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Abstract

The �rst part of this paper is concerned with the uniqueness to inverse time-harmonic

elastic scattering from bounded rigid obstacles in two dimensions. It is proved that a con-

nected polygonal obstacle can be uniquely identi�ed by the far-�eld pattern corresponding to

a single incident plane wave. Our approach is based on a new re�ection principle for the �rst

boundary value problem of the Navier equation. In the second part, we propose a revisited

factorization method to recover a rigid elastic body with a single far-�eld pattern.
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1 Introduction and main results

LetD ⊂ R2 be a bounded elastic body such that its exteriorDc := R2\D is connected, and let
Dc be occupied by a homogeneous and isotropic elastic medium. Suppose that a time-harmonic
elastic plane wave of the form

uin(x) = cp d e
ikpx·d + cs d

⊥eiksx·d (1.1)

is incident on the scatterer D. Here, d = (cos θ, sin θ)T , θ ∈ [0, 2π), is the incident direction,
d⊥ := (− cos θ, sin θ)T is orthogonal to d, ω > 0 is the frequency and kp := ω/

√
λ+ 2µ, ks :=

ω/
√
µ are the compressional and shear wave numbers, respectively, and cp, cs ∈ C satisfy |cp|+

|cs| 6= 0. Note that for simplicity the density of the background medium has been normalized to
be one and the Lamé constants λ and µ satisfy µ > 0 and λ + 2µ > 0 in two dimensions. The
propagation of time-harmonic elastic waves in Dc is governed by the Navier equation (or system)

Lωu := µ∆ + (λ+ µ)∇(∇ · u) + ω2u = 0 in Dc, u = (u1, u2)T , (1.2)

where u = uin +usc denotes the total displacement �eld. By Hodge decomposition, any solution
u to (1.2) can be decomposed into the form

u = up + us, up := (−1/k2
p) grad div u, us := (1/k2

s) curl
−−→
curlu, (1.3)
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where up and us are called compressional and shear waves, respectively. Note that in (1.3) the
two curl operators are de�ned as

−−→
curlu := ∂2u1 − ∂1u2, curl f = (−∂2f, ∂1f)T . (1.4)

Moreover, uα (α = p, s) satis�es the vector Helmholtz equation (∆ + k2
α)uα = 0 and

−−→
curlup =

div us = 0 in Dc. Obviously, the scattered �eld usc also satis�es the Navier equation (1.2) in Dc.
In this paper we require usc to ful�ll the Kupradze radiation condition de�ned as follows.

De�nition 1.1. The scattered �eld usc to (1.2) is called a Kupradze radiating solution if its
compressional and shear parts uscα (α = p, s) satisfy the Sommerfeld radiation condition for the
vector Helmholtz equation, i.e.,

∂ru
sc
α − ikαuscα = o(r−1/2) as r = |x| → ∞,

uniformly in all directions x̂ = x/|x| on the unit circle S := {x ∈ R2 : |x| = 1}.

It is well known that the forward scattering problem admits a unique solution u ∈ H1
loc(D

c).
To prove existence of solutions we refer to [25, Chapter 7.3] for the standard integral equation
method applied to rigid scatterers with C2-smooth boundaries and to a recent paper [4] using
the variational approach for treating Lipschitz boundaries. This paper is concerned with the
inverse scattering problem of recovering ∂D from the information of the scattered �eld of a
single incoming plane wave. To state the inverse problem, we need to de�ne the far-�eld pattern
of the scattered �eld. It is well known that the compressional and shear parts uscα (α = p, s) of a
radiating solution usc to the Navier equation have an asymptotic behavior of the form [20, 25, 2]

uscp (x) =
eikpr√
r

{
u∞p (x̂) x̂+O(

1

r
)

}
,

uscs (x) =
eiksr√
r

{
u∞s (x̂) x̂⊥ +O(

1

r
)

}
as r = |x| → ∞, where u∞p and u∞s are both scalar functions de�ned on S. Hence, a Kupradze
radiating solution has the asymptotic behavior

usc(x) =
eikpr√
r
u∞p (x̂) x̂+

eiksr√
r
u∞s (x̂) x̂⊥ +O(

1

r3/2
) as r →∞.

The far-�eld pattern u∞ of usc is de�ned as

u∞(x̂) := u∞p (x̂) x̂+ u∞s (x̂) x̂⊥.

Obviously, the compressional and shear parts of the far-�eld are uniquely determined by u∞ as
follows:

u∞p (x̂) = u∞(x̂) · x̂, u∞s (x̂) = u∞(x̂) · x̂⊥.

The �rst part of this paper is concerned with a uniqueness result within the class of polygonal
obstacles de�ned as follows.
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De�nition 1.2. A scatterer D ⊂ R2 is called a polygonal obstacle if D is a bounded open set
whose boundary ∂D consists of a �nite union of line segments and whose closure D coincides
with the closure of its interior.

Throughout this paper we suppose that D ⊂ R2 is a connected polygonal obstacle. By the
above de�nition, D consists of a single polygonal domain, and ∂D cannot contain cracks. By the
elliptic boundary and interior regularity (see [18, 19, 29]) in corner domains, the unique forward
solution is C0,α-continuous up to the boundary ∂D and belongs to C2,α(R2\D)2∩H1+ε

loc (R2\D)2

for some α, ε ∈ (0, 1). In the following a domain always means a connected open set. Our
uniqueness result is stated below.

Theorem 1.3. Assume that D is a connected polygonal obstacle. Then ∂D can be uniquely
determined by a single far-�eld pattern u∞(x̂), x̂ ∈ S, generated by the incoming plane wave
(1.1) with �xed incident direction d ∈ S and �xed frequency ω ∈ R+.

There is a vast literature on inverse elastic scattering problems using the far-�eld pattern u∞

corresponding to in�nitely many incident directions at a �xed frequency. We refer to the �rst
uniqueness result proved in [20] and the sampling type inversion algorithms developed in [2, 3].
In these works, not only the pressure part of far-�eld patterns for all plane shear and pressure
waves are needed, but also the shear part of far-�eld patterns. Uniqueness results using only
one type of elastic waves were proved in [17] and [22]. It was shown in [22] that a rigid ball
and a convex polyhedron can be uniquely identi�ed by the shear part of the far-�eld pattern
corresponding to only one incident shear wave.

