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Abstract
This paper is concerned with the inverse time-harmonic elastic scattering 
problem of recovering unbounded rough surfaces in two dimensions. We 
assume that elastic plane waves with different directions are incident onto 
a rigid rough surface in a half plane. The elastic scattered field is measured 
within a finite distance above the rough surface. A sampling-type imaging 
algorithm is proposed to recover the unbounded rough surface from the 
scattered near-field data, which involves only inner products between the data. 
Numerical experiments are presented to show that the inversion scheme is not 
only efficient but also accurate and robust with respect to noise.
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1.  Introduction

In this paper, we study the inverse scattering problem of time-harmonic elastic waves by an 
unbounded rough surface in two dimensions. The region above the surface is filled with a 
homogeneous and isotropic elastic medium, while the material below is assumed to be elasti-
cally rigid. Our goal is to recover the unbounded interface from the scattered field measured 
at a finite distance above the rough surface. Such kind of inverse problems occurs in many 
applications such as geophysics, seismology and nondestructive testing [8, 24, 32]. Though a 
traction-free boundary condition or a transmission interface condition may have more applica-
tions in practice, we only consider scattering surfaces of Dirichlet kind, which means that the 
medium beneath the rough surface is rigid in elasticity. We note that the well-posedness of 
forward elastic scattering problems is well-understood in a two dimensional setting by apply-
ing either the integral equation method [4–6] or variational approach [16, 18]. See figure 1 for 
an illustration of the scattering problem in a globally perturbed half plane.

Given an incident field and the rough surface, the forward problem is to determine the 
field distribution of the scattered field. Uniqueness and existence of forward solutions have 
been investigated in [4–6] by the integral equation method and in [16, 18] by the variational 
method. These approaches extend the solvability results for grating diffraction problems to the 
more challenging case of unbounded rough surfaces in elasticity. In the periodic case, numer
ical methods such as the two-step optimization method [17], the factorization method [21] and 
the transformation-based near-field imaging method [27, 28] have been proposed to solve the 
inverse elastic scattering problems for diffraction gratings. Note that the periodic setting sig-
nificantly simplifies the arguments for the case of general rough surfaces. However, relatively 
little studies are carried out for inverse elastic scattering arising from global rough surfaces 
and it is not trivial to extend the above mentioned methods to inverse rough surface scattering 
problems. We refer to [15] for a recent application of the linear sampling method (see [14] for 
bounded scatterers) to recover locally perturbed sound-soft rough surfaces, which however 
does not work for general rough surfaces. This is mainly due to infiniteness and irregular-
ity of globally rough surfaces, which bring additional difficulties not only to mathematical 
analysis but also to numerical computation. In practice, the measurement positions are always 
restricted to a finite sub-domain. Hence, it is in general impossible to recover the entire rough 
surface from these limited data. Intuitively, only the scattering surface closest to the measure-
ment positions can be best reconstructed, although the other part may also affect the data. In 
our numerical experiments, by using the limited measurement data, we can only reconstruct 
part of the rough surface. However, our theoretical analysis in section 3 shows that the whole 
rough surface can be retrieved if the near field data over an infinite line above the surface are 
available.

In this paper, we shall propose a non-iterative imaging approach to reconstruct the 
unbounded rough surface below the measurement positions from the near-field data gener-
ated by elastic plane waves at one frequency with multiple directions. The proposed approach 
is of sampling type which does not require forward solvers in the inversion process. We take 
inspirations from recent studies for inverse acoustic scattering problems, for example, the 
orthogonality sampling method [31], topological derivative-based approach [7, 9, 19], the 
direct sampling method [22, 29] and the reverse time migration method [11]. Note also that 
direct imaging methods have also been developed in [12, 23] for inverse elastic scattering 
by bounded obstacles. Compared to iterative schemes and other sampling type methods, the 
features of our imaging method include: (i) capability of depicting the profile of the surface 
only through computing the inner products of the measured data and a known function at each 
sampling point. Thus, the computational cost is very cheap. This merit is especially important 
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for elastic scattering problems since the computation for vectorial equations is usually more 
time-consuming than for scalar equations. In N � 2 dimensions, the computational cost for 
solving the Navier equation is at least N -times larger than the Helmholtz equation, and the 
cost for the inner product required by our scheme is 2N -times larger than the scalar case. (ii) 
Robustness to a fairly large amount of noise in the measured data. This paper focuses on the 
unbounded rough surface identification problem in linear elasticity and is an extension of 
our recent work [30] on near-field imaging penetrable interfaces modelled by the Helmholtz 
equation to the Navier equation. The elasticity problem takes a more complicated form than 
the acoustic case, due to the coexistence of the compressional and shear waves that propagate 
at different speeds. We consider only impenetrable rigid rough surfaces (on which the elastic 
displacement vanishes), but our method applies naturally to interfaces with other boundary or 
transmission conditions.

Our imaging scheme relies essentially on a relation between the Funk–Hecke formula and 
the free-space Green’s tensor for the Navier equation; see (3.4) or (3.9). Motivated by this 
relation, we present the scattered field in the form of a superposition of incident elastic plane 
waves (see theorem 3.3 below). This expression of the scattered field will be proven to have 
the same decaying property as the imaginary part of the Green’s tensor, as the sampling point 
moves away from the scattering surface. This yields our indicator function using elastic plane 
waves with different directions in a half plane. Numerical experiments are presented to show 
the effectiveness of our method. Further, we investigate the effect of the reconstructed results 
from the parameters such as the incident frequency, the measurement place and the noise 
level. Numerics show that our imaging algorithm is fast, accurate and very robust with respect 
to the noisy data.

