2 ,

with C depending only on Ω, p2, n. Thus, from (2.4), we get
(2.7)∣∣∣∣∫ t

0

∫
Ω

q(s, x)v(s, x)∂tv(s, x)dxds

∣∣∣∣ ≤ C ∫ t

0

‖q(s, ·)‖Lp2 (Ω)E(s)ds

≤ ‖q‖Lp1 (0,T ;Lp2 (Ω))

(∫ t

0

E(s)
p1
p1−1 ds

) p1−1
p1

.

In the same way, an application of the Hölder inequality yields∣∣∣∣∫ t

0

∫
Ω

F (s, x)∂tv(s, x)dxds

∣∣∣∣ ≤ ‖F‖Lp1 (0,T ;L2(Ω))

(∫ t

0

E(s)
p1

2(p1−1) ds

) p1−1
p1

≤ ‖F‖2Lp1 (0,T ;L2(Ω)) +

(∫ t

0

E(s)
p1

2(p1−1) ds

) 2(p1−1)
p1

.

Then, using the Cauchy-Schwarz inequality, we get∣∣∣∣∫ t

0

∫
Ω

F (s, x)∂tv(s, x)dxds

∣∣∣∣
≤ ‖F‖2Lp1 (0,T ;L2(Ω)) + T

(p1−1)
p1

(∫ t

0

E(s)
p1

(p1−1) ds

) (p1−1)
p1

.

Combining this estimate with (2.3)-(2.7), we deduce that

E(t) ≤ E(0) + ‖F‖2Lp1 (0,T ;L2(Ω)) + C

(∫ t

0

E(s)
p1
p1−1 ds

) p1−1
p1

,

where C depends only on T , Ω, p1, p2, n and any M ≥ ‖q‖Lp1 (0,T ;Lp2 (Ω)). By taking

the power p1
p1−1 on both side of this inequality, we get

E(t)
p1
p1−1 ≤ C

(
‖v0‖H1(Ω) + ‖v1‖L2(Ω) + ‖F‖Lp1 (0,T ;L2(Ω))

) 2p1
p1−1

+C

∫ t

0

E(s)
p1
p1−1 ds.
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Then, the Gronwall inequality implies

E(t)
p1
p1−1 ≤ C

(
‖v0‖H1(Ω) + ‖v1‖L2(Ω) + ‖F‖Lp1 (0,T ;L2(Ω))

) 2p1
p1−1

eCt

≤ C
(
‖v0‖H1(Ω) + ‖v1‖L2(Ω) + ‖F‖Lp1 (0,T ;L2(Ω))

) 2p1
p1−1

eCT .

From this last estimate one can easily deduce (2.2).

Let us introduce the IBVP

(2.8)

 ∂2
t u−∆xu+ q(t, x)u = 0, in Q,
u(0, ·) = v0, ∂tu(0, ·) = v1, in Ω,
u = g, on Σ.

Combining Proposition 1 with the arguments used in [37, Proposition 2.1], we obtain
the following result of existence and uniqueness of solutions of the IBVP (2.8) for
(g, v0, v1) ∈ H and q ∈ Lp(Q), p > n+ 1.

Proposition 2. Let (g, v0, v1) ∈ H, q ∈ Lp(Q), p > n + 1. Then, the IBVP (2.8)
admits a unique weak solution u ∈ H1(Q) satisfying

(2.9) ‖u‖H1(Q) ≤ C ‖(g, v0, v1)‖H

and the boundary operator Bq : (g, v0, v1) 7→ (τ1,1u|V , τ1,2u) is a bounded operator
from H to
H−3(0, T ;H−

3
2 (V ′))×H−2(Ω).

Applying these results, we fix

Cq(T, V ) = {(g, v0, v1, Bq(g, v0, v1)) : (g, v0, v1) ∈ H}.

Proposition 3. Let (g, v1) ∈ H∗ with v0 = 0 and let q ∈ L∞(0, T ;Lp(Ω)), p > n.
Then, the IBVP (2.8) admits a unique weak solution u ∈ L2(0, T ;H1(Ω)) satisfying

(2.10) ‖u‖L2(0,T ;H1(Ω)) ≤ C ‖(g, v1)‖H∗
and the boundary operator Bq,∗ : (g, v1) 7→ (τ1,1u|V , τ1,2u) is a bounded operator
from H∗ to
H−3(0, T ;H−

3
2 (V ′))×H−2(Ω).

We define the set Cq(0, T, V ) by

Cq(0, T, V ) = {(g, v1, Bq,∗(g, v1)) : (g, v1) ∈ H∗}.

Now let us define the sets Cq(T ), Cq(0), Cq(0, T ) introduced before Theorem
1.1 for q ∈ Lp1(0, T ;Lp2(Ω)), p1 > 1, p2 ∈ [n,+∞) \ {2}. Note first that for any
u ∈ K(Q) satisfying ∂2

t u−∆u+ qu = 0, u solves the IBVP ∂2
t u−∆xu = G(t, x), (t, x) ∈ Q,

u(0, x) = v0(x), ∂tu(0, x) = v1(x), x ∈ Ω
u(t, x) = g, (t, x) ∈ Σ.

with G = −qu ∈ L1(0, T ;L2(Ω)), v0 ∈ H1(Ω), v1 ∈ L2(Ω), g ∈ H1(Σ), g|t=0 =

v0|∂Ω. Thus, applying [5, Theorem A.1] we deduce that ∂νu ∈ L2(Σ) and we can
consider the sets Cq(T ), Cq(0), Cq(0, T ).
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3. Proof of Theorem 1.1. The goal of this section is to prove Theorem 1.1. For
this purpose, we consider special solutions uj of the equation

(3.1) ∂2
t uj −∆xuj + qjuj = 0

taking the form

(3.2) uj = aj,1e
iλψj,1(t,x) + aj,2e

iλψj,2(t,x) +Rj,λ

with a large parameter λ > 0 and a remainder term Rj,λ that admits some decay
with respect to λ. The use of such solutions, also called oscillating geometric optics
solutions, goes back to [45] who have proved unique recovery of time-independent
coefficients. Since then, such approach has been used by various authors in dif-
ferent context including recovery of a bounded time-dependent coefficient by [38].
In this section we will prove how one can extend this approach, that has been
specifically designed for the recovery of time-independent coefficients or bounded
time-dependent coefficients, to the recovery of singular time-dependent coefficients.

3.1. Oscillating geometric optics solutions. Fixing ω ∈ Sn−1, λ > 1 and aj,k ∈
C∞(Q), j = 1, 2, k = 1, 2, we consider solutions of (3.1) taking the form
(3.3)

u1(t, x) = a1,1(t, x)e−iλ(t+x·ω) + a1,2(t, x)e−iλ((2T−t)+x·ω) +R1,λ(t, x), (t, x) ∈ Q,

(3.4) u2(t, x) = a2,1(t, x)eiλ(t+x·ω) + a2,2(t, x)eiλ(−t+x·ω) +R2,λ(t, x), (t, x) ∈ Q.

Here, the expression aj,k, j, k = 1, 2, are independent of λ and they are respectively
solutions of the transport equation

(3.5) ∂taj,k + (−1)kω · ∇xaj,k = 0, (t, x) ∈ Q,

and the expression Rj,λ, j = 1, 2, solves respectively the IBVP

(3.6)

 ∂2
tR1,λ −∆xR1,λ + q1R1,λ = F1,λ, (t, x) ∈ Q,

R1,λ(T, x) = 0, ∂tR1,λ(T, x) = 0, x ∈ Ω
R1,λ(t, x) = 0, (t, x) ∈ Σ,

(3.7)

 ∂2
tR2,λ −∆xR2,λ + q2R2,λ = F2,λ, (t, x) ∈ Q,

R2,λ(0, x) = 0, ∂tR2,λ(0, x) = 0, x ∈ Ω
R2,λ(t, x) = 0, (t, x) ∈ Σ,

with Fj,λ = −[(� + qj)(uj − Rj,λ)]. The main point in the construction of such
solutions, also called oscillating geometric optics (GO in short) solutions, consists
of proving the decay of the expression Rj,λ with respect to λ→ +∞. Actually, we
would like to prove the following,

(3.8) lim
λ→+∞

‖Rj,λ‖L∞(0,T ;L2(Ω)) = 0.

