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Scale invariance emerges and plays an important role in strongly correlated many-body systems

such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry

also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both

theoretical predication and experimental observation of a novel type expansion dynamics of a scale

invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the

inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits

a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling

law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This

is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the

time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling

symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(

p
�t) (� is a coe�cient and t is the time), as shown

in Fig. 1(a), how does the gas expand? Naively, by di-
mension analysis, one would expect that the cloud size
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FIG. 1: (a) The setup of the Efimovian expansion: a scale

invariant ultracold gas expands in a harmonic trap whose fre-

quency decreases as 1/(

p
�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys

a log-periodic function and exhibits a series of plateaus. The

location of the plateaus obeys a geometric scaling law which

is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is
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t. Here we show, both theoreti-
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[1] V. P. Ermakov, Univ. Izv. Kiev 20, 1 (1880).
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time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling

symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(

p
�t) (� is a coe�cient and t is the time), as shown

in Fig. 1(a), how does the gas expand? Naively, by di-
mension analysis, one would expect that the cloud size
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FIG. 1: (a) The setup of the Efimovian expansion: a scale

invariant ultracold gas expands in a harmonic trap whose fre-

quency decreases as 1/(

p
�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys

a log-periodic function and exhibits a series of plateaus. The

location of the plateaus obeys a geometric scaling law which

is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is
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Scale Invariant Quantum Gas
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No other energy scale except for the kinetic energy
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Zoo of Scale Invariant Quantum Gases

Non-interacting bosons/
fermions at any dimension

No other length scale 
except for density

Unitary Fermi gas at three 
dimension

Tonks gas of bosons/
fermions at one dimension

lim
ri!rj

 (r1, . . . , rN) /
✓

1

rij
� 1

as

◆
 ̃(r1, . . . , rN) (19)

as = 1

� ~2
d

2

2md2⇢
 � �

⇢2
 = E (20)

⇢! ⇤⇢

 =
p
⇢ cos[s0 log(⇢/⇢0)]

⇢! e
2⇡/s0⇢

! =
1p
�t

t ! e
2⇡/s0t

E ! ~2

m⇤2
E (21)

kF r0 ⌧ 1 kF r0 � 1 kF r0 ⇠ 1

i~ @
@t
 =

"
H +

X

i

1

2
m!

2
r
2
i

#
 (22)
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Direct Observation of the Efimovian Expansion in a Scale Invariant Fermi Gas
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Scale invariance emerges and plays an important role in strongly correlated many-body systems

such as critical regimes nearby a phase transition and unitary Fermi gases. Discrete scaling symmetry

also manifests itself in quantum few-body system known as the Efimov e↵ect. Here we report both

theoretical predication and experimental observation of a novel type expansion dynamics of a scale

invariant quantum gas. When the frequency of the harmonic trap holding the gas decreases as the

inverse of time t, surprisingly, instead of expanding continuously, the mean size of the cloud exhibits

a sequence of plateaus. Remarkably, the locations of these plateaus obey a discrete geometric scaling

law and the scale factor related to the characteristic frequency of Fermi gas is controllable. This

is the first manifestation of the discrete scaling symmetry as exhibited by the Efimov e↵ect in the

time domain of a quantum many-body system, which is closely tied to the spatial continuous scaling

symmetry.

Interaction between dilute ultracold atoms is described
by an s-wave scattering length. For a spin-1/2 Fermi gas,
when the scattering length diverges at a Feshbach reso-
nance, there is no length scale other than the inter-atomic
distance in this many-body system, and therefore the sys-
tem, also known as the unitary Fermi gas, becomes scale
invariant. The spatial scale invariance leads to universal
thermodynamics and transport properties as revealed by
many experiments [1, 2]. On the other hand, in a boson
system with a large scattering length, three-body bound
state can form, while an extra length scale of three-body
parameter will set a short-range boundary condition for
all three bosons being very close. It turns the continuous
scaling symmetry into a discrete scaling symmetry, and
gives rise to infinite number of three-body bound states
whose energies obey a geometric scaling symmetry. This
is known as the Efimov e↵ect [3]. The Efimov e↵ect has
also been observed in quite a few cold atom experiments
[4], and recent experiments have also confirmed the geo-
metric scaling of the energy spectrum [5]. Both the con-
tinuous and the discrete scaling symmetry are interesting
emergent phenomena in a strongly interacting system.

For a harmonic trapped gas, the expansion dynamics
after a sudden or gradual turning o↵ the trap o↵ers great
insight to the property of the gas. Well known example
is the anisotropic expansion that proves hydrodynamics
due to Bose condensation [6] or strong interactions [7].
Other examples are, for instance, slowing down of ex-
pansion in a disorder potential provides evidence for lo-
calization behaviors [8] and expansion in the presence of
optical lattice reveals correlation e↵ects [9]. In this work,
we ask a question that, when a scale invariant quantum
gas is hold by a harmonic trap and let us now gradually
open up the trap by decreasing the trap frequency ! as
1/(

p
�t) (� is a coe�cient and t is the time), as shown

in Fig. 1(a), how does the gas expand? Naively, by di-
mension analysis, one would expect that the cloud size
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FIG. 1: (a) The setup of the Efimovian expansion: a scale

invariant ultracold gas expands in a harmonic trap whose fre-

quency decreases as 1/(

p
�t). (b) The predication of the Efi-

movian expansion: the cloud size as a function of time t obeys

a log-periodic function and exhibits a series of plateaus. The

location of the plateaus obeys a geometric scaling law which

is a concequence of the discrete scaling symmetry.

R just increases as
p

t. Here we show, both theoreti-
cally and experimentally, that it is not the case. When
� is smaller than a critical value, the continuous symme-
try is broken. The expansion dynamics displays a dis-
crete scaling symmetry in the time domain. As shown
in Fig. 1(b), R as a function of t displays a sequence
of plateaus, which means that at a set of discrete times
tn the cloud expansion surprisingly stops, despite of the
continuous decreasing of trap frequency. The locations of
the plateaus tn obey a geometric scaling behavior. More
interestingly, this striking behavior of a discrete scaling
behavior in the time domain is in fact a consequence of
the continuous spatial scaling symmetry.

To explain this intriguing dynamics, we shall first point
out the insight that why ! decreases as 1/(

p
�t) is so

special. For simplicity, let us first consider a three-
dimensional isotropic trap V (r) = m!2R2/2. Consider a
many-body system that is invariant under a scale trans-
formation r ! ⇤r, however, in the presence of a static
harmonic trap, the fixed harmonic length introduces an
additional length scale that breaks this spatial scale in-
variance. Nevertheless, if ! changes as 1/(

p
�t), it is
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This scaling symmetry exists only if  
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super Efimov physics[8], which indicates that the super
Efimov physics is crucially related to the e↵ective poten-
tial V (⇢) = �1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, we consider
following time varying trapping frequency in this paper,
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is
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2(t)x = 0. (5)

If one replaces the position x(t) with  (r), the above
equation is exactly the zero energy Schrödinger equa-
tion of a particle moving in an e↵ective potential V (⇢) =
�1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, which is known to be the
origin of the super Efimov physics. And the solution of
the equation of motion also shows a double log periodic
behavior x(t) / cos[s0 log(log t) + ']. Thus, the classical
equation of motion suggests that there may exhibit super
Efimov like physics in time domain.