The �rst global uniqueness results within non-convex polyhedral scatterers were veri�ed in
[13] with at most two incident plane waves. This extended the acoustic uniqueness results
[1, 7, 11, 12, 27] to the third and fourth boundary value problems of the Navier equation.
However, the approach of [13] does not apply to the more practical case of the �rst and second
kind boundary conditions in elasticity, due to the lack of a corresponding re�ection principle for
the Navier equation.

The �rst aim of this paper is to verify Theorem 1.3 through a non-pointwise re�ection principle
for the Navier equation under the boundary condition of the �rst kind. To the best of our
knowledge, such a re�ection principle is not available in the literature and has been open for a
long time. The derivation of the re�ection principle is based on a revisited Du�n's extension
formula (see [9]) for the Lamé equation across a straight line; see Section 2. The proof of
Theorem 1.3 will be presented in Section 3 using a modi�ed path argument. The original path
argument employed and developed in [1, 27, 11] applies only to boundary conditions with a
corresponding re�ection principle of "point-to-point" type, and does not extend to the �rst
boundary value problem in linear elasticity. This paper provides a new approach to prove global
uniqueness results within polygonal and polyhedral scatterers in acoustics and linear elasticity
([1, 7, 11, 13]). In three dimensions, the re�ection principles for the Lamé and Navier equations
can be derived analogously, and the corresponding uniqueness result with a single incoming wave
remains valid as well. Our second aim is to propose a revisited factorization method for imaging
a rigid elastic body with a single plane wave; see Section 4 for the details and additional remarks.
The arguments in the proof of Theorem 1.3 will be used to interpret the behavior of our indicator
function for polygonal obstacles.
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2 Re�ection principles

Throughout this section we denote by R = RΓ the re�ection with respect to the straight line
Γ := {x1 = 0}, that is, Rx = (−x1, x2) for x = (x1, x2) ∈ R2. We suppose that γ ⊂ Γ is an open
(�nite or in�nite) line segment lying on Γ. Let Ω ⊂ R2 be a symmetric domain with respect
to Γ (i.e., Rx ∈ Ω if x ∈ Ω) such that γ is a connected component of Ω ∩ Γ. It is well known
that the re�ection principle of Schwarz provides a non-local extension (analytic continuation)
formula for a harmonic function vanishing on a planar boundary surface of the region. In the
following Subsection 2.1, we state a relation between the extension formula (re�ection principle)
and Green's function in a half-plane for general elliptic operators. Corollary 2.2 below allows
us to construct the half-plane Green's function in terms of the free-plane fundamental solution.
The re�ection principles for the Lamé and Navier equations will be investigated in Subsections
2.2 and 2.3, respectively.

2.1 Extension formula and Green's function in a half-plane

Let A be a linear elliptic di�erential operator of second order with constant coe�cients in
the symmetric domain Ω, given by

A v(x) =
2∑

i,j=1

aij∂i∂j v +
2∑
j=1

bj∂j v + c v, x ∈ Ω,

where v : Ω→ R, aij , bj , c ∈ C and

aij = aji, −
2∑

i,j=1

aij ξi ξj ≥ α|ξ|2, ξ = (ξ1, ξ2) ∈ R2,

for some α > 0. Let B be a �rst order boundary di�erential operator with constant coe�cients
on γ. Consider (weak) solutions of the equation Av = 0 in Ω, which are (real-) analytic in Ω by
interior analytic regularity (see e.g., [18, Chapter 6.4]).

Theorem 2.1. Assume there exists a linear operator D mapping the space of analytic functions
in Ω into itself and such that, for any solution of Av = 0 in Ω, the boundary condition Bv = 0
holds on γ if and only if

v(Rx) = Dv(x) for all x ∈ Ω. (2.1)

Then we obtain:

(i) If Au = 0 in Ω, then the function w(x) := u(x) +Du(Rx) satis�es the same equation in Ω
and the boundary condition Bw = 0 on γ.

(ii) Denote by G(x; y)(x 6= y) the half-plane Green's function to A subject to the boundary
condition BxG(x, y) = 0 on Γ. Then we have the relation G(Rx, y) = DxG(x, y) for all
x 6= y. Here we write D = Dx and B = Bx to indicate the action of the di�erential operators
with respect to the variables x.
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Proof. (i) By (2.1), we observe that Dv(Rx) = v(x) and D2v = DDv = v. Hence, w1 := Du(R·)
satis�es the equation Aw1 = 0 in Ω, implying that w = u + w1 ful�lls the same equation. To
prove that Bw = 0 on γ, we only need to show that w(Rx) = Dw(x) by our assumption. This
follows from the fact that

w(Rx) = u(Rx) +Du(x), Dw(x) = Du(x) +D2u(Rx) = Du(x) + u(Rx).

(ii) The relation G(Rx, y) = DxG(x, y) for all x 6= y simply follows from (2.1). Note that this
relation also implies the singularity of G(x, y) at x = Ry.

Applying Green's formula, one can prove that any function v with Av = 0 in Ω, Bv = 0
on γ satis�es the relation (2.1) if the half-plane Green's function ful�lls this relation. The �rst
assertion of Theorem 2.1 enables us to construct the half-plane Green's function through the
free-plane fundamental solution and the extension formula (2.1); see Corollary 2.2 below.

Corollary 2.2. Let Φ(x, y) be the free-plane fundamental solution associated with the operator
A, that is,

Ax Φ(x, y) = δ(x− y), x, y ∈ R2, x 6= y.

Then the function G(x, y) := Φ(x, y) + Dx Φ(Rx, y) (x 6= y) is the half-space Green's function
subject to the boundary condition BxG(x, y) = 0 on Γ.

Below we give examples of extension formulas for the �rst, second and third boundary value
problems of the Helmholtz equation in two dimensions. Consider the elliptic operatorA = ∆+k2,
k > 0, and the equation Av = 0 in R2. Then we have the following special cases of Corollary
2.2.