For q ∈ L∞(Q), the construction of GO solutions of the form (3.3)-(3.4), with aj,k
satisfying (3.5) and Rj,λ satisfying (3.6)-(3.8), has been proved in [38, Lemma 2.2].
The fact that q is bounded plays an important role in the arguments of [38, Lemma
2.2]. For this reason we can not apply the result of [38] and we need to consider the
following.
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Lemma 3.1. Let qj ∈ Lp1(0, T ;Lp2(Ω)), j = 1, 2, p1 > 1, p2 ∈ [n,+∞) \ {2}.
Then, we can find uj ∈ K(Q) solving (3.1), of the form (3.3)-(3.4), with Rj,λ,
j = 1, 2, satisfying (3.8) and the following estimate

(3.9) sup
λ>1

max
j=1,2

‖Rj,λ‖L∞(0,T ;H1(Ω)) <∞.

Proof. We will consider this result only for j = 2, the proof for j = 1 being similar
by symmetry. Note first that, (3.5) implies that

F2,λ(t, x) = −eiλ(t+x·ω)(� + q2)a2,1(t, x)− eiλ(−t+x·ω)(� + q2)a2,2(t, x)

= Hλ(t, x)

= eiλtH1,λ(t, x) + e−iλtH2,λ(t, x),

with
(3.10)
‖Hλ‖Lp1 (0,T ;L2(Ω)) ≤ ‖(� + q2)a2,1‖Lp1 (0,T ;L2(Ω)) + ‖(� + q2)a2,2‖Lp1 (0,T ;L2(Ω)) .

Thus, in light Proposition 1, we have R2,λ ∈ K(Q) with

‖R2,λ‖C1([0,T ];L2(Ω)) + ‖R2,λ‖C([0,T ];H1(Ω))

≤C(1 + ‖q2‖Lp1 (0,T ;Lp2 (Ω)))(‖a2,1‖W 2,∞(Q) + ‖a2,2‖W 2,∞(Q)).
(3.11)

In particular, this proves (3.9). The only point that we need to check is the de-
cay with respect to λ given by (3.8). For this purpose, we consider v(t, x) :=∫ t

0
R2,λ(s, x)ds and we easily check that v solves

(3.12)

 ∂2
t v −∆xv = Gλ, (t, x) ∈ Q,

v(0, x) = 0, ∂tv(0, x) = 0, x ∈ Ω
v(t, x) = 0, (t, x) ∈ Σ,

with

Gλ(t, x) = −
∫ t

0

q2(s, x)R2,λ(s, x)ds+

∫ t

0

Hλ(s, x)ds, (t, x) ∈ Q.

Note first that, since R2,λ ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];H1(Ω)), we have v ∈
C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1(Ω)). Moreover, using the fact that, by the Sobolev
embedding theorem, q2R2,λ ∈ Lp1(0, T ;L2(Ω)), we deduce that Gλ ∈ W 1,p1(0, T ;
L2(Ω)) ⊂ L2(Q) and v solves the elliptic boundary value problem

(3.13)

{
−∆xv = S, (t, x) ∈ (0, T )× Ω,
v(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω,

with S = −∂2
t v + Gλ ∈ L2(0, T ;L2(Ω)). Then, from the elliptic regularity of

solutions of (3.13), we deduce that v ∈ L2(0, T ;H2(Ω)) and it follows that v ∈
H2(Q). We define the energy E(t) at time t associated with v and given by

E(t) :=

∫
Ω

(
|∂tv|2(t, x) + |∇xv|2(t, x)

)
dx ≥

∫
Ω

|R2,λ(t, x)|2dx.

Multiplying (3.12) by ∂tv and taking the real part, we find

E(t) =− 2R

(∫ t

0

∫
Ω

(∫ s

0

q2(τ, x)R2,λ(τ, x)dτ

)
∂tv(s, x)dxds

)
+ 2R

(∫ t

0

∫
Ω

(∫ s

0

Hλ(τ, x)dτ

)
∂tv(s, x)dxds

)
.
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Applying Fubini’s theorem, we obtain

(3.14)

E(t) = −2R

(∫ t

0

∫
Ω

q2(τ, x)R2,λ(τ, x)

(∫ t

τ

∂tv(s, x)ds

)
dxdτ

)

+ 2R

(∫ t

0

∫
Ω

(∫ s

0

Hλ(τ, x)dτ

)
∂tv(s, x)dxds

)
= −2R

(∫ t

0

∫
Ω

q2(τ, x)R2,λ(τ, x)(v(t, x)− v(τ, x))dxdτ

)
+ 2R

(∫ t

0

∫
Ω

(∫ s

0

Hλ(τ, x)dτ

)
∂tv(s, x)dxds

)
.

On the other hand, applying the Hölder inequality, we get∣∣∣∣∫ t

0

∫
Ω

q2(τ, x)R2,λ(τ, x)v(t, x)dxdτ

∣∣∣∣
≤
∫ t

0

‖∂tv(τ, ·)‖L2(Ω) ‖q2(τ, ·)v(t, ·)‖L2(Ω) dτ

≤
(∫ t

0

‖∂tv(τ, ·)‖L2(Ω) ‖q2(τ, ·)‖Lp2 (Ω) dτ

)
‖v(t, ·)‖

L
2p2
p2−2 (Ω)

.

Combining this inequality with the estimates (2.5)-(2.6) and applying the Hölder
inequality, we obtain∣∣∣∣∫ t

0

∫
Ω

q2(τ, x)R2,λ(τ, x)v(t, x)dxdτ

∣∣∣∣
≤ C

(∫ t

0

‖∂tv(τ, ·)‖L2(Ω) ‖q2(τ, ·)‖Lp2 (Ω) dτ

)
‖v(t, ·)‖H1(Ω)

≤ C
(∫ t

0

E(τ)1/2 ‖q2(τ, ·)‖Lp2 (Ω) dτ

)
E(t)1/2

≤ C2

(∫ t

0

E(τ)1/2 ‖q2(τ, ·)‖Lp2 (Ω) dτ

)2

+
E(t)

4

≤ C2

‖q2‖Lp1 (0,T ;Lp2 (Ω))

(∫ t

0

E(τ)
p1

2(p1−1) dτ

) p1−1
p1

2

+
E(t)

4

≤ C2 ‖q2‖2Lp1 (0,T ;Lp2 (Ω))

(∫ t

0

E(τ)
p1

2(p1−1) dτ

) 2(p1−1)
p1

+
E(t)

4
,

with C depending only on Ω, p2, n. Then, applying the Cauchy-Schwarz inequality,
we get

(3.15)

∣∣∣∣∫ t

0

∫
Ω

q2(τ, x)R2,λ(τ, x)v(t, x)dxdτ

∣∣∣∣
≤ C2 ‖q2‖2Lp1 (0,T ;Lp2 (Ω))

((∫ t

0

E(τ)
p1

2(p1−1) dτ

)2
) p1−1

p1

+
E(t)

4

≤ C2 ‖q2‖2Lp1 (0,T ;Lp2 (Ω))

(
t

(∫ t

0

E(τ)
p1

(p1−1) dτ

)) p1−1
p1

+
E(t)

4
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≤ C2 ‖q2‖2Lp1 (0,T ;Lp2 (Ω)) T
(p1−1)
p1

(∫ t

0

E(τ)
p1

(p1−1) dτ

) (p1−1)
p1

+
E(t)

4
.

In the same way, we obtain

(3.16)

∣∣∣∣∫ t

0

∫
Ω

q2(τ, x)R2,λ(τ, x)v(τ, x)dxdτ

∣∣∣∣
≤ C

∫ t

0

E(τ) ‖q2(τ, ·)‖Lp2 (Ω) dτ

≤ C
(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

‖q2‖Lp1 (0,T ;Lp2 (Ω)) .