Now we are ready to solve the many-body dynamics
of Schrödinger equation(1) with time dependent trapping
frequency !(t). We are particularly interested in the time
evolution of the cloud size R
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is
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If one replaces the position x(t) with  (r), the above
equation is exactly the zero energy Schrödinger equa-
tion of a particle moving in an e↵ective potential V (⇢) =
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is
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super Efimov physics[8], which indicates that the super
Efimov physics is crucially related to the e↵ective poten-
tial V (⇢) = �1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, we consider
following time varying trapping frequency in this paper,
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is
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2(t)x = 0. (5)

If one replaces the position x(t) with  (r), the above
equation is exactly the zero energy Schrödinger equa-
tion of a particle moving in an e↵ective potential V (⇢) =
�1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, which is known to be the
origin of the super Efimov physics. And the solution of
the equation of motion also shows a double log periodic
behavior x(t) / cos[s0 log(log t) + ']. Thus, the classical
equation of motion suggests that there may exhibit super
Efimov like physics in time domain.

Now we are ready to solve the many-body dynamics
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frequency !(t). We are particularly interested in the time
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is
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If one replaces the position x(t) with  (r), the above
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tion of a particle moving in an e↵ective potential V (⇢) =
�1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, which is known to be the
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the equation of motion also shows a double log periodic
behavior x(t) / cos[s0 log(log t) + ']. Thus, the classical
equation of motion suggests that there may exhibit super
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Now we are ready to solve the many-body dynamics
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Efimov physics is crucially related to the e↵ective poten-
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is

ẍ+ !
2(t)x = 0. (5)

If one replaces the position x(t) with  (r), the above
equation is exactly the zero energy Schrödinger equa-
tion of a particle moving in an e↵ective potential V (⇢) =
�1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, which is known to be the
origin of the super Efimov physics. And the solution of
the equation of motion also shows a double log periodic
behavior x(t) / cos[s0 log(log t) + ']. Thus, the classical
equation of motion suggests that there may exhibit super
Efimov like physics in time domain.

Now we are ready to solve the many-body dynamics
of Schrödinger equation(1) with time dependent trapping
frequency !(t). We are particularly interested in the time
evolution of the cloud size R
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is

ẍ+ !
2(t)x = 0. (5)

If one replaces the position x(t) with  (r), the above
equation is exactly the zero energy Schrödinger equa-
tion of a particle moving in an e↵ective potential V (⇢) =
�1/4⇢2 � (s20 � 1/4)/⇢2 log2 ⇢, which is known to be the
origin of the super Efimov physics. And the solution of
the equation of motion also shows a double log periodic
behavior x(t) / cos[s0 log(log t) + ']. Thus, the classical
equation of motion suggests that there may exhibit super
Efimov like physics in time domain.

Now we are ready to solve the many-body dynamics
of Schrödinger equation(1) with time dependent trapping
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In fig. (1), we plot the trapping frequency as a function
of time. There are two parameters in the time depen-
dent frequency !(t). � is a dimensionless parameter and
t⇤ > 0 is a parameter with the same dimension of time.
Note that the trapping frequency !(t) keeps decreasing
for t > t⇤, which suggests that the atomic cloud should
keep expanding during the dynamic process. Since !(t)
diverges when t = t⇤, the expansion dynamics should
start with a finite initial trapping frequency at some time
t0 where t0 > t⇤.

Before studying the many-body dynamics of the quan-
tum system, it is useful to take a look at the classical
problem of single particle first. The Newtonian equation
of motion of the time dependent harmonic oscillator is
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HL = ~!0â†â+ g(â† + â)�x + ~!z�z
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Ê = Û Û 0
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Ĥ = â†Lâ
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ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .
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ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .
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in practices, one should always start with a finite initial trap frequency !0 before turning it

down, which corresponds to an initial time t0 with !0 = 1/(
p
�t0), as shown in Fig. 1(b).

The system is at equilibrium for t < t0, and at t = t
+
0 , hR̂2i(t0) = R

2
0 and dm

dtm hR̂2i|t=t0 = 0

for m = 1, 2. This sets a boundary condition for Eq. 1 which can turn the continuous scaling

symmetry in the time domain into a discrete one.

Furthermore, the solution of Eq. 1 can be generally written in a form as hR2(t)i = C1f
2
1 +

C2f1f2 + C3f
2
2 (The constants C1, C2 and C3 are determined by the boundary conditions), and

both f1 and f2 are two linear independent solutions of

d
2
f

dt2
+

1

�t2
f = 0. (2)

This can be proved rigorously, as shown in the supplementary material. By replacing f(t) as

 (r), t as r, and regarding  as a real wave function, r as the hyper-radius, Eq. 2 is nothing

but the zero-energy Schrödinger equation for the Efimov effect in the hyper-spherical coordinate

(14,15). This reveals the connection between this dynamical expansion and the Efimov problem.

� = 4 is a special point for Eq. 2. For � < 4, two independent solutions for Eq. 2 can be taken

as f1 =
p
t cos((s0/2) ln t) and f2 =

p
t sin((s0/2) ln t), where s0 = 2

q
1/�� 1/4. Hence

hR2i can be finally casted into a log-periodic function as

hR̂2i(t)
R

2
0

=
t

t0

1

sin2
'


1� cos' · cos

✓
s0 ln

t

t0
+ '

◆�
, (3)

where ' = � arctan s0 is determined by the boundary condition at t = t0. Eq. 3 clearly

reveals the discrete scaling symmetry, i.e. when t2 = e
2⇡/s0t1, hR̂2i(t2) = e

2⇡/s0hR̂2i(t1) and

dm

dtm hR̂2i|t=t2 = e
�2⇡(m�1)/s0 dm

dtm hR̂2i|t=t1 for all the m-th order derivatives. Therefore, at time

tn = e
2⇡n/s0t0, the first- and the second-order time derivatives for hR̂2i become zero and the

cloud expansion is strongly suppressed, that is to say, the expansion dynamics shows a series

of plateaus around each tn. Similar conclusion can also be obtained from the hydrodynamics

expansion equations (34,35). Note that s0 is tunable by the speed of how fast the trap frequency

4

2

easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):

d3

dt3
hR̂2i +

4
�t2

d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (1)