The remainder of this paper is organized as follows. In section 2, we briefly review the well-
posedness of the forward scattering problem using the integral equation method. Section 3 is 
devoted to an analysis of our imaging function and a description of the imaging algorithm. 
Numerical experiments are carried out in section 4 to demonstrate the effectiveness of the 
proposed approach.

Figure 1.  Inverse elastic scattering from an unbounded rough surface Γ. The 
measurement line segment Γa means the positions for taking the near-field data above 
the scattering surface. Assuming that elastic plane waves are incident from above, we 
investigate the inverse scattering problem of determining Γ in two dimensions. For 
simplicity, it is supposed throughout this paper that the Dirichlet boundary condition 
condition is imposed on Γ.
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2.  Forward scattering problem

In the section we review existence and uniqueness of solutions to elastic scattering from rigid 
rough surfaces in two dimensions. The solvability of the second kind integral operator estab-
lished in [6] will be used to analyze our indicator function to be proposed in section 3.

Consider a one-dimensional unbounded rough surface Γ = {x ∈ R2 | x2 = f (x1), x1 ∈ R},  
where Γ is supposed to be smooth enough such that f ∈ BC1,1(R). Here,  
BC1,1(R) := {ϕ ∈ BC(R) | ϕ′ ∈ BC(R), j = 1, 2} under the norm ‖ϕ‖1,R := ‖ϕ‖∞,R + ‖ϕ′‖∞,R   
and BC(R) is the set of bounded and continuous functions in R . Denote the region above Γ by 
Ω. Assume that Ω is filled with an isotropic homogeneous elastic medium characterized by the 
Lamé constants µ,λ with µ > 0,λ+ µ � 0. For simplicity, we assume that the density func-
tion in Ω is normalized to be one and the region below Γ is a rigid elastic body. Assume that a 
time-harmonic plane wave (with time variation of the form exp(−iωt ), ω > 0) is incident onto 
Γ from Ω. The incident plane wave uin can be either the compressional wave

uin
p (x; d) := deikpd·x,

or the shear wave

uin
s (x; d) := d⊥eiksd·x,

where d = (d1, d2)
T ∈ S := {x = (x1, x2) | |x| = 1} is the incident direction and d⊥ = (−d2, d1)

T .  
The compressional wave number kp and the shear wave number ks are given by

kp = ω/
√
λ+ 2µ, ks = ω/

√
µ.

The displacement of the total field u = (u1, u2)
T  is then governed by the Navier equation

µ∆u + (λ+ µ)∇∇ · u + ω2u = 0 in Ω,� (2.1)

together with the Dirichlet boundary condition

u = 0 on Γ.� (2.2)

Given a curve Λ ⊂ R2 with the unit normal n = (n1, n2)
T ∈ S, the generalised stress operator 

P  on Λ is defined by

Pu := (µ+ µ̃)
∂u
∂n

+ λ̃n∇ · u − µ̃n⊥∇⊥ · u, ∇⊥ := (−∂2, ∂1).

Here, n⊥ = (−n2, n1)
T  and µ̃, λ̃ are real numbers satisfying µ̃+ λ̃ = µ+ λ. A special choice 

of µ̃ and λ̃ with µ̃ = µ(µ+ λ)/(3µ+ λ) and λ̃ = (2µ+ λ)(µ+ λ)/(3µ+ λ) will be used in 
this paper; see [4, chapter 3] for details.

Let Γa := {x = (x1, x2) | x2 = a} and Ua := {x = (x1, x2) | x2 > a}. In this paper 
we require the scattered field usc = u − uin to fulfill the Upwards Propagating Radiation 
Condition (UPRC) (see [5]):

usc(x) =
∫

Γa

Py[Πa(x, y)]φ(y)ds(y), x ∈ Ua� (2.3)

for some a > f+ := sup
x1∈R

f (x1) with some φ ∈ [L∞(Γa)]
2. Here, Πa(x, y) denotes the Green’s 

tensor for the Navier equation  in the half plane x2 > a with the homogeneous Dirichlet 
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boundary condition on Γa. The differential operator Py[Πa(x, y)] is understood as the action of 
the generalised stress operator P  to each column of Πa(x, y) with respect to the argument y. 
The explicit expression of Πa(x, y) can be found in [5] in two dimensions. Below we formulate 
the forward elastic scattering problem as a boundary value problem.

Problem 2.1.  Given g ∈ [BC(Γ) ∩ H1/2
loc (Γ)]

2, find a vector field u ∈ [C2(Ω) ∩ C(Ω)

∩H1
loc(Ω)]

2 that satisfies

	 1.	�the Navier equation (2.1) in Ω,
	 2.	�the Dirichlet boundary condition u = g on Γ,

	 3.	�the vertical growth rate condition: sup
x∈Ω

|x2|β |u(x)| < ∞ for some β ∈ R ,
	 4.	�the UPRC (2.3).

Well-posedness of the forward elastic scattering of plane waves in 2D was investigated 
in [4–6] using the integral equation  method and in [18] using the variational approach in 
weighted Sobolev spaces. In particular, the unique solution to problem 2.1 can be written in 
the form of a combined single- and double-layer potential (see [5, 6])

u(x) =
∫

Γ

{Py[Πh(x, y)]− iηΠh(x, y)}ϕ(y)ds(y), x ∈ Ω,

where h < inf
x1∈R

f (x1), η is a complex number satisfying �(η) > 0 and the density function 

ϕ ∈ [BC(Γ) ∩ H1/2
loc (Γ)]

2 is the unique solution to the boundary integral equation

(I + D − iηS)ϕ(y) = 2uin(y), y ∈ Γ.