Finally, fixing

βλ(t, x) :=

∫ t

0

Hλ(τ, x)dτ,

we find

(3.17)

∣∣∣∣∫ t

0

∫
Ω

(∫ s

0

Hλ(τ, x)dτ

)
∂tv(s, x)dxds

∣∣∣∣
≤ ‖βλ‖Lp1 (0,T ;L2(Ω))

(∫ t

0

E(τ)
p1

2(p1−1) dτ

) p1−1
p1

≤ ‖βλ‖2Lp1 (0,T ;L2(Ω)) +

(∫ t

0

E(τ)
p1

2(p1−1) dτ

) 2(p1−1)
p1

≤ ‖βλ‖2Lp1 (0,T ;L2(Ω)) + T
p1−1
p1

(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

.

Combining (3.14)-(3.17), we deduce that

E(t) ≤ E(t)

4
+C(‖q2‖Lp1 (0,T ;Lp2 (Ω))+1)2

(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

+‖βλ‖2Lp1 (0,T ;L2(Ω))

and we get

E(t) ≤ C(‖q2‖Lp1 (0,T ;Lp2 (Ω)) + 1)2

(∫ t

0

E(τ)
p1
p1−1 dτ

) p1−1
p1

+
4 ‖βλ‖2Lp1 (0,T ;L2(Ω))

3
,

with C depending only on Ω, T , p1, p2, n. Now taking the power p1
p1−1 on both side

of this inequality, we get

E(t)
p1
p1−1 ≤ 2

p1
p1−1C

p1
p1−1 (‖q2‖Lp1 (0,T ;Lp2 (Ω)) + 1)

2p1
p1−1

∫ t

0

E(τ)
p1
p1−1 dτ

+ 2
p1
p1−1

(
4 ‖βλ‖2Lp1 (0,T ;L2(Ω))

3

) p1
p1−1

and applying the Gronwall inequality, we obtain

E(t)
p1
p1−1 ≤ C1 ‖βλ‖

2p1
p1−1

Lp1 (0,T ;L2(Ω)) e
C2t ≤ C1 ‖βλ‖

2p1
p1−1

Lp1 (0,T ;L2(Ω)) e
C2T ,

where C1 depends only on p1 and C2 on ‖q2‖Lp1 (0,T ;Lp2 (Ω)), p1, p2, n, Ω and T .

According to this estimate, the proof of the lemma will be completed if we prove
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that

(3.18) lim
λ→+∞

‖βλ‖L∞(0,T ;L2(Ω)) = 0.

This last property follows from some arguments similar to the end of the proof of
[38, Lemma 2.2]. This completes the proof the lemma.

3.2. Proof of Theorem 1.1 with restriction at t = 0 or t = T . This subsection
is devoted to the first part of Theorem 1.1, which consists of showing that (1.2) or
(1.3) implies q1 = q2. We start by assuming that (1.2) is fulfilled and we fix
q = q2− q1 on Q extended by 0 on R1+n \Q. We set λ > 1, ω ∈ Sn−1 and ξ ∈ R1+n

satisfying (1,−ω) · ξ = 0. Then, in view of Lemma 3.1, we can consider uj ∈ K(Q),

j = 1, 2, solving (3.1), of the form (3.3)-(3.4), with a1,1(t, x) = (2π)−
n+1
2 e−i(t,x)·ξ,

a1,2 = 0, a2,1 = 1, a2,2 = −1 and with condition (3.8)-(3.9) fulfilled, that is,

(3.19)
u1(t, x) = (2π)−

n+1
2 e−i(t,x)·ξe−iλ(t+x·w) +R1,λ(t, x),

u2(t, x) = eiλ(t+x·w) − eiλ(−t+x·w) +R2,λ(t, x).

Obviously, we have u2(0, x) = 0, sinceR2,λ(0, x) = 0 by (3.7). In view of Proposition
1, there exists a unique weak solution v ∈ K(Q) to the IBVP:

∂2
t v −∆v + q1v = 0 in Q,

v|t=0 = u2|t=0 = 0, ∂tv|t=0 = ∂tu2|t=0, v|Σ = u2|Σ.

Setting u := v − u2, we see

(3.20)
∂2
t u−∆u+ q1u = (q2 − q1)u2 in Q,

u|t=0 = 0, ∂tu|t=0 = 0, u|Σ = 0.

Note that the inhomogeneous term (q2 − q1)u2 ∈ Lp1(0, T ;L2(Ω)), due to the fact
that q2 − q1 ∈ Lp1(0, T ;Lp2(Ω)) and u2 ∈ L∞(0, T ;H1(Ω)). Hence, using again
Proposition 1 gives that u ∈ C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)). Moreover, u solves{
∂2
t u−∆u = Z in Q,

u|t=0 = 0, ∂tu|t=0 = 0, u|Σ = 0.

with Z = −q1u+ (q2 − q1)u2 ∈ L1(0, T ;L2(Ω)). Therefore, in light of [5, Theorem
A.1], we have ∂νu ∈ L2(Σ). In the same way, we can prove that u1 ∈ K(Q) with
∂νu1 ∈ L2(Σ). Thus, we can multiply u1 to the equation in (3.20) and apply Green
formula to get∫

Q

(q2 − q1)u2u1 dxdt =

∫
Ω

∂tu(T, x)u1(T, x)dx−
∫

Ω

u(T, x)∂tu1(T, x)dx

−
∫

Σ

∂νu(t, x)u1(t, x)dσ(x)dt.

(3.21)

Since Cq1(0) = Cq2(0) and v|t=0 = u2|t=0 = 0, we see ∂νu|Σ = u|t=T = ∂tu|t=T = 0,
in addition to the boundary conditions of u in (3.20). Consequently, it follows from
(3.21) that ∫

Q

(q2 − q1)u2u1 dxdt = 0.
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Inserting the expressions of uj (j = 1, 2) given by (3.19) to the previous identity
gives the relation

0 = (2π)−(n+1)/2

∫
Q

q(t, x)e−i(t,x)·ξ dxdt+ R̃λ,

R̃λ := (2π)−(n+1)/2

∫
Q

q(t, x)e−i(t,x)·ξ
(
−e−2iλt + e−iλ(t+x·w)R2,λ(t, x)

)
dxdt

+

∫
Q

q(t, x)R1,λ(t, x)
(
eiλ(t+x·w) − eiλ(−t+x·w) +R2,λ(t, x)

)
dxdt

for all λ > 1. Using the fact that q ∈ Lp1(0, T ;L2(Ω)) and applying the Riemann-
Lebesgue lemma and (3.8), we deduce that∣∣∣∣∫

Q

q(t, x)e−i(t,x)·ξ
(
−e−2iλt + e−iλ(t+x·w)R2,λ(t, x)

)
dxdt

∣∣∣∣→ 0,∣∣∣∣∫
Q

q(t, x)R1,λ(t, x)
(
eiλ(t+x·w) − eiλ(−t+x·w)

)
dxdt

∣∣∣∣→ 0

as λ→∞. On the other hand, by Hölder inequality it holds that∣∣∣∣∫
Q

q(t, x)R1,λ(t, x)R2,λ(t, x) dxdt

∣∣∣∣
≤ ||q R1,λ||L1(0,T ;L2(Ω)) ||R2,λ||L∞(0,T ;L2(Ω))

≤ C ||q||Lp1 (0,T ;Lp2 (Ω)) ||R1,λ||L∞(0,T ;H1(Ω)) ||R2,λ||L∞(0,T ;L2(Ω)),

which tends to zero as λ→∞ due to the decaying behavior of Rj,λ (see (3.8)) and

estimate (3.9). Therefore, |R̃λ| → 0 as λ→∞. It then follows that

(3.22) Fq(ξ) = (2π)−
n+1
2

∫
R1+n

q(t, x)e−i(t,x)·ξdxdt = 0.

Since ω ∈ Sn−1 is arbitrary chosen, we deduce that for any ω ∈ Sn−1 and any ξ
lying in the hyperplane {ζ ∈ R1+n : ζ · (1,−ω) = 0} of R1+n, the Fourier transform
Fq is null at ξ. On the other hand, since q ∈ L1(R1+n) is compactly supported in
Q, we know that Fq is a complex valued real-analytic function and it follows that
Fq = 0. By inverse Fourier transform this yields the vanishing of q, which implies
that q1 = q2 in Q.