(a) Under the Dirichlet boundary condition Bv := v = 0 on Γ, the operator D can be de�ned
as Dv = −v. Note that v(Rx) = −v(x) by the re�ection principle. Moreover, we have

G(x, y) = Φ(x, y)−Φ(Rx, y) and G(Rx, y) = DxG(x, y), where Φ(x, y) := i/4H
(1)
0 (k|x−y|)

with H
(1)
0 being the Hankel function of the �rst kind of order zero.

(b) Under the Neumann boundary condition Bv := ∂νv = 0 on Γ, we have v(Rx) = v(x), so
that we can choose Dv = v. Furthermore, we then obtain G(x, y) = Φ(x, y) + Φ(Rx, y)
and G(Rx, y) = DxG(x, y).

(c) In the case of the Robin boundary condition Bv := ∂νv + q v = 0 on Γ for some constant
q ∈ C, we can choose (see [8] for the corresponding re�ection principle)

Dv(x) = v(Rx) = v(x) + 2q

∫ x1

0
e(x1−t)qv(t, x2)dt, x ∈ R2.

Consequently, by Corollary 2.2, the Green's function in the half-plane {x1 > 0} takes the
form

G(x, y) = Φ(x, y) +DxΦ(Rx, y)

= Φ(x, y) + Φ(Rx, y) + 2q

∫ −x1
0

e−(x1+t)qΦ(t, x2; y)dt.

Using D2 = I, one can also check that

G(Rx, y) = Φ(Rx, y) +Dx(x, y) = DxG(x, y).
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Theorem 2.1 and Corollary 2.2 can immediately be extended to elliptic systems of second
order with constant coe�cients, and in the next subsection we will apply Corollary 2.2 to the
Lamé system in R2.

2.2 Re�ection principle for Lamé equation

In this section we consider the extension formula for the Lamé operator

L0u = µ∆u+ (λ+ µ)∇(∇ · u), u = (u1, u2)T . (2.2)

Assume that

L0u = 0 in Ω, u = 0 on γ ⊂ Γ := {x1 = 0} (2.3)

in the symmetric domain Ω. Then it is easy to check that

∆2u = 0, ∆ div u = 0, ∆
−−→
curlu = 0 in Ω, (2.4)

where the two-dimensional vector curl operator is de�ned by (1.4). To apply Theorem 2.1 to
the Lamé operator (2.2), it is convenient to look �rst for an operator D̃0 such that the relation
Ru(Rx) = D̃0u(x), x ∈ Ω, holds for any solution u of the boundary value problem (2.3). For
this purpose, we de�ne the di�erential operator D̃0 by

D̃0u := −Ru+Wu = (u1,−u2)T +Wu ,

Wu(x) := cx2
1∆u(x) + 2cx1(∂2u2,−∂2u1)T (x), c :=

λ+ µ

λ+ 3µ
.

We can prove the following result.

Theorem 2.3. If u is a solution to (2.3), then D̃0u is also a solution to (2.3), and the relation
D̃0u(x) = Ru(Rx) holds for all x ∈ Ω.

Proof. For notational convenience, we write uR(x) = Ru(Rx) and Wu(x) = cx1W̃u(x), where

W̃u(x) := x1∆u(x) + 2(∂2u2,−∂2u1)T (x).

Since u vanishes on γ ⊂ {x1 = 0}, we obtain W̃u = 0 on γ. Using (2.4) we deduce that

∆W̃u(x) = x1∆2u(x) + 2

(
∆div u

−∆
−−→
curlu

)
(x) = 0.

Applying the Schwarz re�ection principle for harmonic functions gives W̃u(Rx) = −W̃u(x), or

equivalently, W̃u is odd in x1. Moreover, we �nd

∆2Wu(x) = c∆2(x1W̃u(x)) = c[x1∆2W̃u(x) + 4∂1∆W̃u(x)] = 0,

∆2D̃0u = −R∆2u+ ∆2Wu = 0.

Recalling the re�ection principle for biharmonic functions with homogeneous Dirichlet data (see
[16, 10]), we obtain the relationWu(Rx) = Wu(x), implying thatWu is even is x1. Consequently,
there holds

∂j1Wu(x) = 0 on γ, j = 0, 1, 3. (2.5)
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To proceed with the proof, we only need to verify that

∂j1D̃0u(x) = ∂j1u
R(x) on γ, j = 0, 1, 2, 3. (2.6)

Then the relation D̃0u = uR follows from the fact that ∆2(uR) = 0, together with the Cauchy-
Kovalevskaya theorem. Since the function Vu := uR + Ru vanishes on γ and is even in x1, it
also satis�es the relations in (2.5). Hence, it is su�cient to prove (2.6) with j = 2, that is,
∂2

1Vu = ∂2
1Wu on γ.

From the de�nition of the re�ection R, it follows that

∂2
1Vu(0, x2) = 2

(
−∂2

1u1

∂2
1u2

)
(0, x2).

On the other hand, by the de�nition of Wu,

∂2
1Wu(0, x2) = 2c∂1W̃u(0, x2) =

λ+ µ

λ+ 3µ

(
2∆u1 + 4∂1∂2u2

2∆u2 − 4∂1∂2u1

)
(0, x2). (2.7)

Since L0u = 0 in Ω and ∂2
2u1 = ∂2

2u2 = 0 on γ, we obtain

(λ+ µ)∂1∂2u2 = −(λ+ 2µ)∂2
1u2, (λ+ µ)∂1∂2u1 = −µ∂2

1u2.

Therefore, it follows from (2.7) that

∂2
1Wu =

1

λ+ 3µ

(
[2(λ+ u)− 4(λ+ 2µ)]∂2

1u1

[2(λ+ µ) + 4µ]∂2
1u2

)
= 2

(
−∂2

1u1

∂2
1u2

)
on γ,

which proves ∂2
1Vu = ∂2

1Wu on γ.

Let Ω+ ⊂ {x1 > 0} be a domain such that γ ⊂ ∂Ω+, and let Ω− := R(Ω+). Then Ω :=
Ω+∪γ∪Ω− is a symmetric domain with Ω∩Γ = γ, and from Theorem 2.3 we obtain an extension
formula for the �rst boundary value problem of the Lamé equation across a straight line:

Corollary 2.4. Suppose that L0u = 0 in Ω+, u = 0 on γ. De�ne the function

u∗(x) =

{
u(x) if x ∈ Ω+,
D0u(Rx) if x ∈ Ω−,

where D0u := RD̃0u takes the explicit form

D0u = −u+ cx2
1

(
−∆u1

∆u2

)
− 2cx1

(
∂2u2

∂2u1

)
. (2.8)

Then u∗ is a solution to (2.3).