Obviously, the di↵erential equation is invariant under a
continuous scaling of time t. However, in practices, one
should always start with a finite initial trap frequency !0

before turning it down, which corresponds to an initial
time t0 with !0 = 1/(

p
�t0). The system is at equilibrium

for t < t0, that is to say, at t = t0, hR̂2i(t0) = R2
0 and

dn

dtn hR̂2i|t=t0 = 0 for all order of n. This sets a bound-
ary condition for Eq. 1 which can turn the continuous
scaling symmetry in the time domain into a discrete one.
The solution of this di↵erential equation depends on the
value of �. When 0 < � < 4, the solution is log-periodic
function as

hR̂2i(t)
R2

0

=
t

t0

1
sin2 '


1 � cos ' · cos

✓
s0 ln

t

t0
+ '

◆�
, (2)

where s0 = 2
p

4/� � 1 and ' = � arctan s0. Eq.
2 clearly reveals the discrete scaling symmetry, i.e.
when t2 = e2⇡/s0t1, hR̂2i(t2) = e2⇡/s0hR̂2i(t1) and
dn

dtn hR̂2i|t=t2 = dn

dtn hR̂2i|t=t1 for all orders of n. There-
fore, at time tn = e2⇡n/s0t0, all orders of the time deriva-
tive for hR̂2i repeat their initial values at the initial time
t0 and vanish again. That means the cloud size stops
to change around tn and the expansion dynamics shows
a series of plateaus. While when � > 4, the cloud size
simply follows a power law as hR̂2i(t) ⇠ t1+⌘ for t � t0,
where ⌘ =

p
1 � 4/�.

Here we shall emphasize that this intriguing expansion
dynamics is a universal phenomenon for scale invariant
quantum gases. It is independent of the equation-of-
state. This result can be applied to non-interacting gas,
unitary Fermi gas in three-dimension, weakly-interacting
gases in two-dimension (when anomaly can be ignored),
and a Tonks gas in one-dimension.

Before proceeding to experimental observation of such
dynamical expansion of the ultracold Fermi gases, we
would also like to bring out the analogy to the Efimov
e↵ect. First, when solving the three-body problem in the
hyper-spherical coordinate, one final reaches an e↵ective
potential as �1/⇢2 (⇢ is the hyper-radius) that scales
the same way as the kinetic energy, and the Schrödinger
equation finally reduces to a one-dimensional scale in-
variant di↵erential equation [3]. Secondly, the short-
range boundary condition (i.e. the three-body param-
eter) plays the similar role as the initial trap frequency
here, which sets a boundary condition and turns the sym-
metry into a discrete scaling symmetry. Thirdly, the
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FIG. 2: The mean axial cloud size �z versus the expansion

time texp = t� t0 for a non-interacting Fermi gas of
6
Li mea-

sured at B = 528 Gauss (a) and unitary Fermi gas measured

at B = 832 Gauss (b). Dots are measured data. Black dots for

�z = 0.02, blue dots for �z = 0.07, green dots for �z = 0.36 in

(a) and �z = 0.02, �z = 0.06, �z = 0.01 in (b), respectively.

The dashed lines are the theory curves based on Eq. 2 (with

s0 given by Eq. 4) without any free parameters, and the solid

lines are the best fit using the function form of Eq. 2 with s0

as a fitting parameter. The inset in (b) shows three density

profiles (after time-of-flight) when time t is in the plateau as

indicated by arrows. Error bars represent the standard devi-

ation of the statistic.

solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-
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1

SUPPLEMENTAL MATERIAL

The dynamical scaling solution

In the following, we consider a unitary Fermi gas
trapped in a harmonic potential whose frequency has a
time dependence. The Hamiltonian is given as

Ĥ(t) = Ĥ0(t) + V̂ (1)

where the non-interacting part

Ĥ0(t) =
2NX

i=1


� r2

i

2
+

x2
i

2�1t2
+

y2i
2�2t2

+
z2i

2�3t2

�
(2)

represents the kinetic energy plus a time dependent har-
monic trap and V̂ =

P
i2",j2# V (ri � rj) represents

the short range interaction between spin up and down
fermions. Due to the divergence of scattering length a,
V̂ is scale invariant in the zero interaction range limit
such that V (⇤r) = V (r)/⇤2. Thanks to this property of
V̂ and the specific choice of time dependence in Ĥ0(t),
the total Hamiltonian Ĥ has continuous scale invariance
in both configurational and temporal space.

Isotropic trapping. To illustrate the basic idea and get
a better physical intuition, we first consider the simpler
isotropic trap with �1 = �2 = �3 = �. In this case, we
can calculated the cloud size R̂2 =

P
i r

2
i directly from its

equation of motion. The first derivative of hR̂2i is given
as

i
d

dt
hR̂2i = h[R̂2, Ĥ(t)]i = 2ihD̂i, (3)

where D̂ =
P

i
1
2 (ri · pi + pi · ri) is the generator of a

spacial scaling transformation. On the other hand, the
equation of motion of hD̂i is

i
d

dt
hD̂i = h[D̂, Ĥ]i = 2i


hĤ(t)i � hR̂2i

�t2

�
. (4)

where we have used the fact that V (r) is scale invariant
such that [D̂, V̂ ] = 2iV̂ . Combining these two equations
we obtain

d2

dt2
hR̂2i = 4

"
hĤ(t)i � hR̂2i

�t2

#
. (5)

To make the equation closed, one still need to calculate
dhĤ(t)i/dt which can be obtain by Feynman’s theorem:

d

dt
hĤ(t)i =

*
dĤ(t)

dt

+
= �hR̂2i

�t3
. (6)

Combing (5) and (6), we finally obtain the following e-
quation of motion for hR̂2i

d3

dt3
hR̂2i+ 4

�t2
d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (7)

Since this is a third order di↵erential equation, one
needs three initial conditions, which is the value of
hR̂2i, dhR̂2i/dt and d2hR̂2i/dt2 at the starting point
t = t0, to fix the solution. For simplicity, we assume
that the system remains at static before the expansion.
As a result, arbitrary order of time derivative of hR̂2i(t)
remains 0 for all t < t0. On the other hand, since Ĥ(t) is
continuous while dĤ(t)/dt is discontinuous at t = t0, it
is easy to check that only the first and second derivative
of hR̂2i(t) is continuous across t0 while higher derivatives
are discontinuous. Thus we will apply the following ini-
tial conditions

hR̂2i(t0) = R2
0 (8)

d

dt
hR̂2i|t=t0 =

d2

dt2
hR̂2i|t=t0 = 0. (9)

The solution of (7) has very di↵erent behavior for small
and large value of �. For � > �c = 4, we have

hR̂2i(t)
R2

0t/t0
=

�2 � 1

�2

⇢
1� 1

2


(t/t0)�

� + 1
� (t/t0)��

� � 1

��
(10)

where � =
p
1� 4/�. One can see that in the limit t �

t0, the cloud size follows a simple power law hR̂2i(t) ⇠
t1+� , where � can be seen as an anomalous dimension in
the time domain, which describes the scaling deviation
from adiabatic limit. As a result, the continuous scaling
symmetry is still preserved for � > �c and there is no
dynamic Efimov e↵ect in this case.
The situation is much more interesting when 0 < � <