To prove that the relation (1.3) implies q1 = q2, we shall consider uj ∈ K(Q),
j = 1, 2, solving (3.1), of the form (3.3)-(3.4), with a1,1 = 1, a1,2 = −1, a2,1 =

(2π)−
n+1
2 e−i(t,x)·ξ, a2,2 = 0 and with condition (3.8)-(3.9) fulfilled. Then, by using

the fact that u1(T, x) = 0, x ∈ Ω, and by repeating the above arguments, we deduce
that q1 = q2. For brevity we omit the details.

We have proved so far that either of the conditions (1.2) and (1.3) implies q1 = q2.
It remains to prove that for T > Diam(Ω), the condition (1.4) implies q1 = q2.

3.3. Proof of Theorem 1.1 with restriction at t = 0 and t = T . In this
section, we assume that T > Diam(Ω) is fulfilled and we will show that (1.4) implies

q1 = q2. For this purpose, we fix λ > 1, ω ∈ Sn−1 and ε = T−Diam(Ω)
4 . We set also

χ ∈ C∞0 (−ε, T + Diam(Ω) + ε) satisfying χ = 1 on [0, T + Diam(Ω)] and x0 ∈ Ω
such that

x0 · ω = inf
x∈Ω

x · ω.

Inverse Problems and Imaging Volume 12, No. 3 (2018), 745–772



Determination of singular time-dependent coefficients 759

We introduce the solutions uj ∈ K(Q), j = 1, 2, of (3.1), of the form (3.3)-(3.4),
with

a1,1(t, x) = (2π)−
n+1
2 χ(t+ (x− x0) · ω)e−i(t,x)·ξ,

a1,2(t, x) = −(2π)−
n+1
2 χ((2T − t) + (x− x0) · ω)e−i(2T−t,x)·ξ,

a2,1(t, x) = χ(t+ (x− x0) · ω),

a2,2(t, x) = −χ(−t+ (x− x0) · ω)

and with condition (3.8)-(3.9) fulfilled. Then, one can check that u1(T, x) =
u2(0, x) = 0, x ∈ Ω, and repeating the arguments of the previous subsection we
deduce that condition (1.4) implies the orthogonality identity

(3.23)

∫
Q

q(t, x)u2(t, x)u1(t, x)dxdt = 0.

It remains to prove that this implies q = 0. Note that

(3.24)

∫
Q

q(t, x)u2(t, x)u1(t, x)dxdt

= (2π)−
n+1
2

∫
R1+n

q(t, x)χ2(t+ (x− x0) · ω)e−i(t,x)·ξdxdt

+

∫
Q

e−2iλtqa1,1a2,2dxdt+

∫
Q

e−2iλ(T−t)qa1,2a2,1dxdt

+ e−2iλT

∫
Q

qa1,2a2,2dxdt+

∫
Q

Zλ(t, x)dxdt,

with

Zλ = q(u1 −R1,λ)R2,λ + q(u2 −R2,λ)R1,λ + qR2,λR1,λ.

In a similar way to the previous subsection, one can check that (3.8)-(3.9) imply
that

lim
λ→+∞

∫
Q

Zλdxdt = 0.

Moreover, the Riemann-Lebesgue lemma implies

lim
λ→+∞

(∫
Q

e−2iλtqa1,1a2,2dxdt+

∫
Q

e−2iλ(T−t)qa1,2a2,1dxdt

)
= 0.

In addition, using the fact that for (t, x) ∈ Q we have

0 ≤ t+ (x− x0) · ω ≤ T + |x− x0| ≤ T + Diam(Ω),

we deduce that

q(t, x)χ2(t+ (x− x0) · ω) = q(t, x), (t, x) ∈ R1+n

and that

(2π)−
n+1
2

∫
R1+n

q(t, x)χ2(t+ (x− x0) · ω)e−i(t,x)·ξdxdt = Fq(ξ).

Thus, repeating the arguments of the previous subsection we can deduce that q1 = q2

provided that

(3.25)

∫
Q

qa1,2a2,2dxdt = 0.
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Since a2,2(t, x) = −χ(−t+ (x−x0) ·ω) and a1,2 = −(2π)−
n+1
2 χ((2T − t) + (x−x0) ·

ω)e−i(t,x)·ξ, we deduce that

supp(a2,2) ⊂ {(t, x) ∈ R1+n : (x− x0) · ω ≥ t− ε},

supp(a1,2) ⊂ {(t, x) ∈ R1+n : 2T − t+ (x− x0) · ω ≤ T + Diam(Ω) + ε}.
But, for any (t, x) ∈ {(t, x) ∈ R1+n : (x− x0) · ω ≥ t− ε}, one can check that

2T − t+ (x− x0) · ω ≥ 2T − ε = T + Diam(Ω) + 3ε > T + Diam(Ω) + ε.

Therefore, we have

{(t, x) ∈ R1+n : (x− x0) · ω ≥ t− ε}
∩ {(t, x) ∈ R1+n : 2T − t+ (x− x0) · ω ≤ T + Diam(Ω) + ε} = ∅

and by the same way that supp(a2,2) ∩ supp(a1,2) = ∅. This implies (3.25) and by
the same way that q1 = q2. Thus, the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2. In the previous section we have seen that the oscil-
lating geometric optics solutions (3.2) can be used for the recovery of some general
singular time-dependent potentials. We have even proved that, by adding a second
term, we can restrict the data on the bottom t = 0 and top t = T of Q while
avoiding a “reflection”. Nevertheless, as mentioned in the introduction, it is not
clear how one can adapt this approach to restrict data on the lateral boundary Σ
without requiring additional smoothness or geometrical assumptions. In this sec-
tion, we use a different strategy for restricting the data at Σ which is not a flat
part of the boundary ∂Q. Namely, we replace the oscillating GO solutions (3.2)
by exponentially growing and decaying solutions in order to restrict the data on Σ
by means of a Carleman estimate. In this section, we assume that q1, q2 ∈ Lp(Q),
with p > n + 1, and we will prove that (1.5) implies q1 = q2. For this purpose, we
will start with the construction of some suitable solutions of (1.1). Then we will
show Carleman estimates for unbounded potentials and we will complete the proof
of Theorem 1.2.

4.1. Geometric optics solutions for Theorem 1.2. Let ω ∈ Sn−1 and let ξ ∈
R1+n be such that ξ · (1,−ω) = 0. This section is devoted to the construction of
exponentially decaying solutions u1 ∈ H1(Q) of the equation (∂2

t −∆x + q1)u1 = 0
in Q taking the form

(4.1) u1(t, x) = e−λ(t+x·ω)(e−i(t,x)·ξ + w1(t, x)),

and exponentially growing solution u2 ∈ H1(Q) of the equation (∂2
t −∆x+q2)u2 = 0

in Q taking the form

(4.2) u2(t, x) = eλ(t+x·ω)(1 + w2(t, x)),

where λ > 1 and wj ∈ H1(Q), j = 1, 2, fulfills the following decay property

(4.3) ‖wj‖H1(Q) + λ ‖wj‖L2(Q) ≤ C,

with C independent of λ. The main results of this section can be stated as follows.

Proposition 4. There exists λ1 > 1 such that for λ > λ1 we can find a solution
u1 ∈ H1(Q) of �u1 + q1u1 = 0 in Q taking the form (4.1) with w1 ∈ H1(Q)
satisfying (4.3) for j = 1.
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Proposition 5. There exists λ2 > λ1 such that for λ > λ2 we can find a solution
u2 ∈ H1(Q) of �u2 + q2u2 = 0 in Q taking the form (4.2) with w2 ∈ H1(Q)
satisfying (4.3) for j = 2.

Since Proposition 4 and 5 are similar, we will only consider Proposition 4. To
build solutions u1 ∈ H1(Q) of the form (4.1), we first recall some preliminary tools
and a suitable Carleman estimate in Sobolev space of negative order borrowed from
[37]. For all m ∈ R, we denote by Hm

λ (R1+n) the space

Hm
λ (R1+n) = {u ∈ S ′(R1+n) : (|(τ, ξ)|2 + λ2)

m
2 û ∈ L2(R1+n)},

with the norm

‖u‖2Hmλ (R1+n) =

∫
R

∫
Rn

(|(τ, ξ)|2 + λ2)m|û(τ, ξ)|2dξdτ.