The relation u(x) = D0u(Rx) , x ∈ Ω−, coincides with Du�n's extension formula [9, Theorem
2]. It follows from the above corollary that u∗(Rx) = D0u

∗(x) for all x ∈ Ω. By the de�nition of
D0, we conclude that the value of u

∗ at Rx is uniquely determined by u in a neighborhood of the
imaging point x, which is in contrast to the point-to-point re�ection principles for the Laplace and
Helmholtz equations under the Dirichlet or Neumann boundary condition. Combining Corollaries

7



2.2 and 2.4, we can obtain the Green's tensor to the �rst boundary value problem of the Lamé
equation in the half-plane {x1 > 0}, that is,

G0(x, y) = Φ0(x, y) +D0Φ0(Rx, y) (2.9)

where D0 is de�ned via (2.8) and Φ0(x, y) is the free-plane Green's tensor to the Lamé operator,
given by (see [21, Chapter 2.2])

Φ0(x, y) =
1

4π

[
− 3µ+ λ

µ(λ+ 2µ)
ln |x− y| I +

λ+ µ

µ(λ+ 2µ)|x− y|2
(x− y)⊗ (x− y)

]
, x 6= y.

Here I ∈ R2×2 is the 2-by-2 identity matrix and (x⊗y)ij := xiyj for i, j = 1, 2, where x = (x1, x2),
y = (y1, y2) ∈ R2. The extension formula and Green's tensor in the half-plane {x2 > 0} can be
obtained analogously by a coordinate rotation.

2.3 Re�ection principle for Navier equation

Consider the boundary value problem

Lωu := (L0 + ω2)u = 0 in Ω, u = 0 on γ ⊂ {x1 = 0} (2.10)

for the Navier equation in the symmetric domain Ω. We want to �nd a formula connecting u(Rx)
and u(x) for all x ∈ Ω. Our approach relies on the extension formula for the Lamé operator
presented in Corollary 2.4.

Let G0(x, y) be the half-plane Green's tensor to the �rst boundary value problem of the
Lamé equation; see (2.9). For δ > 0 su�ciently small, de�ne Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}.
Introduce the function

v(x) = u(x)− ω2

∫
Bδ(x)

G0(x, y)Tu(y) dy, x ∈ Ωδ,

where Bδ(x) = {y : |y − x| < δ}. Then it is easy to check that v ful�lls the homogeneous Lamé
equation with the homogeneous Dirichlet boundary condition, that is,

L0v = 0 in Ωδ, v = 0 on γ ∩ Ωδ.

Applying Theorem 2.3 and the de�nition of D0 in (2.8) to v, we obtain v(Rx) = D0v(x) for all
x ∈ Ωδ, that is,

u(Rx) = D0u(x)− ω2

∫
Bδ(x)

D0G0(x, y)Tu(y) dy + ω2

∫
Bδ(x)

G0(Rx, y)Tu(y) dy

=: Dωu(x). (2.11)

The above equality establishes a relation between u(Rx) and u(x). For every �xed x ∈ Ω, the
number δ on the right hand side of (2.11) can be replaced by any number less that dist(x, ∂Ω).
In fact, for any ε ∈ (0, δ), it holds that (see Theorem 2.1 (ii))

G0(Rx, y) = D0G0(x, y) for all y ∈ Bδ(x)\Bε(x),
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from which the relation

−ω2

∫
Bδ(x)

D0G0(x, y)Tu(y) dy + ω2

∫
Bδ(x)

G0(Rx, y)Tu(y) dy

= −ω2

∫
Bε(x)

D0G0(x, y)Tu(y) dy + ω2

∫
Bε(x)

G0(Rx, y)Tu(y) dy

follows. Hence, the function Dωu(x) on the right hand side of (2.11) is well de�ned as long as u
makes sense in a neighboring area of x ∈ Ω. Moreover, we observe that as for the Lamé equation,
the value of u(Rx) is uniquely determined by the function u near the imaging point x. Note that
the volume Bδ(x) on the right hand side of (2.11) can also be replaced by any domain containing
x, for example, the region Ω (provided it is bounded). The re�ection principle for the Navier
equation will be summarized in the following theorem.

Theorem 2.5. Let u be a solution to (2.10). Then

(i) It holds that u(Rx) = Dωu(x) for all x ∈ Ωδ.

(ii) The function w(x) := R[Dωu](x) satis�es

Lωw = 0 in Ωδ, w = 0 on γ ∩ Ωδ.

Further, we have the relation w(x) = Ru(Rx) for all x ∈ Ωδ.

(iii) The function w de�ned in assertion (ii) can be extended into the whole domain Ω as a
solution of the Navier equation. In particular, we have w = 0 on a smooth part γ1 ⊂ ∂Ω if
u = 0 on R(γ1).

In the application of the re�ection formula (2.11) to inverse elastic scattering, we need a
corresponding analytic extension result. Let D+ ⊂ R2 and Π ⊂ R2\D+ be domains with
piecewise smooth boundary (in particular, polygonal domains) and suppose that γ ⊂ ∂D+∩∂Π.
Then Ω := D+ ∪ γ ∪Π is also a domain with piecewise smooth boundary. Moreover, as in (2.11)
we de�ne the function Dωu(x), x ∈ Ωδ.

Lemma 2.6. Consider the boundary value problem{
Lωu = 0 in Ω ,
u = 0 on ∂D+.

Then we have:

(i) The function w(x) := R[Dωu](x), x ∈ Ωδ, can be analytically extended into D− := R(D+)
as a solution of the Navier equation. Moreover, the extended solution satis�es the relations

w(x) = Ru(Rx) in D−, w = 0 on ∂D−.