Note that the boundary integral operators S and D are defined, respectively, as

Sϕ(y) := 2
∫

Γ

Πh(y, ξ)ϕ(ξ)dξ, Dϕ(y) := 2
∫

Γ

Py[Πh(y, ξ)]ϕ(ξ)dξ.

It was verified in [6] that the operator I + D − iηS is bijective on [BC(Γ)]2. Further, it holds 
that

‖(I + D − iηS)−1‖ < ∞.

We summarize the well-posedness of problem 2.1 in the following theorem.

Theorem 2.2 (See [4, theorem 5.24]).  For any Dirichlet data g ∈ [BC(Γ) ∩ H1/2
loc (Γ)]

2, 
there exists a unique solution u ∈ [C2(Ω) ∩ C(Ω) ∩ H1

loc(Ω)]
2 to problem 2.1, which depends 

continuously on ‖g‖∞;Γ, uniformly in [C(Ω \ Ua)]
2 for any a > f+.

3.  Inverse scattering problem

3.1.  Description of the imaging functional

Introduce the notation

Γa,A : = {x ∈ Ω | x2 = a, |x1| � A}, a > f+,

S+ : =
{

d = (d1, d2)
T | |d| = 1, d2 > 0

}
,

S− : =
{

d = (d1, d2)
T | |d| = 1, d2 < 0

}
.
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The purpose of this section  is to propose a non-iterative inversion scheme for determining 
Γ from the scattered near-field data measured on Γa,A excited by either compressional plane 
waves uin

p (x; d), or shear plane waves uin
s (x; d) or both of them.

We begin with the free-field Green’s tensor Π(x, y) for the two-dimensional Navier equa-
tion, given by

Π(x, z) :=
1
µ

IΦks(x, z) +
1
ω2 ∇

T
x ∇x

(
Φks(x, z)− Φkp(x, z)

)
,� (3.1)

with x, z ∈ R2 and x �= z. Here, I  denotes the 2-by-2 unit matrix and the scalar function 
Φk(x, z) is the fundamental solution to the two-dimensional Helmholtz equation given by

Φk(x, z) =
i
4

H(1)
0 (k|x − z|), x �= z,� (3.2)

where H(1)
0 := J0 + iY0 is the Hankel function of the first kind of order zero. The functions Jn 

and Yn are the Bessel and Neumann functions of order n, respectively. To derive our indicator 
function, we recall the Funk–Hecke formula which is useful in simplifying calculations of 
certain integrals over the unit sphere; see, e.g. [13]). The original Funk–Hecke Formula (also 
known as the Hecke–Funk Formula, see [3, chapter 9, section 9.8]) basically allows one to 
calculate the convolution of a kernel function with a spherical function in a convenient way, 
which was first published by Funk in 1916 and then by Hecke in 1918.

Lemma 3.1 (The Funk–Hecke formula, see, e.g. [13]).  For any k > 0, we have

1
2π

∫

S
eik(x−z)·dds(d) = J0(k|x − z|), x, z ∈ R2.

Combining the above lemma with (3.2), we obtain

Im (Φk(x, z)) =
1
4

J0(k|x − z|) = 1
8π

∫

S
eik(x−z)·dds(d).� (3.3)

Taking the imaginary part of (3.1) and using (3.3) yield

Im Π(x, z) =
1

8π

[
1

λ+ 2µ

∫

S
d ⊗ deikp(x−z)·dds(d) +

1
µ

∫

S
(I − d ⊗ d)eiks(x−z)·dds(d)

]
,� (3.4)

where

d ⊗ d := ddT =

[
d2

1 d1d2

d2d1 d2
2

]
, d = (d1, d2)

T ∈ S.

Set e1 = (1, 0)T and e2 = (0, 1)T. Then, for j = 1, 2,

Im(Π(x, z)ej) =
1

8π

[
1

λ+ 2µ

∫

S
djdeikp(x−z)·dds(d) +

1
µ

∫

S
d⊥

j d⊥eiks(x−z)·dds(d)
]

,� (3.5)

where d⊥
j  stands for the jth component of d⊥, that is, d⊥

1 = −d2, d⊥
2 = d1.

Lemma 3.2.  For d ∈ S+, the scattered fields corresponding to the incident plane waves 
uin

p (x; d) and uin
s (x; d) are given as usc

p (x; d) := −deikpx·d  and usc
s (x; d) := −d⊥eiksx·d, x ∈ Ω, 

respectively.
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Proof.  It is easily seen that usc
p (x; d) satisfies the Navier equation  (2.1) and the vertical 

growth rate condition defined in problem 2.1. Since usc
p (x; d) is upward propagating for 

d ∈ S+, it satisfies the UPRC in (2.3); see [4, remark 2.14]. Further, we have the boundary 
data usc

p (x; d) = −uin
p (x; d) on Γ. By the uniqueness of solutions to the forward scattering 

problem (see theorem 2.2), we conclude that the function usc
p (x; d) := −deikpx·d, x ∈ Ω, is the 

unique scattered field corresponding to the incident plane wave uin
p (x; d). The shear wave case 

can be proved similarly.� □ 

Denote by usc
p (x; d), usc

s (x; d) ∈ [C2(Ω) ∩ C(Ω) ∩ H1
loc(Ω)]

2 the unique outgoing scattered 
field (see theorem 2.2) corresponding to the incident plane compressional wave uin

p (x; d) and 
plane shear waves uin

s (x; d) with d ∈ S−, respectively. Our imaging functional will depend on 
the measurement data usc

p (x; d), usc
s (x; d) for x ∈ Γa and d ∈ S−. Recalling the free-field’s 

Green’s tensor Π (see (3.1)), we introduce a new function

Uin (x; z, ej) := Im (Π(x, z)ej), j = 1, 2,� (3.6)

for x, z ∈ Ω, x �= z, which can be mathematically regarded as an incident wave onto the sur-
face Γ. Uin is mathematically meaningful only, since by (3.5) it consists of both downward and 
upward propagating plane waves. Such kind of incoming waves may help design our imaging 
function, but they are not experimental incident fields. Next we shall express the scattered 
field excited by Uin (x; z, ej), which we denote by Usc (x; z, ej) , in terms of the scattered fields 
usc

p  and usc
s .