Note that here we consider these spaces with λ > 1 and, for λ = 1, one can check
that Hm

λ (R1+n) = Hm(R1+n). Here for all tempered distributions u ∈ S ′(R1+n),
we denote by û the Fourier transform of u. We fix the weighted operator

Pω,±λ := e∓λ(t+x·ω)�e±λ(t+x·ω) = �± 2λ(∂t − ω · ∇x)

and we recall the following Carleman estimate

Lemma 4.1. (Lemma 5.1, [37]) There exists λ′1 > 1 such that

(4.4) ‖v‖L2(R1+n) ≤ C ‖Pω,λv‖H−1
λ (R1+n) , v ∈ C∞0 (Q), λ > λ′1,

with C > 0 independent of v and λ.

From this result we can deduce the Carleman estimate

Lemma 4.2. Let p1 ∈ (n + 1,+∞), p2 ∈ (n,+∞) and q ∈ Lp1(Q) ∪ L∞(0, T ;Lp2

(Ω)). Then, there exists λ′′1 > λ′1 such that

(4.5) ‖v‖L2(R1+n) ≤ C ‖Pω,λv + qv‖H−1
λ (R1+n) , v ∈ C∞0 (Q), λ > λ′′1 ,

with C > 0 independent of v and λ.

Proof. We start by considering the case q ∈ Lp1(Q). Note first that

(4.6) ‖Pω,λv + qv‖H−1
λ (R1+n) ≥ ‖Pω,λv‖H−1

λ (R1+n) − ‖qv‖H−1
λ (R1+n) .

Fixing

r =
n+ 1

p1
,

1

p3
=

1

2
− 1

p1
=
n+ 1− 2r

2(n+ 1)
,

by the Sobolev embedding theorem we deduce that for any w ∈ Hr(R1+n) we have
w ∈ Lp3(R1+n) with

(4.7) ‖w‖Lp3 (R1+n) ≤ C ‖w‖Hr(R1+n) , w ∈ Hr(R1+n),

with C > 0 depending only on p3 and n. Applying (4.7) we deduce that for any

z ∈ L
p3
p3−1 (R1+n) we have∣∣∣∣∫

R1+n

zwdxdt

∣∣∣∣ ≤ ‖z‖L p3
p3−1 (R1+n)

‖w‖Lp3 (R1+n) ≤ C ‖z‖
L

p3
p3−1 (R1+n)

‖w‖Hr(R1+n) .

It follows that z ∈ H−r(Rn+1) and

(4.8) ‖z‖H−r(Rn+1) ≤ C ‖z‖
L

p3
p3−1 (R1+n)

, z ∈ L
p3
p3−1 (R1+n).
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Applying (4.8) to qv and using the fact that supp(qv) ⊂ Q, we find

‖qv‖2H−1
λ (R1+n) =

∫
R1+n

(|ζ|2 + λ2)−1|F(qv)(ζ)|2dζ

≤
∫
R1+n

(λ2)−(1−r)(1 + |ζ|2)−r|F(qv)(ζ)|2dζ

≤ λ2(r−1) ‖qv‖2H−r(Rn+1)

≤ Cλ2(r−1) ‖qv‖2
L

p3
p3−1 (Rn+1)

= Cλ2(r−1) ‖qv‖2
L

p3
p3−1 (Q)

.

Combining this with the fact that

p3 − 1

p3
= 1− 1

p3
=

1

2
+

1

p1
,

we deduce from the Hölder inequality that

‖qv‖H−1
λ (R1+n) ≤ Cλ

r−1 ‖q‖Lp1 (Q) ‖v‖L2(Q) .

Thus, applying (4.4) and (4.6), we deduce (4.5) for λ > 1 sufficiently large. Now
let us consider the case q ∈ L∞(0, T ;Lp2(Ω)). Note first that

‖qv‖H−1
λ (R1+n) ≤ ‖qv‖L2(0,T ;H−1

λ (Rn)) .

Therefore, by repeating the above arguments, we obtain

‖qv‖H−1
λ (R1+n) ≤ Cλ

n
p2
−1 ‖q‖L∞(0,T ;Lp2 (Ω)) ‖v‖L2(Q)

which implies (4.5) for λ > 1 sufficiently large. Combining these two results, one
can find λ′′1 > λ′1 such that (4.5) is fulfilled.

Using this new carleman estimate we are now in position to complete the proof
of Proposition 4.

Proof of Proposition 4. Note first that

�(e−λ(t+x·ω)e−iξ·(t,x)) = [2iλ(1,−ω) · ξe−iξ·(t,x) + �e−iξ·(t,x)]e−λ(t+x·ω)

= [�e−iξ·(t,x)]e−λ(t+x·ω),

�(e−λ(t+x·ω)w1) = e−λ(t+x·ω)Pω,−λw1.

Therefore, we need to consider w1 ∈ H1(Q) a solution of
(4.9)

Pω,−λw1 +q1w1 = −eλ(t+x·ω)(�+q1)(e−λ(t+x·ω)e−iξ·(t,x)) = −(�+q1)e−iξ·(t,x) = F

and satisfying (4.3) for j = 1. Combining the Carleman estimate (4.5) with a
classical application of the Hahn Banach theorem (e.g. [37, Lemma 5.3]), we
prove that there exists w1 ∈ H1

λ(R1+n) such that Pω,−λw1 + q1w1 = F in Q and
‖w1‖H1

λ(R1+n) ≤ C ‖F‖L2(Q). This proves that w1 fulfills (4.3) which completes the

proof of the proposition.

4.2. Carleman estimates for unbounded potentials. This subsection is de-
voted to the proof of a Carleman estimate similar to [37, Theorem 3.1]. More
precisely, we consider the following estimate.
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Theorem 4.3. Let p1 ∈ (n + 1,+∞), p2 ∈ (n,+∞) and assume that q ∈ Lp1(Q)
(resp q ∈ L∞(0, T ;Lp2(Ω))) and u ∈ C2(Q). If u satisfies the condition

(4.10) u|Σ = 0, u|t=0 = ∂tu|t=0 = 0,

then there exists λ3 > λ2 depending only on Ω, T and M ≥ ‖q‖Lp1 (Q) (resp M ≥
‖q‖L∞(0,T ;Lp2 (Ω))) such that the estimate

(4.11)

λ
∫

Ω
e−2λ(T+ω·x) |∂tu(T, x)|2 dx+ λ

∫
Σ+,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt

+
∫
Q
e−2λ(t+ω·x)[λ2 |u|2 + |∂tu|2 + |∇xu|2]dxdt

≤ C
(∫

Q
e−2λ(t+ω·x)

∣∣(∂2
t −∆x + q)u

∣∣2 dxdt+ λ3
∫

Ω
e−2λ(T+ω·x) |u(T, x)|2 dx

)
+C

(
λ
∫

Ω
e−2λ(T+ω·x) |∇xu(T, x)|2 dx+ λ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt
)

holds true for λ ≥ λ3 with C depending only on Ω, T and M .

Proof. Since the proof of this result is similar for q ∈ Lp1(Q) or q ∈ L∞(0, T ;Lp2

(Ω)), we assume without loss of generality that q ∈ Lp1(Q). Note first that for
q = 0, (4.11) follows from [37, Theorem 3.1]. On the other hand, we have∥∥∥e−λ(t+ω·x)

∣∣(∂2
t −∆x + q)u

∣∣∥∥∥
L2(Q)

≥
∥∥∥e−λ(t+ω·x)

∣∣(∂2
t −∆x)u

∣∣∥∥∥
L2(Q)

−
∥∥∥e−λ(t+ω·x)qu

∥∥∥
L2(Q)

and by the Hölder inequality we deduce that∥∥∥e−λ(t+ω·x)
∣∣(∂2

t −∆x + q)u
∣∣∥∥∥
L2(Q)

≥
∥∥∥e−2λ(t+ω·x)

∣∣(∂2
t −∆x)u

∣∣∥∥∥
L2(Q)

− ‖q‖Lp1 (Q)

∥∥∥e−λ(t+ω·x)u
∥∥∥
Lp3 (Q)

with p3 = 2p1
p1−2 . Now fix s := n+1

p1
∈ (0, 1) and notice that

1

p3
=
n+ 1− 2s

2(n+ 1)
.