�c. In this case, we have

hR̂2i(t)
R2

0

=
t

t0 sin
2 '


1� cos' · cos

✓
s0 ln

t

t0
+ '

◆�
,(11)

where s0 =
p
4/�� 1 and ' = � arctan s0. Instead of a

simple power law form, hR̂2i(t) now contains a logarith-
mic periodic part which breaks the continuous scaling
symmetry down to a discrete one in the time domain
and satisfy

hR̂2i(te
2n⇡
s0 ) = e

2n⇡
s0 hR̂2i(t) (12)

for arbitrary integer n.
Adiabatic limit. Now let us consider the adiabatic

limit(� ! 0) of the expansion. Physically, it represents
the situation that the trap expands extremely slow. In
this limit, Eq. 11 can be expressed as

hR̂2i(t)
R2

0

=
t

t0


1�

r
�

4
sin

✓
s0 ln

t

t0

◆
+O(�)

�
. (13)

We find that the cloud size R̂2 follows the size of the trap
and grows proportional to t. This behavior is consistent
with the adiabatic theorem which claims that the system
remains in the instantaneous ground state of Ĥ(t).

2

easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):

d3

dt3
hR̂2i +

4
�t2

d

dt
hR̂2i � 4

�t3
hR̂2i = 0. (1)

Obviously, the di↵erential equation is invariant under a
continuous scaling of time t. However, in practices, one
should always start with a finite initial trap frequency !0

before turning it down, which corresponds to an initial
time t0 with !0 = 1/(

p
�t0). The system is at equilibrium

for t < t0, that is to say, at t = t0, hR̂2i(t0) = R2
0 and

dn

dtn hR̂2i|t=t0 = 0 for all order of n. This sets a bound-
ary condition for Eq. 1 which can turn the continuous
scaling symmetry in the time domain into a discrete one.
The solution of this di↵erential equation depends on the
value of �. When 0 < � < 4, the solution is log-periodic
function as

hR̂2i(t)
R2

0

=
t

t0

1
sin2 '


1 � cos ' · cos

✓
s0 ln

t

t0
+ '

◆�
, (2)

where s0 = 2
p

4/� � 1 and ' = � arctan s0. Eq.
2 clearly reveals the discrete scaling symmetry, i.e.
when t2 = e2⇡/s0t1, hR̂2i(t2) = e2⇡/s0hR̂2i(t1) and
dn

dtn hR̂2i|t=t2 = dn

dtn hR̂2i|t=t1 for all orders of n. There-
fore, at time tn = e2⇡n/s0t0, all orders of the time deriva-
tive for hR̂2i repeat their initial values at the initial time
t0 and vanish again. That means the cloud size stops
to change around tn and the expansion dynamics shows
a series of plateaus. While when � > 4, the cloud size
simply follows a power law as hR̂2i(t) ⇠ t1+⌘ for t � t0,
where ⌘ =

p
1 � 4/�.

Here we shall emphasize that this intriguing expansion
dynamics is a universal phenomenon for scale invariant
quantum gases. It is independent of the equation-of-
state. This result can be applied to non-interacting gas,
unitary Fermi gas in three-dimension, weakly-interacting
gases in two-dimension (when anomaly can be ignored),
and a Tonks gas in one-dimension.

Before proceeding to experimental observation of such
dynamical expansion of the ultracold Fermi gases, we
would also like to bring out the analogy to the Efimov
e↵ect. First, when solving the three-body problem in the
hyper-spherical coordinate, one final reaches an e↵ective
potential as �1/⇢2 (⇢ is the hyper-radius) that scales
the same way as the kinetic energy, and the Schrödinger
equation finally reduces to a one-dimensional scale in-
variant di↵erential equation [3]. Secondly, the short-
range boundary condition (i.e. the three-body param-
eter) plays the similar role as the initial trap frequency
here, which sets a boundary condition and turns the sym-
metry into a discrete scaling symmetry. Thirdly, the
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�z = 0.02, blue dots for �z = 0.07, green dots for �z = 0.36 in

(a) and �z = 0.02, �z = 0.06, �z = 0.01 in (b), respectively.
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s0 given by Eq. 4) without any free parameters, and the solid

lines are the best fit using the function form of Eq. 2 with s0

as a fitting parameter. The inset in (b) shows three density

profiles (after time-of-flight) when time t is in the plateau as

indicated by arrows. Error bars represent the standard devi-
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solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-
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easy to show that the time-dependent Schrödinger equa-
tion exhibits a new space-time scaling symmetry under
the transformation r ! ⇤r and t ! ⇤2t. Due to the
scaling symmetry, it is straightforward to derive that the
equation-of-motion for the cloud size hR̂2i is given by (see
appendix for detail derivation):
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hR̂2i = 0. (1)
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where s0 = 2
p

4/� � 1 and ' = � arctan s0. Eq.
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quantum gases. It is independent of the equation-of-
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here, which sets a boundary condition and turns the sym-
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solution for the three-body wave function is also a log-
periodic function as Eq. 2. Finally, in our case � plays
the similar role as the mass ratio in the Efimov problem
that controls whether the e↵ect will occur, as well as the
scaling factor. Hence, the dynamical expansion shares
the same symmetry property and similar mathematical
description as the three-body problem. It is the counter-
part of the Efimov e↵ect in the time domian, and thus is
called as “the Efimovian expansion” here.

In our experiments, we use a balanced mixture of 6Li
fermions in the lowest two hyperfine states | "i ⌘ |F =
1/2, M = �1/2i and | #i ⌘ |F = 1/2, M = 1/2i.
Fermionic atoms are loaded into a cross-dipole trap to
perform evaporative cooling [10]. The resulting poten-
tial has a cylindrical symmetry around the propagation
axis of the laser and the trap anisotropic frequency ra-
tio !z/!r is about 9. The trap anisotropy causes an
additional complication compared to the isotropic case
discussed above. Nevertheless, as shown in the supple-