Theorem 3.3.  The scattered field generated by Uin (x; z, ej) takes the form

Usc (x; z, ej) =
1

8π

[
1

λ+ 2µ

∫

S−
usc

p (x; d)dje−ikpz·dds(d) +
1
µ

∫

S−
usc

s (x; d)d⊥
j e−iksz·dds(d)

]

− 1
8π

[
1

λ+ 2µ

∫

S−
d′

j d
′eikp(x′−z′)·dds(d) +

1
µ

∫

S−
(d′)⊥j (d′)⊥eiks(x′−z′)·dds(d)

]
.

�
(3.7)

Here, x′ = (x1,−x2) for x = (x1, x2) ∈ R2. The notation d′
j  and (d′)⊥j  denote the jth comp­

onent of d′ and (d′)⊥, respectively, given by

d′
1 = d1, d′

2 = −d2, (d′)⊥1 = d2, (d′)⊥2 = d1.

Proof.  In view of (3.5), the incident field Uin (x; z, ej) can be decomposed into the sum of 
four parts:

Uin =
1

8π

{
1

λ+ 2µ
(Uin

p,− + Uin
p,+) +

1
µ
(Uin

s,+ + Uin
s,−)

}
,

where

Uin
p,±(x; z, ej) : =

∫

S±
uin

p (x; d)dje−ikpz·dds(d) =
∫

S±
ddjeikp(x−z)·dds(d),

Uin
s,±(x; z, ej) : =

∫

S±
uin

s (x; d)d⊥
j e−iksz·dds(d) =

∫

S±
d⊥d⊥

j eiks(x−z)·dds(d).
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By linear superposition and lemma 3.2, the unique scattered field Usc
p,+ that corresponds to 

Uin
p,+ is given by

Usc
p,+(x; z, ej) :=

∫

S+
usc

p (x; d)dje−ikpz·dds(d) = −
∫

S+
d djeikp(x−z)·dds(d),

implying that

Usc
p,+(x; z, ej) = −Uin

p,+(x; z, ej) = −
∫

S−
d′

j d
′eikp(x′−z′)·dds(d).

Analogously, we have

Usc
s,+(x; z, ej) = −Uin

s,+(x; z, ej) =

∫

S−
(d′)⊥j (d′)⊥eiks(x′−z′)·dds(d).

On the other hands, it is easy to see that the unique scattered fields excited by Uin
p,− and Uin

s,− 
can be expressed as

Usc
p,−(x; z, ej) :=

∫

S−
usc

p (x; d)dje−ikpz·dds(d),

Usc
s,−(x; z, ej) :=

∫

S−
usc

s (x; d)dje−iksz·dds(d),

respectively. To sum up, we may rewrite the scattered field excited by Uin as

Usc =
1

8π

{
1

λ+ 2µ
(Usc

p,− + Usc
p,+) +

1
µ
(Usc

s,+ + Usc
s,−)

}
,

which takes the same form as the right-hand side of (3.7). The proof is thus completed.� □ 

Remark 3.4. 

	 (i)	�For j = 1, 2, it follows from (3.5) that Uin (x; z, ej) can be divided into the compressional  
part Uin

p (x; z, ej) and the shear part Uin
s (x; z, ej), that is, Uin (x; z, ej) = 

Uin
p (x; z, ej) + Uin

s (x; z, ej), where

Uin
p (x; z, ej) : =

(
− 1
ω2 ∇

T
x ∇xIm Gkp(x, z)

)
ej,

Uin
s (x; z, ej) : =

(
1
µ

I +
1
ω2 ∇

T
x ∇xIm Gks(x, z)

)
ej.

		 Then, similarly as in the proof of the above theorem, it can be proved that the scattered 

fields generated by Uin
p (x; z, ej) and Uin

s (x; z, ej) take the form

Usc
p (x; z, ej) =

1
8π(λ+ 2µ)

∫

S−

(
usc

p (x; d)dje−ikpz·d − d′
j d

′eikp(x′−z′)·d
)

ds(d)
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		 and

Usc
s (x; z, ej) =

1
8πµ

∫

S−

(
usc

s (x; d)d⊥
j e−iksz·d − (d′)⊥j (d′)⊥eiks(x′−z′)·d

)
ds(d),

		 respectively. The above formulas will be used in the numerical example when we only 
consider incident compressional plane wave or incident shear plane wave.

	(ii)	�Our inversion scheme requires knowledge of the total (scattered) field separately excited 
by incident compressional and shear plane waves from the upper half plane. However, 
our approach does not work in the case that the incident wave is a linear combination of 
compressional and shear plane waves, due to formulas (3.4) and (3.5).

From the proof of theorem 2.2 (see [4]), we can represent Usc(x; z, ej) in (3.7) as the 
layer-potential

Usc(x; z, ej) =

∫

Γ

{Py[Πh(x, y)]− iηΠh(x, y)}ψ( j)
z (y)ds(y), x ∈ Ω,� (3.8)

where the density function ψ( j)
z  is the unique solution to the integral equation

(I + D − iηS)ψ( j)
z = −2G( j)

z on Γ,

with

G( j)
z (x) := −Uin(x; z, ej) = −Im Π(x; z)ej.