Thus, by the Sobolev embedding theorem, we have∥∥∥e−λ(t+ω·x)u
∥∥∥
Lp3 (Q)

≤ C
∥∥∥e−λ(t+ω·x)u

∥∥∥
Hs(Q)

and by interpolation we deduce that∥∥∥e−λ(t+ω·x)u
∥∥∥
Lp3 (Q)

≤ C
∥∥∥e−λ(t+ω·x)u

∥∥∥
Hs(Q)

≤ C
∥∥∥e−λ(t+ω·x)u

∥∥∥s
H1(Q)

∥∥∥e−λ(t+ω·x)u
∥∥∥1−s

L2(Q)

≤ C
(∫

Q

e−2λ(t+ω·x)(|u|2 + |∂tu− λu|2 + |∇xu− λuω|2dxdt
) s

2 ∥∥∥e−λ(t+ω·x)u
∥∥∥1−s

L2(Q)

≤ C
(∫

Q

e−2λ(t+ω·x)(λ2|u|2 + |∂tu|2 + |∇xu|2dxdt
) s

2 ∥∥∥e−λ(t+ω·x)u
∥∥∥1−s

L2(Q)

≤ Cλs−1

(∫
Q

e−2λ(t+ω·x)(λ2|u|2 + |∂tu|2 + |∇xu|2dxdt
) 1

2

.
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On the other hand, in view of [37, Theorem 3.1], there exists λ′3 > 1 such that, for
λ > λ′3, we have∫

Q

e−2λ(t+ω·x)(λ2|u|2 + |∂tu|2 + |∇xu|2)dxdt

≤ C
(∫

Q

e−2λ(t+ω·x)
∣∣(∂2

t −∆x)u
∣∣2 dxdt+ λ3

∫
Ω

e−2λ(T+ω·x) |u(T, x)|2 dx
)

+ Cλ

∫
Ω

e−2λ(T+ω·x) |∇xu(T, x)|2 dx

+ Cλ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt.

Thus, we get∫
Q

e−2λ(t+ω·x)
∣∣(∂2

t −∆x + q)u
∣∣2 dxdt+ λ3

∫
Ω

e−2λ(T+ω·x) |u(T, x)|2 dx

+ λ

∫
Ω

e−2λ(T+ω·x) |∇xu(T, x)|2 dx+ λ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt

≥ 1

2

∫
Q

e−2λ(t+ω·x)
∣∣(∂2

t −∆x)u
∣∣2 dxdt+ λ3

∫
Ω

e−2λ(T+ω·x) |u(T, x)|2 dx

+ λ

∫
Ω

e−2λ(T+ω·x) |∇xu(T, x)|2 dx+ λ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt

− C ‖q‖2Lp1 (Q) λ
2(s−1)

(∫
Q

e−2λ(t+ω·x)
∣∣(∂2

t −∆x)u
∣∣2 dxdt

+ λ3

∫
Ω

e−2λ(T+ω·x) |u(T, x)|2 dx
)

− C ‖q‖2Lp1 (Q) λ
2(s−1)

(
λ

∫
Ω

e−2λ(T+ω·x) |∇xu(T, x)|2 dx

+ λ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt
)
.

Therefore, fixing λ sufficiently large and applying [37, Theorem 3.1] with a = q = 0
we deduce (4.11).

Remark 1. Note that, by density, (4.11) remains true for u ∈ C1([0, T ];L2(Ω)) ∩
C([0, T ];H1(Ω)) satisfying (4.10), (∂2

t −∆x)u ∈ L2(Q) and ∂νu ∈ L2(Σ).

4.3. Completion of the proof of Theorem 1.2. This subsection is devoted to
the proof of Theorem 1.2. From now on, we set q = q2 − q1 on Q and we assume
that q = 0 on R1+n \Q. For all θ ∈ Sn−1 and all r > 0, we set

∂Ω+,r,θ = {x ∈ ∂Ω : ν(x) · θ > r}, ∂Ω−,r,θ = {x ∈ ∂Ω : ν(x) · θ ≤ r}

and Σ±,r,θ = (0, T ) × ∂Ω±,r,θ. We set ε > 0 such that for all ω ∈ {θ ∈ Sn−1 :
|θ−ω0| ≤ ε} we have ∂Ω−,ε,ω ⊂ V ′. Let λ > λ3 and fix ω ∈ {θ ∈ Sn−1 : |θ−ω0| ≤ ε}.
Applying Proposition 4, we define

u1(t, x) = e−λ(t+x·ω)(e−i(t,x)·ξ + w1(t, x)), (t, x) ∈ Q,

where u1 ∈ H1(Q) satisfies ∂2
t u1−∆xu1 + q1u1 = 0, ξ · (1,−ω) = 0 and w1 satisfies

(4.3) for j = 1. Moreover, from Proposition 5, we fix u2 ∈ H1(Q) a solution of
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∂2
t u2 −∆xu2 + q2u2 = 0, taking the form

u2(t, x) = eλ(t+x·ω)(1 + w2(t, x)), (t, x) ∈ Q,
where w2 satisfies (4.3) for j = 2. In light of Proposition 2, the IBVP

(4.12)

{
∂2
t z1 −∆xz1 + q1z1 = 0 in Q,
τ0z1 = τ0u2.

admits a unique weak solution z1 ∈ H�(Q). Choosing u = z1 − u2, we deduce that
u solves

(4.13)

 ∂2
t u−∆xu+ q1u = (q2 − q1)u2 in Q,
u(0, x) = ∂tu(0, x) = 0 on Ω,
u = 0 on Σ.

Since u2 ∈ H1(Q), by the Sobolev embedding theorem we have (q2−q1)u2 ∈ L2(Q).
Hence, again using Proposition 1 gives that u ∈ C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)).
Therefore, we have u ∈ K(Q) ∩ H�(Q). Combining this with the fact that u1 ∈
H1(Q) ∩H�(Q), we obtain

(∂tu,−∇xu), (∂tu1,−∇xu1) ∈ Hdiv(Q) = {F ∈ L2(Q;Cn+1) : div(t,x)F ∈ L2(Q)}.
Now, according to [32, Lemma 2.2], we can multiply u1 to the equation in (3.20)
and apply Green formula to get
(4.14)∫

Q

(q2 − q1)u2u1 dxdt

= 〈(∂tu,−∇xu) · k, u1〉
H−

1
2 (∂Q),H

1
2 (∂Q)

− 〈(∂tu1,−∇xu1) · k, u〉
H−

1
2 (∂Q),H

1
2 (∂Q)

,

where k is the outward unite normal vector to ∂Q. On the other hand, we have
u|t=0 = ∂tu|t=0 = u|Σ = 0 and condition (1.5) implies that u|t=T = ∂νu|V = 0. In

addition, in view of [41, Theorem 2.1], we have ∂νu ∈ L2(Σ). Combining this with
the fact that u ∈ C1([0, T ];L2(Ω)) and u1 ∈ H1(Q) ⊂ H1(0, T ;L2(Ω)), we obtain

(4.15)

∫
Q

qu2u1dxdt = −
∫

Σ\V
∂νuu1dσ(x)dt+

∫
Ω

∂tu(T, x)u1(T, x)dx.

Applying the decay (4.3), the Carleman estimate (4.11) and the fact that u|t=T =
∂νu|Σ−,ω = 0, ∂Ω+,ε,ω ⊂ ∂Ω+,ω, we obtain∣∣∣∣∫

Q

qu2u1dxdt

∣∣∣∣2 ≤ ε−1Cλ−1

(∫
Q

∣∣∣e−λ(t+ω·x)qu2

∣∣∣2 dxdt)
≤ ε−1Cλ−1

(∫
Q

|q(1 + w2)|2 dxdt
)
,

(4.16)

with C > 0 a constant independent of λ. On the other hand, in a similar way
to Lemma 4.2, an application of the Hölder inequality and the Sobolev embedding
theorem yields∫

Q

|q(1 + w2)|2 dxdt ≤ C ‖q‖2Lp(Q) ‖(1 + w2)‖2
H
n+1
p (Q)

≤ C ‖q‖2Lp(Q) (1 + ‖w2‖H1(Q))
2.