Figure 2: �z (with �
2
z = 2hR̂2

zi) versus the expansion time texp = t � t0 for a non-interacting
Fermi gas of 6Li measured at B = 528 Gauss (a) and a unitary Fermi gas measured at B = 832
Gauss (b). Dots are measured data. Black, blue and green dots denote �z = 0.02, 0.07 and
0.36 for (a), and �z = 0.01, 0.02 and 0.06 for (b). The dashed lines are the theory curves based
on Eq. 3 (with s0 given by Eq. 5) without any free parameters, and the solid lines are the best
fit using the function form of Eq. 3 with s0 as a fitting parameter. Red dots in both figures
denote the case with �z = 4, and the shaded area is the regime where expansion does not show
discrete scaling symmetry. The inset in (b) shows three successive density profiles (after the
time-of-flight) when the time texp locates inside a plateau as indicated by the arrows. Error bars
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Figure 3: (a) s0 obtained from fitting the expansion curves v.s. � ⌘
q
1/�z � 1/4. The solid

lines are the linear fitting curves and the dashed lines are s0 = !b� with !b = 2 for the non-
interacting fermions and !b =

q
12/5 for the unitary Fermi gas. (b) For a given � and for

the unitary Fermi gas, s0 obtained from fitting the expansion curves for different fermion num-
bers and temperatures. Solid line is the theory value for the unitary Fermi gas and the arrow
indicates the theory value for the non-interacting Fermi gas with same �. Error bars in the ver-
tical direction represent the fitting error and the standard deviation of the statistic. Error bars
in the horizontal direction represents the standard deviation of the statistic in determining � in
repeated measurements.
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Figure 4: �z/�z,0 as a function of texp/t0 (texp = t � t0) is universal for the non-interacting
and the unitary Fermi gas, as long as they have the same s0. Blue dots and red dots are data
measured for the unitary Fermi gas and the non-interacting Fermi gas, respectively. They have
the same s0 with s0 = 10.53 in (a) and s0 = 5.88 in (b). �z is obtained from fitting the Gaussian
density profile and �z,0 is the value of �z at t = t0. Error bars represent the standard deviation
of the statistic.
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measured for the unitary Fermi gas and the non-interacting Fermi gas, respectively. They have
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density profile and �z,0 is the value of �z at t = t0. Error bars represent the standard deviation
of the statistic.
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Dynamical Fractal in Quantum Gases with Discrete Scaling Symmetry

Chao Gao,1, ⇤ Hui Zhai,2 and Zhe-Yu Shi3, †

1Department of Physics, Zhejiang Normal University, Jinhua, 321004, China
2Institute for Advanced Study, Tsinghua University, Beijing, 100084, China

3School of Physics and Astronomy, Monash University, Victoria 3800, Australia
(Dated: January 31, 2019)

Inspired by the similarity between the fractal Weierstrass function and quantum systems with
discrete scaling symmetry, we establish general conditions under which the dynamics of a quantum
system will exhibit fractal structure in the time domain. As an example, we discuss the dynamics of
the Loschmidt amplitude and the zero-momentum occupation of a single particle moving in a scale
invariant 1/r2 potential. In order to show these conditions can be realized in ultracold atomic gases,
we perform numerical simulations with practical experimental parameters, which shows that the
dynamical fractal can be observed in realistic time scales. The predication can be directly verified
in current cold atom experiments.

In the lecture presented to Königliche Akademie der

Wissenschaften in 1872 [1, 2], Karl Weierstrass intro-
duced an intriguing function series,

W (x) =
1X

n=0

a
n cos(bn⇡x), 0 < a < 1, (1)

which is known as the Weierstrass function nowadays.
The original intent of Weierstrass’s work is to construct
an example of a real function being continuous every-
where while di↵erentiable nowhere. After its publication,
the remarkable function has intrigued many mathemati-
cians and physicists, who have made substantial contri-
butions to the understanding of Weierstrass’s function [3–
8]. Among these works, probably the most important
discovery is that the Weierstrass function can have non-
integer Hausdor↵ dimensions, indicating that it is not a
regular curve but a fractal [4–6], although the term ‘frac-
tal’ was invented over a hundred years later by Mandel-
brot in 1975 [5].

Here we review two crucial properties of the Weier-
strass function that are closely related to the following
discussions. As plotted in Fig. 1, the fractal behav-
ior of the Weierstrass function greatly depends on the
parameter ab. For ab < 1, W (x) is a regular one di-
mensional curve with continuous derivative. While the
function becomes ‘pathological’ and an fractal structure
emerges when ab is greater than 1. In this regime, it is
believed that the Weierstrass function has fractal dimen-
sion, [6, 8, 9]

DH = 2 +
log a

log b
. (2)

Secondly, like other fractals, the Weierstrass function
displays a self-similar graph with infinitely fine details.
This property can be directly observed from Fig. 1, and
mathematically, it is related to the discrete scaling sym-
metry (DSS) of W (x),

W (bx) ' a
�1

W (x). (3)
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FIG. 1. The Weierstrass function W (x). Top: b = 1 and ab <
1, regular curve; Middle: b = 2 and ab = 1, the transition
point; Bottom: b = 3 and ab > 1, fractal curve. a = 1/2 is
fixed for all three cases. The inset is a zoom in of the detailed
structure around the red point, which shows the self similarity
behavior of W (x).

In physical systems, the DSS or self similarity emerges
in a quantum system if its renormalization group (RG)
flow shows a limit cycle behavior [10]. In this case,
the RG flow of the quantum system becomes periodic
when the cuto↵ changes by a scaling factor �. Proba-
bly the most celebrated example of a RG limit cycle is
the so-called Efimov e↵ects discovered by Vitaly Efimov
in 1970 [11, 12]. Efimov showed that in a three-particle
system with resonant two-body interaction, there can ex-
ist an infinite tower of quantum mechanical three-body
bound states. These bound states are self-similar in the
sense that their wave functions  n(r) satisfy,

 n+1(r) /  n(�r), (4)

where � > 1 is the scaling factor. Their binding energies
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8]. Among these works, probably the most important
discovery is that the Weierstrass function can have non-
integer Hausdor↵ dimensions, indicating that it is not a
regular curve but a fractal [4–6], although the term ‘frac-
tal’ was invented over a hundred years later by Mandel-
brot in 1975 [5].

Here we review two crucial properties of the Weier-
strass function that are closely related to the following
discussions. As plotted in Fig. 1, the fractal behav-
ior of the Weierstrass function greatly depends on the
parameter ab. For ab < 1, W (x) is a regular one di-
mensional curve with continuous derivative. While the
function becomes ‘pathological’ and an fractal structure
emerges when ab is greater than 1. In this regime, it is
believed that the Weierstrass function has fractal dimen-
sion, [6, 8, 9]

DH = 2 +
log a

log b
. (2)

Secondly, like other fractals, the Weierstrass function
displays a self-similar graph with infinitely fine details.
This property can be directly observed from Fig. 1, and
mathematically, it is related to the discrete scaling sym-
metry (DSS) of W (x),
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FIG. 1. The Weierstrass function W (x). Top: b = 1 and ab <
1, regular curve; Middle: b = 2 and ab = 1, the transition
point; Bottom: b = 3 and ab > 1, fractal curve. a = 1/2 is
fixed for all three cases. The inset is a zoom in of the detailed
structure around the red point, which shows the self similarity
behavior of W (x).