(ii) Suppose that Ω contains a half-plane whose boundary is the extension of one segment of
∂D− in R2. Then both w and u can be analytically extended onto the whole plane R2.
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Proof. (i) By the interior regularity for elliptic equations, u is analytic in Ω and thus w is analytic
in Ωδ. In view of Theorem 2.5, we �rst have the coincidence w(x) = Ru(Rx) in the connected
component of Ωδ ∩D− containing γ ∩ Ωδ, and both functions ful�ll the Navier equation there.
On the other hand, the function x→ Ru(Rx) obviously ful�lls the Navier equation in D−. This
implies that w can be analytically extended into D− by Ru(R·), and in particular w = 0 on
∂D−, since u = 0 on ∂D+.

ii) Assume that l ∈ ∂D− is a line segment lying on the straight line L = {x : x2 = ax1+b, x1 ∈
R} for some a, b ∈ R and that the half-plane {x : x2 > ax1 + b, x1 ∈ R} is contained in Ω. Let w
be the function de�ned in the �rst assertion. Then we have w = 0 on l and, by the analyticity of w
in Ω, w = 0 on L. Applying coordinate translation and rotation, we assume that the orthogonal
matrix Q transforms L to the line {x1 = 0} and transforms the above mentioned half-plane
inside Ω to {x1 > 0}. Since the Navier equation remains invariant under the transformation Q,
the function w̃(x) := w(Qx) satis�es

Lωw̃ = 0 in x1 > 0, w̃ = 0 on x1 = 0.

By Theorem 2.5, w̃ can be analytically extended into R2 by w̃(x) = Dωw̃(Rx) for x1 < 0. This
in turn implies that w and thus u can be analytically extended onto the whole plane R2.

3 Uniqueness to inverse elastic scattering

Consider elastic scattering from a rigid obstacle D ⊂ R2 modeled by
Lωu = 0 in Dc, u = uin + usc,
u = 0 on ∂D,
uin(x) = cpde

ikpx·d + csd
⊥eiksx·d,

usc satis�es the Kupradze radiation condition stated in De�nition 1.1.

To prove the uniqueness result with a single plane wave, we need the concept of nodal set of a
solution u to the above boundary value problem.

De�nition 3.1. The nodal set N of u consists of all points x ∈ R2\D such that u(x) = 0.

The re�ection principle for the Navier equation (Theorem 2.5 and Lemma 2.6) can be used
to prove the following lemma.

Lemma 3.2. If D is a connected polygonal obstacle, then the nodal set N of u cannot contain
a line segment with both end points lying on ∂D.

Proof. Assume contrarily that l0 ⊂ N is a line segment with the two end points on ∂D. Choose
a point P0 ∈ l0 and a continuous and injective path π(t), t ≥ 0, starting at P0 = π(0) and leading
to in�nity in the unbounded component of Dc\l0. Denote by E0 ⊂ Dc the bounded component
of Dc\l0; recall that D and Dc are polygonal domains without cracks, and D is bounded.

Then ∂E0 ⊂ ∂D ∪ l0 and we have

Lωu = 0 in E0, u = 0 on ∂E0.

In what follows we denote by Rn (n ≥ 0) the re�ection with respect to the straight line Ln
containing the line segment ln, and by Ron the re�ection with respect to the straight line Lon that

10



is parallel to Ln and contains the origin (0, 0) ∈ R2. Moreover, let D(n)
ω denote the re�ection

operator for the Navier equation with respect to the line segment ln ⊂ Ln, which is obtained as
in (2.11) after translation and rotation. Write E1 = R0(E0). Obviously, the function u0 := u|E0

can be analytically extended into Dc\E0 across the line segment l0, and in particular, u0 = u is
well-de�ned near the path π(t) in E1.

Transforming L0 to the line {x1 = 0} by translation and rotation, from Lemma 2.6 (i) we

obtain that the function u1(x) := Ro0[D(0)
ω u](x), x ∈ Dc, satis�es the relation

u1(x) = Ro0u(R0x), x ∈ E1,

and the boundary value problem

Lωu1 = 0 in E1, u1 = 0 on ∂E1.

Since E1 is bounded, we see that ∂E1 ∩ {π(t) : t > 0} 6= ∅. Set t1 := sup{t : E1 ∩ π(t) 6= ∅}.
Without loss of generality we suppose that P1 := π(t1) is not a corner point of ∂E1. Note that
this can always be achieved by locally changing the path near t = t1 if necessary. Hence it holds
that P1 6= P0 and E1 ∩ {π(t) : t > t1} = ∅. Denote by l1 ⊂ ∂E1 the line segment containing the
point P1. Setting E2 = R1(E1) and applying Lemma 2.6 again, we can repeat the previous step
to de�ne a function u2 de�ned in Dc, which satis�es the relation

u2(x) := Ro1[D(1)
ω u1](x) = R1[u1(R1x)], x ∈ E2

and the Navier equation in E2 with vanishing Dirichlet data on ∂E2. Moreover, we can �nd a
point P2 := π(t2) 6= P1 for some t2 > t1 and a line segment l2 ⊂ ∂E2 such that P2 ∈ l2 and
E2 ∩ {π(t) : t > t2} = ∅.

After a �nite number of steps, we �nd a polygonal domain EN , N ≥ 1, and a function

uN (x) := [RoN−1D(N−1)
ω RoN−2D(N−2)

ω ... Ro0Doωu](x), x ∈ Dc (3.1)

such that

uN (x) := R̃oNu(R̃Nx), x ∈ EN , R̃oN := RoN−1R
o
N−2...R

o
0, R̃N := R0R1...RN−1

and

LωuN = 0 in EN , uN = 0 on ∂EN .

Moreover, we may suppose {π(t) : t > tN}∩EN = ∅ for some tN > tN−1 and that PN = π(tN ) ∈
lN , where lN ⊂ ∂EN is a line segment. Since the path π(t) is connected to in�nity in Dc, by
Lemma 3.3 below we can assume that dist(EN , ∂D)� 1. Moreover, we can suppose that there
is a line segment l ⊂ ∂EN whose maximal extension L in Dc does not intersect ∂D. This follows
from the fact that ∂EN always contains at least two segments forming a positive angle ≤ π/2
which is bounded from zero uniformly in N .

