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0.1 Recent Progress on Time-harmonic Elastic Wave

Scattering Problems for Diffraction Gratings

Johannes Elschner, Guanghui Hu

A diffraction grating is an optical device consisting of a surface with many parallel (periodic) grooves.

It can be used to produce the spectrum of a beam of light (or other electromagnetic radiation)

by dispersing it into its wavelengths. In recent years, increasing application of diffractive optics

has driven a rigorous electromagnetic theory of gratings, not only to precisely predict scattering

performance but also to carry out optimal design of new grating structures (see [1]). The elastic
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wave propagation in periodic structures have also a wide field of applications, particularly in geo-

physics, nondestructive testing and seismology. For instance, identifying fractures in sedimentary

rocks can have significant impact on the production of underground gas and liquids by employing

controlled explosions. The rock under question can be regarded as a homogeneous transversely

isotropic elastic medium with periodic vertical fractures that can be extended to infinity in one of

the horizontal directions (see Figure 1). Using the elastic plane wave as an incoming source, this

can be formulated as an inverse problem of shape identification from the knowledge of near-field

data measured above the periodic structure (see Figure 2). Analogous inverse problems also arise

from the use of transient elastic waves to measure the elastic properties as well as flaws and cracks

of solid speciments, especially in the nondestructive evaluation of concrete structures. As an ex-

ample, we mention the nondestructive elastic-wave test of foundation slabs in important office

buildings put under the ground water level. In addition, the problem of elastic pulse transmission

and reflection through the earth is fundamental to both the investigation of earthquakes and the

utility of seismic waves in search for oil and ore bodies. These applications motivate us to rig-

Fig. 2: Identify periodic
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sources and receivers.

Source: [5, page 3018]

orously investigate the elastic wave scattering through unbounded interfaces and the associated

inverse problems, a vast literature of which by far has only come from engineering community.

Compared to acoustic and electromagnetic scattering, the elasticity problem is more complicated

because of the coexistence of compressional and shear waves that propagate at different speeds.

These two waves are coupled at interfaces where boundary or transmission conditions depend-

ing on the elastic medium are imposed. The research at WIAS on the DFG project Direct and in-

verse scattering problems for elastic waves (07. 2009-07.2012) aims to investigate existence and

uniqueness of solutions for non-smooth (periodic and rough) unbounded interfaces based on vari-

ational formulations, as well as uniqueness and inversion algorithms for the inverse problem of

determining the scattering object by near and far field measurements. Emphasis of this report will

be placed on progress on elastic scattering by diffraction gratings (periodic structures).

Consider a time-harmonic elastic plane pressure or shear wave ui with the incident angle θ ∈

(−π/2, π/2) incident on a 2π -periodic grating surface 3 from the region �3 above the grating.

Let the mass density of the elastic medium in �3 be one. Then, the total displacement u(x1, x2) ,

which is the sum of the incident field ui and the scattered field us , satisfies the Navier equation

(1∗ + ω2) u = 0 in �3 , 1∗ := µ1+ (λ+ µ) grad div . (1)
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Here, λ and µ are the Lamé constants satisfying µ > 0 and λ + µ > 0 , and ω > 0 denotes

the angular frequency of the harmonic motion. If the medium below 3 is impenetrable, we as-

sume one of the first (Dirichlet), second (Neumann), third and fourth kind boundary conditions is

imposed on 3 (see [6]); For penetrable homogeneous medium, the transmissions conditions en-

suring the continuity of the displacement and the stress are considered on 3 . The periodicity of 3

together with the form of ui implies the α -quasiperiodicity of u (this will be rigorously justified in

a future work, following the corresponding arguments in acoustics by Chandler-Wilde and Elschner

(2012)) , i.e., u(x1 + 2π, x2) = exp(2iαπ)u(x1, x2) for (x1, x2) ∈ �3 , where the parameter α co-

incides with the quasiperiodicity of the incoming wave. In x2 > 3+ := max(x1,x2)∈3 x2 , we have

the Rayleigh expansion of us into outgoing plane elastic waves as follows:

us(x) =
∑
n∈Z

{
A p,n(αn, βn)

> exp(iαn x1 + iβn x2)+ As,n(γn,−αn)
> exp(iαn x1 + iγn x2)

}
, (2)

where the constants A p,n, As,n ∈ C are called Rayleigh coefficients and αn := α + n ,βn :=√
k2

p − α
2
n , with the branch of a square root chosen such that its imaginary part is always positive.

The parameter γn := γn(θ) is defined analogously as βn with k p replaced by ks . Note that only

a finite number of plane waves in (2) propagate into the far field, with the remaining evanescent

waves (or surface waves) decaying exponentially as x2 → +∞ . Our direct and inverse diffraction

problems for an impenetrable grating can be formulated as

(DP): Given a grating profile curve 3 ⊂ R2 and an incident field ui with the incident angle θ ,

find the quasiperiodic function u = u(x; θ) = ui
+ us

∈ H1
loc(�3)

2 that satisfies the Navier

equation (1), the expansion (2) and the corresponding essential boundary condition on 3 .