In physical systems, the DSS or self similarity emerges
in a quantum system if its renormalization group (RG)
flow shows a limit cycle behavior [10]. In this case,
the RG flow of the quantum system becomes periodic
when the cuto↵ changes by a scaling factor �. Proba-
bly the most celebrated example of a RG limit cycle is
the so-called Efimov e↵ects discovered by Vitaly Efimov
in 1970 [11, 12]. Efimov showed that in a three-particle
system with resonant two-body interaction, there can ex-
ist an infinite tower of quantum mechanical three-body
bound states. These bound states are self-similar in the
sense that their wave functions  n(r) satisfy,

 n+1(r) /  n(�r), (4)

where � > 1 is the scaling factor. Their binding energies
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hÔi1 = h⇢eq(E)Ôi
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Ĥ = â†Lâ
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Ê = Û Û 0
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†â� g0(â† + â)�x � ~!0
z�z
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HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR
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FIG. 1. The Weierstrass function W (x). Top: b = 1 and ab <
1, regular curve; Middle: b = 2 and ab = 1, the transition
point; Bottom: b = 3 and ab > 1, fractal curve. a = 1/2 is
fixed for all three cases. The inset is a zoom in of the detailed
structure around the red point, which shows the self similarity
behavior of W (x).

In physical systems, the DSS or self similarity emerges
in a quantum system if its renormalization group (RG)
flow shows a limit cycle behavior [10]. In this case,
the RG flow of the quantum system becomes periodic
when the cuto↵ changes by a scaling factor �. Proba-
bly the most celebrated example of a RG limit cycle is
the so-called Efimov e↵ects discovered by Vitaly Efimov
in 1970 [11, 12]. Efimov showed that in a three-particle
system with resonant two-body interaction, there can ex-
ist an infinite tower of quantum mechanical three-body
bound states. These bound states are self-similar in the
sense that their wave functions  n(r) satisfy,

 n+1(r) /  n(�r), (4)

where � > 1 is the scaling factor. Their binding energies

2

En also follow similar DSS,

En+1 ' �
2
En. (5)

For the convenience of the later discussion, we have la-
beled the bound states in a reverted way comparing to
the conventional Efimov labeling [13]. We choose an ar-
bitrary shallow bound state to be n = 0, deeper bound
states will be n = 1, 2, 3 . . . N with  N being the deep-
est bound state. Shallower bound states are labelled by
n = �1,�2,�3, . . ..

These scaling behavior can be explained by an e↵ec-
tive Schrödinger equation which describes a single parti-
cle moving in an 1/r2 attractive potential [13],

� ~2
2m


1

rD�1
@r(r

D�1
@r) +

s
2
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r2

�
 (r) = E (r),

(6)

where D is the spatial dimension, s0 is a dimension-
less parameter that controls the strength of the poten-
tial. It can be shown that, after imposing a proper
short-range regularization, the zero-energy solution of
the Schrödinger equation shows a log-periodic behavior
 (r) ' r

(1�D)/2 cos(s0 log r + '), which is the origin of
the DSS of Eq.(4) and Eq.(5) [14–16]. The scaling pa-
rameter � is also determined by s0 through � = e

⇡/s0 .
Inspired by the similarity between the DSS in fractal

Eq.(3) and in quantum system Eq.(4) and (5), in this
work we explore the connection between these two. No-
tice that the time evolution of a quantum system natu-
rally involves oscillation terms like e�

i
~Ent. This suggests

that the dynamics of a quantum system with eigenener-
gies En ' b

n (i.e. a system with DSS) makes a perfect
candidate for realizing fractal structures in the time do-
main. Thus we discuss two post-quench dynamical mea-
surements in quantum systems with DSS, the Loschmidt
amplitude and the zero-momentum occupation. Through
the following discussion, we will reveal, one by one, the
general conditions under which the dynamics of these
systems can be expressed by a Weierstrass function and
display fractal behavior. We argue that these conditions
can be satisfied with realistic parameters in cold atoms
experiments and verify this by numerical simulation.

Loschmidt amplitude. First we consider the Loschmidt
amplitude [17] of a quantum system,

L(t) ⌘ h�0|e�
i
~ ĤEt|�0i = h�0|�ti, (7)

where ĤE is a Hamiltonian with DSS. The Loschmidt
amplitude L(t) is the wave function overlap between a
time evolved quantum state and its initial state, which
can be measured by a standard Ramsey interferometry
protocal in ultracold atom experiments [18–20].

In principle, ĤE can be a complicated many-body
Hamiltonian. However, to illustrate the basic idea, we
shall first consider the simplest case of a single particle

moving in a D-dimensional 1/r2 attractive potential like
Eq.(6). This Hamiltonian is able to describe a wide vari-
ety of systems, including the conventional Efimov bound
states of three three-dimensional particles at resonance
[11–13].
Inserting a complete basis of eigenstates of ĤE into

Eq.(7), we obtain

L(t) =
X

n

h�0|e�
i
~HEt|nihn|�0i+ . . . , (8)

where |ni is the bound state with eigenenergy En. The
terms denoted by . . . correspond to the contribution from
the scattering states, which do not possess the DSS.
Therefore, in order to obtain a dynamic fractal with DSS,
the system need to satisfy Condition 1: the contri-
bution of the scattering states is negligible in the
time interval of interests. For su�ciently long time,
this requirement should always be satisfied if the initial
state �0 is a square-integrable wave packet. This is be-
cause the scattering states will always scatter an initial
wave packet far away from the interaction center, which
leads to a negligible overlap with the initial wavefunction
after long time.
Using the energy scaling relation of Eq.(5), we find
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2n
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where ↵n = |h�0|ni|2 = |
R
d
D
r�

⇤
0(r) n(r)|2. To connect

L(t) to a Weierstrass function, we needCondition 2: ↵n

can be expressed as a
n with a properly chosen a.

Indeed, because of the scaling Eq.(4), we have  n+1(r) '
�
D/2

 n(�r), which indicates that the sizes of the bound
states satisfy Rn+1 ' �

�1
Rn. Now if we assume that

the initial state �0(r) is a wave packet with radius L, for
deep bound states with n � 0 [21], we have Rn . L and
thus
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2
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where we have assumed �⇤0(r) ' �
⇤
0(0) because  n(r) is

highly localized around the potential center. For other
shallow bound states with n < 0, on one hand, the size
mismatch leads to very small wavefunction overlaps, and
on the other hand, these terms correspond to low fre-
quency oscillations which can be regarded as a constant
in the time scale of interests. Ignoring these shallow
states, we finally obtain a Weierstrass-like function,
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discrete scaling symmetry, we establish general conditions under which the dynamics of a quantum
system will exhibit fractal structure in the time domain. As an example, we discuss the dynamics of
the Loschmidt amplitude and the zero-momentum occupation of a single particle moving in a scale
invariant 1/r2 potential. In order to show these conditions can be realized in ultracold atomic gases,
we perform numerical simulations with practical experimental parameters, which shows that the
dynamical fractal can be observed in realistic time scales. The predication can be directly verified
in current cold atom experiments.

In the lecture presented to Königliche Akademie der

Wissenschaften in 1872 [1, 2], Karl Weierstrass intro-
duced an intriguing function series,

W (x) =
1X

n=0

a
n cos(bn⇡x), 0 < a < 1, (1)

which is known as the Weierstrass function nowadays.
The original intent of Weierstrass’s work is to construct
an example of a real function being continuous every-
where while di↵erentiable nowhere. After its publication,
the remarkable function has intrigued many mathemati-
cians and physicists, who have made substantial contri-
butions to the understanding of Weierstrass’s function [3–
8]. Among these works, probably the most important
discovery is that the Weierstrass function can have non-
integer Hausdor↵ dimensions, indicating that it is not a
regular curve but a fractal [4–6], although the term ‘frac-
tal’ was invented over a hundred years later by Mandel-
brot in 1975 [5].