Here, we use the subscript z to indicate the dependence of ψ( j)
z  on the point z. By (3.1) and a 

straightforward calculation it follows that

Im[Πj,k(x, z)] =
1

4µ

[
F1(|x − z|) δj,k + F2(|x − z|)

(xj − zj)(xk − zk)

|x − z|2

]
,� (3.9)

where

F1(t) = J0(kst)−
1

kst

(
J1(kst)−

kp

ks
J1(kpt)

)
,

F2(t) =
2

kst
J1(kst)− J0(kst)−

kp

t
J1(kpt) +

k2
p

k2
s

J0(kpt).

We remark that the Bessel functions have the following behavior [13, section 2.4] (see also 
figure 2)

Jn(t) =
∞∑

p=0

(−1) p

p!(n + p)!

( t
2

)n+2p
, t ∈ R.

For large arguments, it holds that

Jn(t) =

√
2
πt

cos
(

t − nπ
2

− π

4

){
1 + O

(
1
t

)}
, t → ∞.

Thus, from the expression of Im[Π(x, z)] in (3.9) we have the estimate

max
j,k=1,2

|ImΠjk(x, z)| =
{

O(1) as |x − z| → 0,
O
(
|x − z|−1/2

)
if |x − z| → ∞,

x ∈ Γ.
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Further, since I + D − iηS is bijective (and so boundedly invertible) in [BC(Γ)]2, it holds that

C1‖G( j)
z ‖∞,Γ � ‖ψ( j)

z ‖∞,Γ � C2‖G( j)
z ‖∞,Γ, j = 1, 2� (3.10)

for some positive constants C1 and C2. By (3.10) we have
{
‖ψ( j)

z ‖∞,Γ � C > 0 if dist(z,Γ) → 0,
‖ψ( j)

z ‖∞,Γ = O
(
d(z,Γ)−1/2

)
as dist(z,Γ) → ∞,

j = 1, 2.

Combining the above estimate with (3.8), we expect that the scattered field Usc(x; z, ej) for 
x ∈ Ω takes a relatively large value when the sampling point z is getting close to the rough 
surface Γ and decays with the order 1/dist(z,Γ)1/2 as z moves away from the rough surface Γ. 
Motivated by the above discussions, we propose the imaging function

I(z) :=
2∑

j=1

∫

Γa

∣∣Usc(x; z, ej)
∣∣2ds(x),� (3.11)

for some a > f+, where Usc is of the form (3.7) and z ∈ R2 is the sampling point in a search-
ing region. Analogously, it is reasonable to expect that the imaging function I(z) decays as z 
moves away from the rough surface Γ. Hence, I(z) can be regarded as an imaging function 
for recovering Γ.

In our numerical computations, the straight line Γa in (3.11) is truncated by a finite line seg-
ment Γa,A := {x ∈ Γa | |x1| < A}, which will be discretized uniformly into 2N  subintervals 
with the step size h = A/N. In addition, the lower-half circle S− in (3.7) will also be uniformly 
discretized into M grids with the step size ∆θ = π/M . Then for each sampling point z we get 
the discrete form of (3.11) as follows:

I(z) ≈ IA(z) =
2∑

j=1

∣∣∣∣∣h
2N∑
i=0

∆θ

8π

M∑
k=0

(
1

λ+ 2µ
usc

p (xi; dk)dje−ikpz·dk +
1
µ

usc
s (xi; dk)d⊥

j e−iksz·dk

− 1
λ+ 2µ

(dk)
′
jd

′
keikp(xi

′−z′)·dk − 1
µ
(d′

k)
⊥
j (d′

k)
⊥eiks(x′i −z′)·dk

)∣∣∣∣
2

.

�

(3.12)

Here, the measurement positions are denoted by xi = (−A + ih, H) for i = 0, 1, ..., 2N, and 
the incident directions dk = (sin(−π + k∆θ), cos(−π + k∆θ)), k = 0, 1, · · · , M. We note 
that the number ∆θ gives arise to the discretized error for evaluating the integrals involved in 
(3.3), which is independent of a, A and the sampling point z. Let K ⊂ R2  be a sampling region 

Figure 2.  The behavior of the Bessel functions J0 (left) and J1 (right).
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which contains part of the rough surface to be recovered. Our imaging scheme (3.12) can be 
implemented as follows.

Algorithm 3.1. 

	 1.	�Choose T  to be a mesh of K  and choose Γa,A (a > f+) to be a straight line segment above 
the rough surface.

	 2.	�Collect the scattered near-field data usc
p (xj; dk) and usc

s (xj; dk) for xj ∈ Γa,A, j = 0, · · · , 2N , 
corresponding to the incident plane waves uin

p (x; dk) and uin
s (x; dk) with k = 0, · · · , M, 

respectively.
	 3.	�For each sampling point z ∈ T , compute the imaging function I(z) by using (3.12).
	 4.	�Plot the imaging function I(z) for z ∈ T , where the large values represent the part of the 

rough surface in the sampling region K .

Remark 3.5. 

	 1.	�It follows from (3.7) and (3.11) that our imaging functional requires the data usc
p (x; d) 

and usc
s (x; d) for incident compressional and shear plane waves with different directions, 

separately.
	 2.	�Γa can be replaced by a curve or a set of random points. Numerical experiments will be 

reported in example 1 of section 4.