The property of L together with the relation (3.1) implies that the functions uN and uN−1

are well de�ned in an unbounded domain containing the half-plane with the boundary LN , being
the extension of lN ⊂ EN = RN (EN−1) in Dc. Now, applying Lemma 2.6 enables us to extend
uN and uN−1 into the whole plane as a solution of the Navier equation (set u = uN−1, w = uN
and D+ = EN−1, D

− = EN and γ = lN−1 in Lemma 2.6). The analytical extension of uN−1 in
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turn implies that un (0 < n ≤ N − 2) and, in particular, u0 = u|E0 can be extended onto R2 as
well. In fact, this can be proved in the same manner as in the proof of Lemma 2.6 (ii).

Hence, the scattered �eld usc can be extended onto D as an entire Kupradze radiation
solution, implying that usc ≡ 0 in R2. This implies uin = 0 on ∂D due to the boundary
condition of the total �eld u. Hence,

|cp|+ |cs| = |d · uin(x)|+ |d⊥ · uin(x)| = 0, x ∈ ∂D,

which contradicts the assumption that |cp|+ |cs| 6= 0.

In the proof of Lemma 3.2 we need the following result.

Lemma 3.3. Let Pn = π(tn) ∈ ln ∩Dc with tn+1 > tn (n = 0, 1, · · · ) be the points constructed
in the proof of Lemma 3.2. We have

lim
n→∞

dist (Pn, ∂D) =∞.

Proof. We keep the notation used in the proof of Lemma 3.2. Suppose on the contrary that
dist(Pn, ∂D) <∞ as n→∞. We can always choose a subsequence, which we still denote by Pn,
such that Pn → P ∗ for some P ∗ and tn → t∗ as n → ∞, where t∗ < ∞. Note that, if t∗ = ∞,
one can see that limn→∞ π(tn) <∞, contradicting the fact that π(t) is connected to in�nity.

Further, we may suppose that there exists N > 0 such that

|P ∗Pj | < ε, |tj − t∗| < ε, Pj 6= Pj+1 for all j ≥ N − 1. (3.2)

Since ε > 0 can be arbitrarily small, this implies that lN−1 and lN must be two neighboring line
segments lying on the boundary of the polygonal domain EN . Without loss of generality, we
assume that the corner point lN−1 ∩ lN coincides with the origin and that

lN−1 ⊂ {(r, θ) : θ = −φ0}, lN ⊂ {(r, θ) : θ = 0}

for some φ0 ∈ (0, 2π), where (r, θ) denote the polar coordinates. Let J = infj≥0{jφ0 ≥ 2π}. It
follows from (3.2) that

PN+j = π(tN+j) ∈ lN+j ⊂ {(r, θ) : θ = jφ0}

for all 1 ≤ j ≤ J . Then, after the J-th re�ection we have lN ∩ EN+J 6= ∅ and thus there exists
t∗N+J such that π(t∗N+J) = P ∗N+J ∈ {π(t) : t ∈ (tN+J−1, tN+J ]} ∩ lN . By the injectivity of the
path π(t), it follows that the arc {π(t) : t ∈ (tN+J−1, tN+J)} cannot intersect the arc of π(t) for
t ∈ (tN−1, tN ). Therefore, the point P ∗N+J ∈ lN must lie between the origin and PN ∈ lN , that
is, |OP ∗N+J | < |OPN |. Hence, we obtain

EN ∩ {π(t) : t ∈ (tN+J−1, tN+J ]} 6= ∅,

which contradicts the fact that

EN ∩ {π(t) : t > tN} = ∅.
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We remark that if the nodal set contains a line segment whose end points lie on ∂D, then a
non-uniqueness example to inverse scattering can be easily constructed; see the example at the
end of this section. Having proved the property of the nodal set in Lemma 3.2, we can verify the
main uniqueness result of Theorem 1.3 with a single incoming plane wave.

Proof of Theorem 1.3. Suppose there are two rigid polygonal obstacles D1 and D2 such
that u∞1 = u∞2 for the incoming plane wave (1.1). Here and thereafter we denote by u∞j , uj , u

sc
j

(j = 1, 2) the far-�eld patterns, and the total and scattered �elds corresponding to Dj . By
Rellich's lemma, we obtain u1 = u2 in the unbounded component E of R2\D1 ∪D2.

If D1 6= D2, one can always �nd a �nite line segment l such that, without loss of generality,
l ⊂ ∂D1 ∩ ∂E but l ∩D2 = ∅. Denote by L the maximum extension of l in Dc

2 := R2\D2. Since
u2 is real analytic in Dc

2, we get u2 = 0 on L, that is, L is a subset of the nodal set of u2. By
Lemma 3.2, L cannot be a �nite line segment with the end points lying on ∂D2. Hence, L must
be connected to in�nity in Dc

2. In view of the Kupradze radiation condition of usc2 , we get

lim
|x|→∞, x∈L

usc2 (x) = 0,

which gives rise to the same asymptotic behavior of uin on L and thus

|d · uin(x)|+ |d⊥ · uin(x)| → 0, as |x| → ∞, x ∈ L.

However, the previous relation is impossible, because

|d · uin(x)|+ |d⊥ · uin(x)| = |cp|+ |cs| 6= 0, x ∈ R2.

This contradiction implies that D1 = D2. 2

Remark 3.4. From Lemma 3.2 and the proof of Theorem 1.3 we conclude that

(i) The nodal set N of u cannot coincide with a �nite line segment.

(ii) The total �eld u must be singular at each corner point lying on the convex hull of ∂D. In
other words, u cannot be analytically extended into D across a corner point of the convex
hull of ∂D. This fact will be used in Section 4 below to interpret the behavior of an indicator
function for imaging rigid polygonal obstacles; see Remark 4.3.