Combining this with (4.3) and (4.16), we obtain∣∣∣∣∫
Q

qu2u1dxdt

∣∣∣∣ ≤ Cλ−1/2.
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It follows

(4.17) lim
λ→+∞

∫
Q

qu2u1dxdt = 0.

Moreover, (4.1)-(4.3) imply∫
Q

qu2u1dxdt =

∫
R1+n

q(t, x)e−iξ·(t,x)dxdt+

∫
Q

Wλ(t, x)dxdt,

with ∫
Q

|Wλ(t, x)|dxdt ≤ Cλ−1.

From this estimate and (4.17) we deduce that, for all ω ∈ {y ∈ Sn−1 : |y− ω0| ≤ ε}
and all ξ ∈ (1,−ω)⊥ := {ζ ∈ R1+n : ζ · (1,−ω) = 0}, we have F(q)(ξ) = 0.
Combining this with the fact that F(q) is a complex valued real-analytic function,
we deduce that q = 0. Therefore, we have q1 = q2 and the proof of Theorem 1.2 is
completed.

5. Proof of Theorem 1.3. Let us first remark that, in contrast to Theorem 1.1,
in Theorem 1.2 we do not restrict the data to solutions of (1.1) satisfying u|t=0 = 0.
In this section we will show Theorem 1.3 by combining the restriction on the bottom
t = 0, the top t = T of Q stated in Theorem 1.1 with the restriction on the lateral
boundary Σ stated in Theorem 1.2. From now on, we fix q1, q2 ∈ L∞(0, T ;Lp(Ω)),
p > n, and we will show that condition (1.6) implies q1 = q2. For this purpose
we still consider exponentially growing and decaying GO solutions close to those of
the previous subsection, but this time we need to take into account the constraint
u2(0, x) = 0 required in Theorem 1.3. For this purpose, we will consider a different
construction compared to the one of the previous section which will follow from a
Carleman estimate in negative order Sobolev space only with respect to the space
variable.

5.1. Carleman estimate in negative Sobolev space for Theorem 1.3. In
this subsection we will derive a Carleman estimate in negative order Sobolev space
which will be one of the main tools for the construction of exponentially growing
solutions u2 of (3.1) taking the form

(5.1) u2(t, x) = eλ(t+x·ω)(1 + w2(t, x))− eλ(−t+x·ω),

with the restriction τ0,2u2 = 0 (recall that for v ∈ C∞(Q), τ0,2v = v|t=0). In a
similar way to the previous section, for all m ∈ R, we introduce the space Hm

λ (Rn)
given by

Hm
λ (Rn) := {u ∈ S ′(Rn) : (|ξ|2 + λ2)

m
2 û ∈ L2(Rn)},

with the norm

‖u‖2Hmλ (Rn) :=

∫
Rn

(|ξ|2 + λ2)m|û(ξ)|2dξ.

In order to construct solutions u2 of the form (5.1) and satisfying τ0,2u2 = 0 we
consider the following.

Theorem 5.1. There exists λ′2 > 0 such that for λ > λ′2 and v ∈ C2([0, T ]; C∞0 (Ω))
satisfying

(5.2) v(T, x) = ∂tv(T, x) = v(0, x) = 0, x ∈ Rn,
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we have

(5.3) ‖v‖L2((0,T )×Rn) ≤ C ‖Pω,−λv + q2v‖L2(0,T ;H−1
λ (Rn)) ,

with C > 0 independent of v and λ.

In order to prove this theorem, we start by recalling the following intermediate
tools. For m ∈ R and ξ ∈ Rn, we fix

〈ξ, λ〉 = (|ξ|2 + λ2)
1
2

and we denote by 〈Dx, λ〉m u the operator

〈Dx, λ〉m u = F−1(〈ξ, λ〉m Fu).

We recall also the class of symbols of order m ∈ R given by

Smλ := {cλ ∈ C∞(Rn × Rn) : |∂αx ∂
β
ξ cλ(x, ξ)| ≤ Cα,β 〈ξ, λ〉m−|β| , α, β ∈ Nn}.

In view [27, Theorem 18.1.6], for any m ∈ R and cλ ∈ Smλ , we fix cλ(x,Dx), with
Dx = −i∇x, defined by

cλ(x,Dx)u(x) := (2π)−
n
2

∫
Rn
cλ(x, ξ)û(ξ)eix·ξdξ.

For any m ∈ R, we introduce OpSmλ := {cλ(x,Dx) : cλ ∈ Smλ } and for m = −∞
we set

OpS−∞λ :=
⋂
m∈R

OpSmλ .

Now let us consider the following intermediate result.

Lemma 5.2. There exists λ′′2 > 0 such that for λ > λ′′2 and for all v ∈ C2([0, T ]; C∞0
(Ω)) satisfying (5.2), we have

(5.4) ‖v‖L2(0,T ;H1
λ(Rn)) ≤ C ‖Pω,−λv‖L2((0,T )×Rn)) ,

with C > 0 independent of v and λ.

Proof. Consider w(t, x) = v(T − t, x) and note that according to (5.2), we have
w ∈ C2([0, T ]; C∞0 (Ω)) and

w(0, x) = ∂tw(0, x) = w(T, x) = 0, x ∈ Rn.
Therefore, in a similar way to the proof of [36, Lemma 4.1], one can check that

(5.5)

∫
Q

|P−ω,λw|2dxdt ≥
∫
Q

|�w|2dxdt+ cλ2

∫
Q

|w|2dxdt,

with c > 0 independent of w and λ. Now, recalling that w solves ∂2
tw −∆xw = �w, (t, x) ∈ Q,

w(0, x) = 0, ∂tw(0, x) = 0, x ∈ Ω
w(t, x) = 0 (t, x) ∈ Σ,

we deduce that ∫
Q

|∇xw|2dxdt ≤ C
∫
Q

|�w|2dxdt,

where C depends only on T and Ω. Combining this with (5.5), we obtain

‖w‖2L2(0,T ;H1
λ(Rn)) ≤ C

∫
Q

|P−ω,λw|2dxdt.

Using the fact that P−ω,λw(t, x) = Pω,−λv(T − t, x), we deduce (5.4).
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Armed with this Carleman estimate, we are now in position of completing the
proof of Theorem 5.1.

Proof of Theorem 5.1. Let v ∈ C2([0, T ]; C∞0 (Ω)) satisfy (5.2), consider Ωj , j = 1, 2,

two bounded open smooth domains of Rn such that Ω ⊂ Ω1, Ω1 ⊂ Ω2 and let
ψ ∈ C∞0 (Ω2) be such that ψ = 1 on a neighborhood of Ω1. We consider w ∈
C2([0, T ]; C∞0 (Ω)) given by

w(t, ·) = ψ 〈Dx, λ〉−1
v(t, ·)

and we remark that w satisfies

(5.6) w(T, x) = ∂tw(T, x) = w(0, x) = 0, x ∈ Rn.

Now let us consider the quantity 〈Dx, λ〉−1
Pω,−λ 〈Dx, λ〉w. Note first that

‖Pω,−λ 〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) =

∥∥∥〈Dx, λ〉−1
Pω,−λ 〈Dx, λ〉w

∥∥∥
L2((0,T )×Rn)

.

Moreover, it is clear that

〈Dx, λ〉−1
Pω,−λ 〈Dx, λ〉 = Pω,−λ.

Therefore, we have

‖Pω,−λ 〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) = ‖Pω,−λw‖L2((0,T )×Rn)

and, since w satisfies (5.6), combining this with (5.4) we deduce that

(5.7) ‖w‖L2(0,T ;H1
λ(Rn)) ≤ C ‖Pω,−λ 〈Dx, λ〉w‖L2(0,T ;H−1

λ (Rn)) .