3.2.  Comparison with other sampling schemes

Recently, the linear sampling method, originally proposed by Colton and Kirsch in 1996 
[14] for imaging bounded scatterers, was applied to inverse acoustic scattering from a locally 
perturbed sound-soft rough surface; see [15]. Being different from the case with bounded 
obstacles, near-field measurement data excited by point source waves were utilized and the 
following modified near-field equation was considered:

∫

Γa,A

(usc(x; y)− ure(x; y)) gz(y) ds(y) = ure(x; z) + Φk(x, z), x ∈ Γa,A,

where Φk(·, z) is the free-space Green’s function to the Helmholtz equation with the wave-
number k2 (see (3.2)), usc(·; y) is the scattered field excited by the incoming wave Φk(·; y) and 
ure(·; y) is some ‘artificial’ reference field depending on y ∈ Γa,A. The indicator functional 
proposed by [15] seeks to plot the function z → ||gz||L2(Γa,A), where gz is a solution to the 
above modified near-field equation. It was proved in [15] that this imaging functional has 
a larger value for z ∈ Ω than those sampling points lying below Γ. In comparison with the 
scheme of [15], our inversion scheme is totally ‘direct’, because we do not need to solve any 
near-field equation. Moreover, our approach has been designed for imaging globally rough 
surfaces, which covers the case studied in [15]. We refer to [30] for the acoustic version of 
our approach.

Over the last few years, the topological derivative of data misfit cost functionals has been 
proposed as a new approach to inverse scattering; see [9, 10, 19]. The TS indicator quantifies 
the leading order perturbation of a given misfit functional when a trial obstacle is introduced 
in a fixed reference domain, leading to robust imaging functionals. In the frequency domain, 
the method of topological sensitivity has been so far applied to finding unknown scatterers of 
finite size from far-field patterns over all incident directions. The TS indicator functional can 
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be equivalently recast as (see [7, proposition 1] for inverse acoustic scattering from a bounded 
penetrable scatterer)

T̃(z) = Re
∫

S
e−ikx̂·z

∫

S
u∞(x̂; d)e−ikd·zds(d) ds(x̂).

Our imaging functional in the acoustic far-field case takes the form (see also [29])

IF(z) =
∫

S

∣∣
∫

S
u∞(x̂; d)e−ikd·zds(d)

∣∣2 ds(x̂),

which differs slightly from the TS indicator. To the best of our knowledge, the application 
of the TS indicator to inverse scattering from unbounded surfaces with near-field data is not 
available in the literature. As can be seen from (3.7), our indicator functional for half-space 
inverse problems consists of two part: the first line in (3.7) involves the near-field data in 
experiments, whereas the second line corrects the integrals in the first line so that Usc coin-
cides with the scattered field excited by Uin.

It should be mentioned that a rigorous mathematical justification of our scheme seems 
still open. Hence, the characterization of the scattering surface provided by our method is 
not backed (for the time being) by mathematical proofs. We have rigorously justified the 
smallness of the imaging function away from the surface. However, it is still unclear why the 
imaging function peaks near the surface. As to the topological sensitivity method, although 
it has not yet been applied to the characterization of unbounded surfaces, there is no major 
theoretical obstacle to do so. Besides, [1, 2, 7, 20] have provided rigorous mathematical justi-
fications for TS imaging functionals in some particular cases.

4.  Numerical examples

In this section, we present several numerical experiments to demonstrate the effectiveness of 
our imaging method and investigate the specificities of elastic scattering problems. Emphasis 
will be placed upon the sensitivity of our inversion scheme to the parameters involved, such 
as noise levels, positions of measurements, incident frequencies, height and length of the 
measurement line segment and numbers of incident plane waves and measurement points. To 
highlight the differences between the elastic case and the acoustic case, we will investigate 
the influence of Lamé constants, polarization directions, types of incident waves and partial 
near-field elastic measurements on the reconstructed results. We use the Nyström method to 
solve the forward elastic scattering problem for a rigid rough surface [25, 26]. The scattered 
near-field data will be polluted by

usc
δ (x) = usc(x) + δ(ζ1 + iζ2)max

x
|usc(x)|,

where δ is the noise level and ζ1, ζ2 are standard normal distributions. If not stated otherwise, 
we make the following assumptions:

	 1.	�We choose N = 201, M = 256, δ = 20%.
	 2.	�The scattered near-field data is measured on the straight line Γa,A with a = 2, A = 8.
	 3.	�The sampling region will be set to be a rectangular domain.
	 4.	�The Lamé constants are taken as µ = 1,λ = 1 and the frequency is taken as ω = 20.

In some of our experiments, the above mentioned parameters will also be changed to investi-
gate their effect on the reconstructed results. In each figure, we use a solid line to represent the 
actual rough surface against the reconstructed one.
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Example 1.  In this example, we will study the influence of different measurement po-
sitions on the reconstructed results. We consider three kinds of positions of measurements 
which are denoted as Γmea

i , i = 1, 2, 3, respectively. Here, Γmea
1  is chosen to be the straight 

line Γa,A that used in the above assumptions, Γmea
2  is composed of random points in the region 

[−8, 8]× [1.5, 2.5] and Γmea
3 = {(x1, sin x1) | x1 ∈ [−8, 8]} is a finite curve. The profiles of 

Γmea
i  (i = 1, 2, 3) are presented in figure 3. For each case, the number of measurement points 

is chosen to be the same as in the above assumptions. We consider the rough surface Γ with

f (x1) =

{
0.42 − 0.1 cos(0.75x1)− 0.05 cos(7x1) x1 < 4,
0.55 else.� (4.1)

Figure 4 presents the reconstructed results of the imaging function I(z) with the positions of 
measurements Γmea

i  (i = 1, 2, 3), from the exact, 20% noisy and 40% noisy data. Here, for 
all cases, we just use (3.12) with A = 8 to compute the imaging function I(z). It is shown in 
figure 4 that the proposed scheme is robust to noise, even at the level of 40% noise. Further, it 
can be seen that our inversion algorithm works well for different kinds of measurement posi-
tions. Therefore, for simplicity, we only suppose the positions of measurements to be a finite 
line segment in the remaining examples.