For the readers' convenience, we �nally illustrate the idea in the proofs of Theorem 1.3 and
Lemma 3.2 through a simple example. We shall construct two concrete polygonal obstacles and
show why they cannot generate identical scattering data. Let D be given as in Figure 1 and
let the line segment γ be part of the nodal set of u corresponding to D and some �xed incident
plane wave. This implies that the polygonal obstacles D and D̃ := (D ∪ Ω

+
)\γ would generate

identical scattering data, where Ω+ is the gap domain between D and D̃. By the proof of Lemma
3.2, the function u0 := u|Ω+ is a solution to the Navier equation in Ω+ with vanishing Dirichlet
data on ∂Ω+ and u1(x) := RDωu(x) = Ru(Rx) satis�es the same boundary value problem over
Ω− = R(Ω+). Since Dc contains the half plane {x1 ≤ c} for some c < 0, the function u1 is
also well de�ned over {x1 ≤ c} ∪ Ω− and in particular, u1 = 0 on {x1 = c} by analyticity.
Applying the re�ection principle of the Navier equation, u1 can be analytically extended onto
R2. This implies that u0 and thus usc can be also extended onto the whole space, which is
impossible. For more general con�gurations of two polygonal obstacles, the multiple re�ection
and path arguments presented in the proof of Lemma 3.2 can be used to derive a contradiction.
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� ⌦+⌦�

x1 = c

x1 < c

Figure 1: Illustration of the idea in the proof of Lemma 3.2: D is polygonal obstacle and
γ ⊂ {x1 = 0} is one line segment of the nodal set with two end points lying on ∂D. In this case,
a contradiction can be easily deduced by the re�ection with respect to γ.

4 Factorization method with a single far-�eld pattern

The aim of this section is to propose a revisited factorization method for recovering D from
a single far-�eld pattern. The original factorization method [23, 24] by A. Kirsch makes use of
knowledge of far-�eld patterns corresponding to all incident directions. We take inspiration from
a recent paper [28] on an extended linear sampling method with a single plane wave and improve
the analysis and the inversion scheme there within the framework of factorization method. A
comparison of our approach to [28] will be given at the end of this section.

4.1 Factorization method with in�nitely many incoming directions

We �rst present a brief review of the factorization method in linear elasticity established in
[2, 3]. For g ∈ L2(S)2, introduce the Herglotz operator H : L2(S)2 → H1/2(∂D)2 by

Hg(x) =

∫
S

[
gs(d) d⊥eiksx·d + gp(d) d eikpx·d

]
ds(d), x ∈ ∂D, (4.1)

where gs(d) := g(d) · d⊥ and gp(d) := g(d) · d are the tangential and normal components of
g ∈ L2(S)2, respectively. The far-�eld operator F : L2(S)2 → L2(S)2 is de�ned by

Fg(x̂) =

∫
S

[
gs(d)u∞s (x̂, d) + gp(d)u∞p (x̂, d)

]
ds(d), x̂ ∈ S,

where u∞s and u∞p are the far-�eld patterns incited by the incident plane wave d⊥ exp(iksx · d)
and d exp(ikpx ·d), respectively. The function Fg(x̂) is the far-�eld pattern corresponding to the
incident wave de�ned by the right hand side of (4.1). It was shown in [3, Theorem 3.3] that F is
compact and normal. Denote by Φω the Green's tensor of the Navier equation in two dimensions,
give by

Φω(x, y) =
1

4µ
H

(1)
0 (ks|x− y|) +

i

4ω
grad xgrad⊥x

[
H

(1)
0 (ks|x− y|)−H(1)

0 (kp|x− y|)
]
.
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The far-�eld pattern of the function x→ Φω(x, y)P for some �xed polarization vector P ∈ R2 is
given by

Φ∞y (x̂) =
e−ikpx̂·y+iπ/4√

8πkp
(x̂ · P ) x̂+

e−iksx̂·y+iπ/4

√
8πks

(x̂⊥ · P ) x̂⊥, x̂ ∈ S.

It was proved in [2] and [3] that the function Φ∞y can be used to characterize the scatterer D

in terms of the range of (F ∗F )1/4. Using the orthogonal system of eigenfunctions of F , Picard's
theorem then implies the following result.

Proposition 4.1. If ω2 is not a Dirichlet eigenvalue of the operator −L0 in D, then

y ∈ D if and only if W (y) :=

[ ∞∑
n=1

|(φn,Φ∞y )L2(S)2 |2

|ηn|

]−1

> 0, (4.2)

where ηn ∈ C denotes the eigenvalues of F with the corresponding eigenfunctions φn ∈ L2(S)2.

We refer to [22] for the factorization method using the shear (resp. compressional) part of
the far-�eld pattern corresponding to all incident shear (resp. compressional) plane waves with
all directions. We remark that the right hand side of (4.2) is the inverse of the L2-norm of the
solution g to the operator equation

(F ∗F )1/4g = Φ∞y .

In fact, the above equation is solvable (that is, Φ∞y ∈ Range(F ∗F )1/4) if and only if y ∈ D, and
the unique solution is given by

g(x̂) =

∞∑
n=1

(φn,Φ
∞
y )L2(S)2√
|ηn|

φn(x̂), y ∈ D.

4.2 Factorization method with a single incoming wave

Assume that the unknown rigid scattered D is contained in BR = {x : |x| < R} and that
D is connected. We want to recover ∂D from a single far-�eld pattern u∞(x̂) generated by
one incoming elastic plane wave of the form (1.1) with the �xed direction d ∈ S and frequency
ω ∈ R+.

Let z = R(cos θ, sin θ) ∈ ΓR = ∂BR and let Bh(z) = {x ∈ R2 : |x − z| = h} be a disk
with radius h > 0 centered at z. For simplicity we write Bh(z) = Bh,θ where θ ∈ [0, 2π) and
h ∈ (0, 2R] will be called the sampling variables. Suppose that Bh,θ is a rigid disk, and denote
by Fh,θ the far-�eld operator associated with Bh,θ. Consider the operator equation

(F ∗h,θFh,θ)
1/4 g = u∞. (4.3)

We want to characterize D through the solution g = gh,θ of the above operator equation for all
sampling variables h and θ. To introduce our indicator function, we need to de�ne the minimum
and maximum distance between z and ∂D by

lz = dist(z, ∂D) = min
x∈∂D

|x− z|, Lz := max
z∈∂D

|x− z|.

Below we adapt the arguments of Subsection 4.1 to the solvability of (4.3) .
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Theorem 4.2. Let z = R(cos θ, sin θ) and h ∈ (0, 2R] be �xed, and suppose that ω2 is not a

Dirichlet eigenvalue of the operator −L0 in Bh,θ. Denote by (η
(h,θ)
n , φ

(h,θ)
n )∞n=1 the eigensystem of

the normal operator Fh,θ. De�ne the function

W (h, θ) :=

[ ∞∑
n=1

|(φ(h,θ)
n , u∞)L2(S)2 |2

|η(h,θ)
n |

]−1

. (4.4)

(i) If h ∈ [Lz, 2R], then the operator equation (4.3) is uniquely solvable, with the solution given
by

gh,θ(x̂) =
∞∑
n=1

(φh,θn , u∞)L2(S)2

|ηh,θn |1/2
φh,θn (x̂), x̂ ∈ S.