(IP): Determine 3 from the near-field data u(x1, b; θ) for all x1 ∈ (0,2π) and some b > 3+ ,

such that the Dirichlet boundary condition is satisfied on 3 .

Solvability results for direct scattering problems

Existence and uniqueness of quasiperiodic solutions to the Dirichlet problem was first established

0

D-to-N map

Fig. 3: The variational

formulation is posed in one

periodic cell �b

by T. Arens (1999) for grating profiles given by C2 -smooth graphs. The existence proof is based on

the integral equation methods where the solution is sought as a superposition of single and dou-

ble layer potentials. The C2 -regularity assumption in integral equation methods, we think, could

be weekened to Lipschitz ones, with complicated arguments for justifying Fredholm properties of

the integral system. To deal with (DP), we have proposed an equivalent variational formulation

posed in a bounded periodic cell involving a nonlocal boundary operator defined on the artifical

boundary 0b := {(x1, b) : 0 ≤ x1 ≤ 2π} for some b > 3+ ; see Figure 3. The variational method

appears to be well adapted to the analytical analysis and numerical approximation of rather gen-

eral periodic diffractive structures involving complex materials in Lipschitz domains. Let Vα be an

appropriate α -quasiperiodic variational space for (DP). By the first Betti formula, the problem (DP)

is equivalent to the variational problem of finding u ∈ Vα such that∫
�b

(
a(u, ϕ)− ω2u · ϕ

)
dx −

∫
0b

ϕ · T u ds =
∫
0b

(T ui
− T ui ) · ϕ ds , ∀ ϕ ∈ Vα , (3)
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with T being the Dirichlet-to-Neumann map and the symmetric bilinear form a(·, ·) defined by

a(u, ϕ) := (2µ+ λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2)+ µ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+ λ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1)+ µ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) .

Similar variational formulations have been used in the literature for the Helmholtz equation by

Kirsch (1993) and for Maxwell’s equations by Abboud (1993). In contrast to the acoustic scattering,

the D-to-N map T for the Navier equation, which can be explicitly represented via n × n matrices

in Rn ( n = 2,3 ), does not have a definite real part. Thanks to the periodicity of the domain,

one can apply the compact imbedding arguments to one periodic cell. This combined with the

decomposition of Re (−T ) into the sum of a positive-definite operator and a finite dimensional

operator gives rise to the strong ellipticity of the sesquilinear form on the left hand side of (3). By

Fredholm alternative we finally verified the following uniqueness and existence results for (DP).

Theorem 0.1.1 (i) If the grating profile 3 is a Lipschitz curve, then there always exists a solution of

(DP) under the boundary conditions of the first, second, third and fourth kind. Moreover, unique-

ness holds for small frequencies, and for all frequencies excluding a discrete set with the only

accumulation point at infinity. (ii) If 3 is the graph of a Lipschitz function, then for any frequency

ω > 0 there exists a unique solution of (DP) under the Dirichlet boundary condition.

We have also proved uniqueness and existence of solutions under the mixed Dirichlet and Robin

boundary conditions for any frequency of incidence, provided 3 is a Lipschitz curve. Moreover,

these solvability results have been generalized to the more practical case of 3D, and the first as-

sertion of Theorem 0.1.1 has been even applied to transmission problems in both 2D and 3D.

The proof of the second assertion relies heavily on the use of periodic Rellich identities for the

Navier equation, which is applicable only for grating profiles given by graphs where the Dirichlet

boundary condition is imposed. Non-uniqueness examples under the second, third or fourth kind

boundary conditions have been reported for flat gratings in the resonance case ([2]), and those for

transmission problems can be found in the book by J. D. Achenbach (1973).

Rigorous numerical treatment using finite element or integral equation methods have been exten-

sively studied for both acoustic and electromagnetic grating diffraction problems. To compute the

scattered field for the Dirichlet boundary problem, we solved a first kind integral equation by using

the discrete Galerkin method proposed by Atkinson (1988). The implementation of this method is

easier than the integral equation method with a second kind integral equation that involves the

computation of the stress operator on the profile. The proposed first kind integral equation has

been proved uniquely solvable in L2(3)2 , based on the decomposition of the quasi-periodic fun-

damental solution 5(x, y) of the Navier equation into a logarithmically singular part and a smooth

part. For piecewise linear gratings where the scattered field may be singular at corner points, a

mesh grading transformation has been adopted to parameterize the grating profile.