Example 2.  We will study the influence of incident frequencies on the reconstructed re-
sults. We assume that the rough surface Γ is given by (4.1). Figure 5 presents the reconstructed 
results of the imaging function I(z) from the data at the incident frequencies ω = 5, 15, 25, 
respectively. It can be seen that the imaging result with lower frequency ω = 5 can only cap-
ture the macro-scale features of the rough surface, while the use of the higher frequency data 
at ω = 25 can capture not only the micro-scale but also the macro-scale features.

Example 3.  In this example, we consider the influence of the measurement surface Γa,A 
with different parameters a and A on the reconstructed results. Note that a and 2A denote the 
height and length of the line segment Γa,A, respectively. We consider the original rough surface 
Γ with

f (x1) = 0.5 + 0.14 sin(0.7π(x1 + 0.6)).

Figures 6(a)–(c) present the reconstructed results of the imaging function I(z) with the meas-
urement surface Γa,A given by A = 8 and a = 1.1, 2.0, 2.9, respectively. Figures 6(d)–(f) pre-
sent the imaging function I(z) with the measurement surface Γa,A given by with a = 2 and 
A = 4, 7, 11, respectively. It can be seen from figure 6 that the reconstructed result is getting 

Figure 3.  The profiles of different positions of measurements. (a) Γmea
1 : straight line.  

(b) Γmea
2 : random points. (c) Γmea

3 : curve.
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Figure 4.  Reconstructed results from different kinds of measurement positions and 
from the data at different noise levels. (a) δ = 0, straight line. (b) δ = 20%, straight 
line. (c) δ = 40%, straight line. (d) δ = 0, random points. (e) δ = 20%, random points. 
(f) δ = 40%, random points. (g) δ = 0, curve. (h) δ = 20%, curve. (i) δ = 40%, curve.

Figure 5.  Reconstructed results of the imaging function I(z) at different incident 
frequencies. (a) ω = 5. (b) ω = 15. (c) ω = 25.
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better if the measurement surface Γa,A is getting closer to the rough surface or the length of 
Γa,A is getting longer. However, a rigourous resolution analysis of our inversion algorithm 
with respect to the height and length of Γa,A is still unclear to us.

Example 4.  We investigate the performances of the imaging function I(z) with different 
numbers of incident plane waves and measurement points (that is, M and N ). Since M and N  
represent respectively the discretization levels of the interval of incident angles and measure-
ment positions, the choice of them do not depend on the numerical method we used in this 
paper. We consider the original rough surface Γ with

f (x1) = 0.5 + 0.16 sin(πx1) + 0.1 sin(0.5πx1).

Figures 7(a)–(c) present the reconstructed results of the imaging function I(z) with N = 401 
and M = 64, 128, 256, respectively. Figures 7(d)–(f) show the results of the imaging function 
I(z) with M = 256 and N = 51, 101, 201, respectively. One can conclude from these exper
imental results that a larger number of incident plane waves and measurement points can help 
us improve the reconstructions. This is consistent with the fact that the function IA(z) in (3.12) 
could better approximates to the imaging function I(z) if M and N  are larger.

Example 5.  We investigate the influence of different velocity contrasts for P and S waves 
on the reconstructed results. We consider the original rough surface Γ with

f (x1) = 0.5 + 0.084 sin(0.6πx1) + 0.084 sin(0.48πx1) + 0.03 sin(1.5π(x1 − 1)).

The compressional wave velocity and shear wave velocity can be expressed as cp =
√
λ+ 2µ 

and cs =
√
µ , respectively. The velocity contrast τ  is defined as τ = cp/cs. Figure 8 present 

Figure 6.  Reconstructed results of the imaging function I(z) from the data at different line 
segments. (a) {(x1, 1.1) | |x1| < 8)}. (b) {(x1, 2) | |x1| < 8)}. (c) {(x1, 2.9) | |x1| < 8)}. 
(d) {(x1, 2) | |x1| < 4)}. (e) {(x1, 2) | |x1| < 7)}. (f) {(x1, 2) | |x1| < 11)}.
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the reconstructed results of the imaging function I(z) with the Lamé constant µ = 1 and the 
Lamé constant λ = 1, 10, 1000, respectively, where the velocity contrast τ ≈ 1.732, 3.464, 
31.654, respectively. From figure 8 we see that the reconstructed results deteriorate as the 
velocity contrast τ  become larger. However, our method still works for the case with large 
contrast τ ≈ 31.654.

Example 6.  We study the influence of different polarization directions ej ( j = 1, 2) ap-
peared in (3.6) and different kinds of incident waves on the reconstructed results. The original 
rough surface Γ is given by

f (x1) = 0.5 + 0.1 exp[−(0.75x1 − 2.5)2] + 0.2 exp[−(1.05x1 − 4.2)2]− 0.25 exp[−0.6x2
1].

Figure 7.  Reconstructed results of the imaging function I(z) with different  
numbers of measurement points N  and incident plane waves M. (a) M = 64, N = 401.  
(b) M = 128, N = 401. (c) M = 256, N = 401. (d) M = 256, N = 51. (e) M = 256, N = 101.  
(f) M = 256, N = 201.