On the other hand, fixing ψ1 ∈ C∞0 (Ω1) satisfying ψ1 = 1 on Ω, we get

w(t, ·) = 〈Dx, λ〉−1
v(t, ·) + (ψ − 1) 〈Dx, λ〉−1

ψ1v(t, ·)

and, combining this with (5.7), we deduce that
(5.8)
‖v‖L2((0,T )×Rn)

=
∥∥∥〈Dx, λ〉−1

v
∥∥∥
L2(0,T ;H1

λ(Rn))

≤ ‖w‖L2(0,T ;H1
λ(Rn)) +

∥∥∥(ψ − 1) 〈Dx, λ〉−1
ψ1v

∥∥∥
L2(0,T ;H1

λ(Rn))

≤ C ‖Pω,−λ 〈Dx, λ〉w‖L2(0,T ;H−1
λ (Rn)) +

∥∥∥(ψ − 1) 〈Dx, λ〉−1
ψ1v

∥∥∥
L2(0,T ;H1

λ(Rn))

≤ C ‖Pω,−λv‖L2(0,T ;H−1
λ (Rn))

+C
∥∥∥Pω,−λ 〈Dx, λ〉 (ψ − 1) 〈Dx, λ〉−1

ψ1v
∥∥∥
L2(0,T ;H−1

λ (Rn))

+
∥∥∥(ψ − 1) 〈Dx, λ〉−1

ψ1v
∥∥∥
L2(0,T ;H1

λ(Rn))
.

Moreover, since (ψ − 1) = 0 on neighborhood of supp(ψ1), in view of [27, Theorem

18.1.8], we have (ψ − 1) 〈Dx, λ〉−1
ψ1 ∈ OpS−∞λ . In the same way, [27, Theorem

18.1.8] implies that

Pω,−λ 〈Dx, λ〉 (ψ − 1) 〈Dx, λ〉−1
ψ1 ∈ OpS−∞λ
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and we deduce that

C
∥∥∥Pω,−λ 〈Dx, λ〉 (ψ − 1) 〈Dx, λ〉−1

ψ1v
∥∥∥
L2(0,T ;H−1

λ (Rn))

+
∥∥∥(ψ − 1) 〈Dx, λ〉−1

ψ1v
∥∥∥
L2(0,T ;H−1

λ (Rn))

≤ ‖v‖L2((0,T )×Rn)

λ2 .

Combining this estimate with (5.8) and choosing λ sufficiently large, we find (5.3)
for q2 = 0. Then, we deduce (5.3) for q2 6= 0 by applying arguments similar to
Lemma 4.2.

Applying the Carleman estimate (5.3), we can now build solutions u2 of the form
(5.1) and satisfying τ0,2u2 = 0 in order to complete the proof of Theorem 1.3.

5.2. Completion of the proof of Theorem 1.3. We start by proving exis-
tence of a solution u2 ∈ L2(0, T ;H1(Ω)) of the form (5.1) with the term w2 ∈
L2(0, T ;H1(Ω)) ∩ e−λ(t+x·ω)H�,∗(Q), satisfying

(5.9) ‖w2‖L2(0,T ;H1(Ω)) + λ ‖w2‖L2(Q) ≤ C,

(5.10) τ0,2w2 = 0.

This result can be stated in the following way.

Proposition 6. There exists λ2 > λ1 such that for λ > λ2 we can find a solution
u2 ∈ L2(0, T ;H1(Ω)) of �u2 + q2u2 = 0 in Q taking the form (5.1) with w2 ∈
L2(0, T ;H1(Ω)) ∩ e−λ(t+x·ω)H�,∗(Q) satisfying (5.9)-(5.10).

Proof. We need to consider w2 ∈ L2(0, T ;H1(Ω)) a solution of
(5.11)

Pω,λw2 + q2w2 = −e−λ(t+x·ω)(� + q2)(eλ(t+x·ω) − eλ(−t+x·ω)) = −q2(1− e−2λt),

satisfying (5.9)-(5.10). Note that here, we use (5.11) and the fact that Pω,λw2 =

e−λ(t+x·ω)�eλ(t+x·ω)w2 in order to prove that w2 ∈ e−λ(t+x·ω)H�,∗(Q) and we define

τ0,2w2 by τ0,2w2 = e−λx·ωτ0,2e
λ(t+x·ω)w2. We will construct such a function w2 by

applying estimate (5.3). From now on, we fix λ2 = λ′′2 . Applying the Carleman
estimate (5.3), we consider the linear form M on

I = {Pω,−λv + q2v : v ∈ C2([0, T ]; C∞0 (Ω)) satisfying (5.2)},
by

M(Pω,−λv + q2v) = −
∫
Q

vq2(1− e−2λt)dxdt, v ∈ I.

In view of (5.3), we have

|M(Pω,−λv + q1v)| ≤ C ‖q2‖L2(Q) ‖Pω,−λv + q1v‖L2(0,T ;H−1
λ (Rn) , v ∈ I,

with C > 0 independent of λ and v. Applying the Hahn Banach theorem we can
extend M to a continuous linear form on L2(0, T ;H−1

λ (Rn)) still denoted by M
and satisfying ‖M‖ ≤ C ‖q2‖L2(Q). Thus, we can find w2 ∈ L2(0, T ;H1

λ(Rn)) such

that

〈g, w2〉L2(0,T ;H−1
λ (Rn),L2(0,T ;H1

λ(Rn)) =M(g), g ∈ L2(0, T ;H−1
λ (Rn).

Choosing g = Pω,−λv + q2v with v ∈ C∞0 (Q), we deduce that w2 is a solution of
Pω,λw2 + q2w1 = −q2(1− e−2λt) in Q. In addition, taking g = Pω,−λv + q1v, with
v ∈ I and ∂tv|t=0 arbitrary, proves that (5.10) is fulfilled. Finally, using the fact
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that ‖w2‖L2(0,T ;H1
λ(Rn)) ≤ ‖M‖ ≤ C ‖q‖L2(Q) proves that w2 fulfills (5.9) which

completes the proof of the proposition.

Using this proposition, we are now in position to complete the proof of Theorem
1.3.

Proof of Theorem 1.3. Let us remark that since Lemma 4.2 and Theorem 4.3
are valid when q ∈ L∞(0, T ;Lp(Ω)) one can easily extend Proposition 4 to the
case q1 ∈ L∞(0, T ;Lp(Ω)). Therefore, in the context of this section, Proposition
4 holds true. Combining Proposition 4 with Proposition 6, we deduce existence
of a solution u1 ∈ H1(Q) of �u1 + q1u1 = 0 in Q taking the form (4.1), with
w1 ∈ H1(Q) satisfying (4.3) for j = 1, as well as the existence of a solution u2 ∈
L2(0, T ;H1(Ω)) of �u2 + q2u2 = 0 in Q, τ0,2u2 = 0, taking the form (5.1) with
the term w2 ∈ L2(0, T ;H1(Ω)) satisfying (5.9). Repeating the arguments of the
end of the proof of Theorem 1.2 (see Subsection 4.4), we can deduce the following
orthogonality identity

(5.12) lim
λ→+∞

∫
Q

qu1u2dxdt = 0.

Moreover, one can check that∫
Q

qu1u2dxdt =

∫
R1+n

q(t, x)e−iξ·(t,x)dxdt+

∫
Q

Yλ(t, x)dxdt,

with

Yλ(t, x) = q[e−i(t,x)·ξw2 + w1 + w1w2 − e−2λte−i(t,x)·ξ − e−2λtw1].

Combining (4.3), (5.9) with the fact that∫
Q

|q(t, x)|
∣∣∣e−2λte−i(t,x)·ξ

∣∣∣ dxdt ≤ ‖q‖L2(Q) |Ω|
1
2

(∫ +∞

0

e−4λtdt

) 1
2

≤ Cλ− 1
2 ,

we deduce that

lim
λ→+∞

∫
Q

Yλ(t, x)dxdt = 0.

Combining this asymptotic property with (5.12), we can conclude in a similar way
to Theorem 1.2 that q1 = q2.

Acknowledgments. The second author would like to thank Pedro Caro and Lauri
Oksanen for their remarks and fruitful discussions about this problem, the remarks
of Lauri Oksanen allow to improve Theorem 1.1. The second author would like to
thank the Beijing Computational Science Research Center, where part of this article
was written, for its kind hospitality. The authors are grateful to the anonymous
referee for his careful reading and his suggestions that allows to improve the paper.

REFERENCES
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