Further, it holds that ||gh,θ||L2(S)2 = W (h, θ) > 0.

(ii) If h ∈ (0, lz], then the operator equation (4.3) has no solution in L2(S)2 and W (h, θ) = 0.

(iii) Let h ∈ (lz, Lz), and let u be the total �eld corresponding to the scatterer D. If u can be
analytically extended from Dc to D\Bh,θ 6= ∅, then (4.3) is uniquely solvable and W (h, θ) >
0. Otherwise, we have W (h, θ) = 0.

Proof. Let Gh,θ : H1/2(∂Bh,θ)
2 → L2(S)2 be the data-to-pattern operator de�ned by Gh,θ(f) =

v∞, where v∞ is the far-�eld pattern of the scattered �eld vsc to the boundary value problem

Lωvsc = 0 in R2\Bh,θ, vsc = f ∈ H1/2(∂Bh,θ)
2.

It is well known from [2, 3] that the ranges of Gh,θ and (F ∗h,θFh,θ)
1/4 coincide. In case (i), it is

easy to see

u∞ = Gh,θ(f) ∈ Range(Gh,θ), where f := usc|∂Bh,θ ∈ H
1/2(∂Bh,θ)

2, (4.5)

and hence u∞ belongs to the range of (F ∗h,θFh,θ)
1/4. By Picard's theorem, one obtains the results

in the �rst assertion. If h ∈ (lz, Lz) and u can be analytically extended into D\Bh,θ, the scattered
�eld usc can be analytically continued to the domain |x− z| > h. This implies that we have the
relation (4.5) again. In case (ii), it holds that u∞ /∈ Range(G), because usc cannot be analytically
extended onto D as an entire Kupradze radiating solution. The second part in the third assertion
can be proved similarly.

Write z = z(θ) ∈ ΓR for θ ∈ [0, 2π). Theorem 4.2 suggests the following indicator function
for imaging the scatterer D:

I(y) =

(∫ 2π

0
W (|y − z(θ)|, θ) dθ

)−1

, y ∈ BR, (4.6)

where W (h, θ) is de�ned via (4.4). If u cannot be extended into D across any sub-boundary
of ∂D, it holds that W (|y − z(θ)|, θ) > 0 for all y ∈ BR such that |y − z(θ)| > Lz, and
W (|y− z(θ)|, θ) = 0 if |y− z(θ)| < Lz. Therefore, the function y →W (|y− z(θ)|, θ) provides an
estimate of the maximum distance between z and ∂D for �xed θ. When the sampling variable
θ varies in the whole interval [0, 2π), it is expected that I(y) takes much larger values for y ∈ D
than for y ∈ Dc.
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Remark 4.3. If D is a convex polygonal obstacle, it follows from Remark 3.4 (ii) that u cannot
be analytically continued across any corner of ∂D. Hence, the indicator function (4.6) could be
used, in particular, for capturing a corner point of ∂D. If D is a non-convex polygon, then the
convex hull of D can be e�ciently recovered. The above scheme also applies to inverse scattering
from penetrable scatterers and to inverse source problems. In the acoustic case, it was proved
in [5, 30, 14, 15, 26] that u cannot be extended into D across a strongly or weakly singular
point of ∂D, that is, corners and weakly singular boundary points always scatter. Analogous
results in elastic scattering remain open, but similar conclusions can be expected. Hence, the
proposed numerical scheme can be utilized to recover boundary singular points of penetrable and
impenetrable scatterers.

The authors in [28] proposed an extended linear sampling method for recovering ∂D from
a single acoustic far-�eld pattern. The idea there is to consider the solvability of the �rst kind
integral equation

Fzg = u∞, (4.7)

where Fz is the far-�eld operator corresponding to a sound-soft disk |x − z| = a for some �xed
a > 0. Since the above equation is ill-posed, a regularization method must be used for solving
(4.7). On the other hand, a multi-level sampling scheme was employed to �nd a proper radius
of the sampling disk. In this paper, we have rigorously analyzed the solvability of the equation
(4.3) within the framework of factorization method and have designed new sampling and imaging
schemes, which avoid the multi-level sampling in [28]. In comparison with the linear sampling
and factorization methods with all incident directions, the essential idea of [28] and this paper is
to make use of the scattered data from an admissible set of known obstacles. Such an admissible
set is taken as the set of sampling disks Bh,θ for all h ∈ (0, 2R), θ ∈ [0, 2π) in this paper, and
was chosen to consist of Ba(z) for all z ∈ BR with a �xed sampling radius a > 0 in [28].

The advantages of our inversion scheme can be summarized as follows. Firstly, the functions
W (h, θ) and I(y) involve only inner product calculations with low computational cost, because

the spectrum (ηh,θn , φh,θn ) of the far-�eld operator for the disk Bh,θ can be obtained explicitly in
elasticity. For obstacles from other admissible set, the spectrum of the corresponding far-�eld
operator can be obtained in advance.

Secondly, the spectral systems corresponding to a priori given obstacles from the admissible
set can be replaced by other virtual systems which mathematically make sense. For example, in
the case of near-�eld measurement data and for time-dependent scattering problems, the original
version of the factorization methods (see [6, 24]) involves physically non-meaningful incoming
waves. However, the resulting far-�eld operators are still meaningful from the mathematical
point of view. Therefore, the revisited factorization method described here applies to these
cases. There is also a variety in the choice of the shape and the boundary conditions of the
scatterers in the admissible set.

Thirdly, the proposed inversion scheme may be applied to other shape identi�cation prob-
lems for imaging penetrable and impenetrable scatterers with a single incoming wave, including
inverse source problems. However, the theoretical justi�cation of the non-analytical extension
across a corner domain in linear elasticity seems more challenging than its acoustic counterpart.
Numerical results for inverse acoustic scattering problems with near-�eld and far-�eld data and
further comparison with other sampling methods will be reported in forthcoming papers.
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