Figure 8.  Reconstructed results of the imaging function I(z) with different velocity 
contrasts τ . (a) τ ≈ 1.732. (b) τ ≈ 3.464. (c) τ ≈ 31.654.
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First, we consider the case of different polarization directions. Figures 9(a)–(c) show the re-
sults using (a) only the polarization p1 = e1; (b) only the polarization p2 = e2; (c) the indi-
cator function (3.12). Secondly, we consider the case of different kinds of incident waves. 
Figures 9(d) and (e) are the reconstructed results with only incident compressional plane wave 
uin

p (x; d) := deikpd·x  and incident shear plane wave uin
s (x; d) := d⊥eiksd·x , respectively, where 

the corresponding indicator functions are given by

Iin
p (z) :=

2∑
j=1

∫

Γa

∣∣∣Usc
p (x; z, ej)

∣∣∣
2
ds(x),

Iin
s (z) :=

2∑
j=1

∫

Γa

∣∣∣Usc
s (x; z, ej)

∣∣∣
2
ds(x),

respectively, where Usc
p (x; z, ej) and Usc

s (x; z, ej) are defined in remark 3.4. We conclude that 
the polarization p1 can capture the rough surface accurately but with some sidelobes, while 
the polarization p2 can only find the convex part of the surface but with few sidelobes. If we 
combine them together, that is, using our imaging function (3.11), the result can be improved 
since it inherits the advantages of the two polarizations. Further, using only the compressional 
or the shear wave to be the incident wave can also find the profile of the rough surface. How-
ever, the reconstructions are not as good as before since the combination of these two waves 
can inherit the merits of both waves.

Example 7.  In order to fully exploit the nature of elastic scattering problems, we consider 
partial measurements of (i) only compressional part or shear part of the corresponding scat-
tered waves, and (ii) only the e1-component or e2-component of the corresponding scattered 
waves. The rough surface in this example is given as follows

Figure 9.  Imaging results with different polarizations and different types of incident 
plane waves. (a) Using only p1 = e1. (b) Using only p2 = e2. (c) I. (d) Iin

p . (e) Iin
s .
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f6(x1) =

{
0.5 + 0.5 exp[16/(x2

1 − 16)] sin(πx1) x1 < 4,
0.5 else.

We first consider case (i). For α = p, s, denote the compressional part and the shear part of the 
scattered data usc

α  by usc,P
α  and usc,S

α , respectively. Accordingly, the imaging functions for the 
compressional and shear waves are given by

Isc
p (z) :=

1
64π2

2∑
j=1

∫

Γa

∣∣∣ 1
λ+ 2µ

[∫

S−
usc,P

p (x; d)dje−ikpz·dds(d)−
∫

S−
d′

j d
′eikp(x′−z′)·dds(d)

]

+
1
µ

∫

S−
usc,P

s (x; d)d⊥
j e−iksz·dds(d)

∣∣∣
2
ds(x),

Isc
s (z) :=

1
64π2

2∑
j=1

∫

Γa

∣∣∣ 1
µ

[∫

S−
usc,S

s (x; d)d⊥
j e−iksz·dds(d)−

∫

S−
(d′)⊥j (d′)⊥eiks(x′−z′)·dds(d)

]

+
1

λ+ 2µ

∫

S−
usc,S

p (x; d)dje−ikpz·dds(d)
∣∣∣
2
ds(x),

respectively. Figures 10(a)–(c) present the reconstructed results of the imaging function Isc
p , 

Isc
s  and I, respectively. Secondly, we consider case (ii). In this case, we only measure the 

e1-component or the e2-component of the scattered wave. Accordingly, we use the imaging 
function (3.11) with the vector field Usc replaced by its e1 or e2-component. The reconstructed 
results (see figures 10(d)–(e)) are not as good as that using both e1 and e2-components shown 
in figure 10(c). This phenomenon makes a sense physically, but it remains unclear to us how to 
interpret the difference between figures 10 (d) and (e). From figure 10, it can be seen that dif-

Figure 10.  Imaging results with partial measurements. (a) Isc
p . (b) Isc

s . (c) I. (d) Only 
e1-component of the scattered wave. (e) Only e2-component of the scattered wave.
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ferent types of measurement data could lead to different imaging results. This may be caused 
by the coupling property of compressional and shear waves in linear elasticity.

The above numerical examples illustrate that our imaging method gives a good and stable 
reconstruction of the unbounded rigid rough surface. In particular, the imaging algorithm is 
very robust to noisy data. Further, the numerical results in figures 8–10 show that our imaging 
method exploits specificities of elastic scattering problems, which did not occur in the case of 
the Helmholtz equation [30].

5.  Conclusion

We proposed a non-iterative imaging method for recovering unbounded rigid rough surfaces 
from near-field data in linear elasticity. Thanks to the Funk–Hecke formula and the free-field 
Green’s tensor for the Navier equation, an imaging function is proposed to reconstruct an 
unbounded rigid rough surface. The imaging function can be easily implemented since only 
the calculation of inner products is involved. Numerical experiments have been carried out 
to demonstrate the effectiveness of our method and to show the influence of reconstructed 
results on different parameters. It can be concluded that the inverse elastic scattering problems 
are much different from the case of the scalar Helmholtz equation, due to different types of 
incoming waves, multiple choice of polarization directions and a variety of partial measure-
ments. Moreover, the influence of polarization directions and components of the scattered 
wave on the reconstructed results need to be investigated theoretically. A more thoroughly 
theoretical resolution analysis due to different parameters needs to be done in the near future 
to enhance the comprehension of our proposed method and even to improve the proposed 
imaging functional. Further, the imaging algorithm could be extended to many other cases 
such as inverse electromagnetic scattering problems by unbounded rough surfaces and the 
inverse elastic problems in 3D. Progress in these directions will be reported in the near future.
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