Here we review two crucial properties of the Weier-
strass function that are closely related to the following
discussions. As plotted in Fig. 1, the fractal behav-
ior of the Weierstrass function greatly depends on the
parameter ab. For ab < 1, W (x) is a regular one di-
mensional curve with continuous derivative. While the
function becomes ‘pathological’ and an fractal structure
emerges when ab is greater than 1. In this regime, it is
believed that the Weierstrass function has fractal dimen-
sion, [6, 8, 9]

DH = 2 +
log a

log b
. (2)

Secondly, like other fractals, the Weierstrass function
displays a self-similar graph with infinitely fine details.
This property can be directly observed from Fig. 1, and
mathematically, it is related to the discrete scaling sym-
metry (DSS) of W (x),

W (bx) ' a
�1

W (x). (3)
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FIG. 1. The Weierstrass function W (x). Top: b = 1 and ab <
1, regular curve; Middle: b = 2 and ab = 1, the transition
point; Bottom: b = 3 and ab > 1, fractal curve. a = 1/2 is
fixed for all three cases. The inset is a zoom in of the detailed
structure around the red point, which shows the self similarity
behavior of W (x).

In physical systems, the DSS or self similarity emerges
in a quantum system if its renormalization group (RG)
flow shows a limit cycle behavior [10]. In this case,
the RG flow of the quantum system becomes periodic
when the cuto↵ changes by a scaling factor �. Proba-
bly the most celebrated example of a RG limit cycle is
the so-called Efimov e↵ects discovered by Vitaly Efimov
in 1970 [11, 12]. Efimov showed that in a three-particle
system with resonant two-body interaction, there can ex-
ist an infinite tower of quantum mechanical three-body
bound states. These bound states are self-similar in the
sense that their wave functions  n(r) satisfy,

 n+1(r) /  n(�r), (4)

where � > 1 is the scaling factor. Their binding energies
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Potential Quench:
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Zero Momentum Occupation. It is possible to show
that the dynamics of other observables under HE can
also be related to the Weierstrass function. Here, we
consider the occupation number in the zero momentum
k = 0 state, n0(t) ⌘ |hk = 0|�ti|2. Following the same
procedure in the previous case, we obtain

n0(t) '
����
X

n

↵̃ne
� i

~�
2n

E0t

����
2

, (12)

where ↵̃n = hk = 0|nihn|�ii. The DSS of the wavefunc-
tion also leads to

hk = 0|n+ 1i =
Z

d
Dr n+1(r) (13)

' �
D/2

Z
d
Dr n(�r) = �

�D/2hk = 0|ni.

Thus,

↵̃n / �
�nD

, for 0  n  N. (14)

This indicates that n0(t) is not a Weierstrass function
but the norm square of it, that is,

n0(t) /
����

NX

n=0

�
�nD

e
� i

~�
2n

E0t

����
2

. (15)

Nevertheless, it can be shown that n0(t) still has a self
similar fractal structure once the underlying Weierstrass
function is a fractal.

The similarity between Eq.(10) and Eq.(14) is not a co-
incidence. Actually, this is related to Condition 3: the
measurement itself does not introduce any length
scale. Otherwise it will break the scaling symmetry of
the overlap coe�cients. For example, if we consider the
dynamics of nk(t) with finite k, the r.h.s of Eq.(13) is
then replaced by

R
d
Dr n+1(r)eik·r, which introduce a

length scale 1/k and breaks scaling in the next equation.
Thus there is no DSS in nk(t) generally.

Critical Dimension. Compare Eq.(11) and Eq.(15)
with the Weierstrass function defined in Eq.(1), we iden-
tify that a = �

�D, b = �
2 and thus ab = �

2�D. Note that
� > 1, which leads to Condition 4: D must be lower
than a critical spatial dimension 2 to generate a dy-
namic fractal. For D � 2, although the dynamics can
still be expressed as a Weierstrass-like function, it does
not lead to fractal behavior. With Eq.(2), we know the
fractal dimension of L(t) and n0(t) is DH = 2� D

2 .
Energy and Time Scale. The only di↵erence between

L(t) and the exact Weierstrass function W (x) is that
the summation in Eq.(11) has an upper bound N . This
upper bound removes the pathological behavior of the
Loschmidt amplitude, i.e. L(t) is actually a smooth func-
tion due to the lack of infinitely high energy terms. This
is not surprising as any realistic observable has to be
smooth in time. Nevertheless, as long as N is very large,
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FIG. 2. The binding energies En, overlap coe�cients ↵n and
↵̃n calculated using a real potential V (x) given by Eq.(16)
with realistic parameters given in the main text.

functions such as L(t) should still behaves exactly like a
fractal Weierstrass function until we zoom into very small
time interval with width �t ' ~/EN . Hence, to observe
the self-similarity in real time dynamics, we need Con-
dition 5: the deepest binding energy EN is much
larger than E0. Under this condition, there shall exist
a large enough time window between ~/EN to ~/E0 for
repeating the self-similar patterns, as we will show in the
numerical example below.
Experimental realizations.-We propose to use ultracold

quantum gases to realize the dynamical fractal. Because
of Condition 4, we consider atoms in a one-dimensional
optical potential,

V (x) = � ~2
2m

s
2
0 + 1/4

x2 + r
2
0

. (16)

To avoid the singularity around x = 0, we have intro-
duced a short-range cuto↵ r0. For the simulation, we
consider an initial wave packet �0 with radius R = 80µm.
The optical potential is determined by two parameters
s0 = 2⇡/ log 3 and r0 ' 0.3µm such that � =

p
3 and

the deepest potential V (x = 0) ' 100kHz. This is a typ-
ical optical potential that can be realized in cold atom
systems.
We first calculate the binding energies En, overlap co-

e�cients ↵n, ↵̃n and plot them in Fig. 2. One can see
that the binding energies En follow a nice discrete scaling
law except for a slight deviation for two deepest states
due to the short-range cuto↵ r0. The overlap coe�cients
↵n and ↵̃n also follow a scaling law of ↵n / �

�n for
0  n  6 and decays very fast for n < 0, which ensures
that the Condition 2 is satisfied.
In Fig. 3 and Fig. 4, we plot the full numerical evo-

lutions of the Loschmidt amplitude L(t) and the zero-

momentum occupation ⇢0(t) ⌘ n0(t)
n0(0)

. As discussed
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with realistic parameters given in the main text.
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FIG. 3. Real part of the Loschmidt echo amplitude L(t) cal-
culated using the same experimental parameters as in Fig. 2.
The bottom plot is a zoom in of the top plot by a scale of
�2 = 3, which shows a clear self-similar pattern. The inset in
the lower panel shows that the L(t) is indeed a smooth func-
tion in very short time scale. The time interval of the inset is
around 300µs.

above, both quantities satisfy Condition 3. We have
numerically checked that the contribution of the scatter-
ing states is indeed much smaller than the contribution
of bound states by two orders of magnitude throught the
whole time interval. This verifies our argument about
the satification of Condition 1.