Inversion algorithms and uniqueness to (IP)

The inverse scattering problem of determining the shape of an obstacle is highly nonlinear, since

the measured near or far field data do not depend linearly on the shape. It is also severely ill-
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posed in the sense of Hadamard, whereas the direct problem is well-posed. A survey on the state

of the art of inverse time-harmonic acoustic and electromagnetic scattering by bounded obstacles

can be found in the monograph by D. Colton and R. Kress (1998). Traditional approach in shape
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Fig. 4: K=2, reconstruction

from only partial

propagating modes

identification is to formulate the problem as a least squares optimization problem according to the

given boundary conditions and then solve the shape parameters by iterative schemes, e.g., Gauss-

Newton and Levenberg-Marquardt methods. Based on the Kirsch-Kress optimization scheme, we

applied a two-step inversion algorithm to (IP). Assume that 3 is the graph of a C2 -smooth 2π -

periodic function f lying between x2 = 0 and x2 = b for some b > 0 . The first step is to

reconstruct the scattered field from the near-field us(x1, b) . We represent us as a single-layer

potential and then solve the unknown density function ϕ from the first kind integral equation

1
2π

∫ 2π

0
5(x1, b; t,0) ϕ(t) dt = us(x1, b), x1 ∈ (0,2π). (4)

This step is linear but severely ill-posed, and can be easily achieved by employing Tikhonov regu-
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Fig. 5: K=4, reconstruction

from all propagating modes

(i.e., far-field data)

larization and the singular value decomposition of the operator on the right-hand side of (4). The

second step, which is nonlinear but well-posed, is to determine f by minimizing the defect

||ui (x1, f (x1))+
1

2π

∫ 2π

0
5(x1, f (x1); t,0) ϕ(t) dt ||L2(0,2π)2 → inf

f ∈M
(5)

over some admissible set M of profile functions. We have discretized the objective functional in

(5) by the trapezoidal rule and solved the resulting minimization problem in a finite dimensional

space. Figure 4, Figure 5 and Figure 6 illustrate the numerical results for reconstructing a Fourier

grating, where the number of wave modes involved in calculation is 2K +1 . We have also applied

it to piecewise linear grating profiles with a finite number of corners and adapted it to the case of

several incident angles or a finite number of incident frequencies. In principle it can be extended

to the Neumann boundary value problem and the transmission problem in Rn ( n = 2,3 ), with

an increased computational complexity. A Dirichlt grating profile in 3D can be also recovered from

only the shear part of near field corresponding to incident plane shear waves.
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Fig. 6: K=6, reconstruction

from all propagating modes

and six additional

evanescent modes

The two-step algorithm is easily implemented, and satisfactory reconstructions can be obtained

for suitable initial values of grating parameters. Since no direct scattering problems need to be

solved, it reduces the computational effort of the original Kirsch-Kress scheme which was based

on a combined cost functional that requires the determination of two unknown functions. How-

ever, the two-step algorithm shows only local (but fast) convergence properties, and a rigorous

convergence analysis is still missing. This is not only due to the high non-linearity of the inverse

scattering problems but also the ill-posedness of their linearalizations.

We now turn to the uniqueness issue to (IP), i.e., whether the near field data provides enough in-

formation to completely determine an unknown grating profile. A positive answer to such a ques-

tion guarantees by theory the validity of the inverse solution computed from the given data. For

bounded (non-periodic) scatterers, it is still an open problem whether the uniqueness from the

far-field pattern holds with one incoming plane wave. Nevertheless, we cannot expect the same

global uniqueness in wave diffraction by general periodic structures, because a finite number of

propagating modes without any decaying at infinity are involved in the Rayleigh expansion 2 and

non-uniqueness examples can be readily reconstructed for flat gratings. It was shown by A. Char-
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alambopoulos, etc. (2001) that a Dirichlet C2 -smooth surface can be uniquely determined from

the scattered elastic fields corresponding to a finite number of incoming pressure wavenumbers,

provided some a priori information about the height of the grating is available. To investigate
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Fig. 7: Unidentifiable grating

profiles under the boundary

conditions of the fourth kind

global uniqueness with one plane wave, we have restricted ourselves to the kind of polygonal grat-

ing profiles and only studied the third and fourth kind boundary value problems. Relying on the

reflection principle for the Navier equation by J. Elschner and M. Yamamoto (2009), we have proved

that global uniqueness holds except for several extremely rare sets of grating profiles, each of them

can be explicitly defined; see, e.g., Figure 7 and Figure 8 for the grids on which the unidentifiable

grating profiles for the incident pressure plane wave with θ = −π6 and k p = 2 are located. Thus

we obtained global uniqueness with one incoming wave within the polygonal periodic structures

excluding all unidentifiable sets. The inverse problems in 3D turn out to be more complicated than

2D, with several extra unidentifiable sets. The inverse Dirichlet problem seems challenging, due to

the lack of reflection principle for the Navier equation under the Dirichlet boundary condition.

Outlook

The elastic scattering by unbounded non-periodic surfaces will be our interest in the future. The
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Fig. 8: Unidentifiable

grating profiles under the

boundary conditions of the

third kind

compact imbedding theory, which has considerably simplified our arguments in periodic case,

cannot be applied to rough surface scattering problems. Based on the perturbation arguments for

semi-Fredholm operators, a progress has been made in [4] for the scattering due to an inhomoge-

neous source term whose support lies within a finite distance above the rough surface. We shall

proceed with the solvability for elastic plane waves and spherical or cylindrical waves in appropri-

ate weighted Sobolev spaces. In grating diffraction problems, this will also help us to interpret the

quasiperiodicity of the scattered field corresponding to one single pressure or shear wave and to

describe solution spaces for rather general non-quasiperiodic incoming elastic waves.
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