Comparing the numerical results with the Weierstrass
function W (x), indeed both L(t) and ⇢0(t) are smooth
when we zoom into an extremely small time interval, as
shown in the inset of the bottom panel. Nevertheless,
both curves display typical self-similar fractal structures
in a practical temporal window, which means EN is deep
enough such that Condition 5 is satisfied.

Conclusions and Outlook. In summary, we have dis-
cussed general conditions under which the dynamics of
a quantum system with DSS can exhibit fractal behav-
ior in the time domain, which we name as a “dynami-
cal fractal”. These conditions cover the requirements for
choosing the initial wave function, the measurement, the
dimensionality and the proper energy and time scales.
Our numerical simulation shows that all these require-
ments can be simultaneously satisfied rather easily with
practical parameters in cold atomic gases. The current
calculation is based on a single particle picture which ig-
nores inter-particle interactions. However, we expect the
many-body e↵ect would not bring any qualitative di↵er-
ence as long as the interaction strength is much weaker
than the attractive 1/r2 potential. Practically, one can
also choose certain atomic species with small or vanish-
ing scattering length in the experiments. The interaction
e↵ects on the dynamical fractal by itself is an interesting
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FIG. 4. Normalized zero-momentum occupation ⇢0(t) =
n0(t)
n0(0)

calculated using same experimental parameters as Fig. 2 and
3. The bottom plot is a zoom in of the top plot by a scale of
�2 = 3, which indicates self-similarity. The inset in the lower
panel shows ⇢0(t) is a smooth function in short time scale.
The time interval of the inset is around 200µs.

subject and we leave it for future investigation.

Note added.- During the preparation of this
manuscript, another preprint Ref. [22] appears. The
paper introduces the “time fractal” in a trapped ion
system with DSS, while it does not relate this fractal
behavior to the Weierstrass function W (x) and the
general conditions for the fractal behavior are not
discussed either.
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
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In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
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Dirac points lie at the heart of many fascinat-
ing phenomena in condensed matter physics, from
massless electrons in graphene to the emergence
of conducting edge states in topological insulators
[1, 2]. At a Dirac point, two energy bands inter-
sect linearly and the particles behave as relativis-
tic Dirac fermions. In solids, the rigid structure
of the material sets the mass and velocity of the
particles, as well as their interactions. A di↵er-
ent, highly flexible approach is to create model
systems using fermionic atoms trapped in the
periodic potential of interfering laser beams, a
method which so far has only been applied to ex-
plore simple lattice structures [3, 4]. Here we
report on the creation of Dirac points with ad-
justable properties in a tunable honeycomb opti-
cal lattice. Using momentum-resolved interband
transitions, we observe a minimum band gap in-
side the Brillouin zone at the position of the Dirac
points. We exploit the unique tunability of our
lattice potential to adjust the e↵ective mass of
the Dirac fermions by breaking inversion symme-
try. Moreover, changing the lattice anisotropy
allows us to move the position of the Dirac points
inside the Brillouin zone. When increasing the
anisotropy beyond a critical limit, the two Dirac
points merge and annihilate each other – a situ-
ation which has recently attracted considerable
theoretical interest [5–9], but seems extremely
challenging to observe in solids [10]. We map
out this topological transition in lattice param-
eter space and find excellent agreement with ab
initio calculations. Our results not only pave the
way to model materials where the topology of the
band structure plays a crucial role, but also pro-
vide an avenue to explore many-body phases re-
sulting from the interplay of complex lattice ge-
ometries with interactions [11, 12].

Ultracold Fermi gases have emerged as a versatile tool
to simulate condensed matter phenomena [3, 4, 13]. For
example, the control of interactions in optical lattices has
lead to the observation of Mott insulating phases [14, 15],
providing new access to the physics of strongly correlated
materials. However, the topology of the band struc-
ture is equally important for the properties of a solid.
A prime example is the honeycomb lattice of graphene,
where the presence of topological defects in momentum

space – the Dirac points – leads to extraordinary trans-
port properties, even in the absence of interactions [1]. In
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FIG. 1: Optical lattice with adjustable geometry. a,
Three retro-reflected laser beams of wavelength � = 1064 nm
create the two-dimensional lattice potential of equation (1).
X and Y interfere and produce a chequerboard pattern, while
X creates an independent standing wave. Their relative po-
sition is controlled by the detuning �. b, Di↵erent lattice
potentials can be realised depending on the intensities of the
lattice beams, as displayed above. The diagram below shows
the accessible lattice geometries as a function of the lattice
depths VX and VX . The transition between triangular (T.)
and dimer (D.) lattices is indicated by a dotted line. When
crossing the dashed line into the honeycomb (H.c.) regime,
Dirac points appear. The limit VX � VX,Y corresponds to
weakly coupled one-dimensional chains (1D c.). c, The real
space potential of the honeycomb lattice has a 2-site unit cell
(A,B sites) and the primitive lattice vectors are perpendicu-
lar. d, Sketch of the first and second Brillouin zones (B.Z.)
of the honeycomb lattice, indicating the position of the Dirac
points. On the right, a three dimensional view of the energy
spectrum shows the linear intersection of the bands at the
two Dirac points. We denote the full bandwidth W , and the
minimum energy gap at the edges of the Brillouin zone EG.
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[1, 2]. At a Dirac point, two energy bands inter-
sect linearly and the particles behave as relativis-
tic Dirac fermions. In solids, the rigid structure
of the material sets the mass and velocity of the
particles, as well as their interactions. A di↵er-
ent, highly flexible approach is to create model
systems using fermionic atoms trapped in the
periodic potential of interfering laser beams, a
method which so far has only been applied to ex-
plore simple lattice structures [3, 4]. Here we
report on the creation of Dirac points with ad-
justable properties in a tunable honeycomb opti-
cal lattice. Using momentum-resolved interband
transitions, we observe a minimum band gap in-
side the Brillouin zone at the position of the Dirac
points. We exploit the unique tunability of our
lattice potential to adjust the e↵ective mass of
the Dirac fermions by breaking inversion symme-
try. Moreover, changing the lattice anisotropy
allows us to move the position of the Dirac points
inside the Brillouin zone. When increasing the
anisotropy beyond a critical limit, the two Dirac
points merge and annihilate each other – a situ-
ation which has recently attracted considerable
theoretical interest [5–9], but seems extremely
challenging to observe in solids [10]. We map
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eter space and find excellent agreement with ab
initio calculations. Our results not only pave the
way to model materials where the topology of the
band structure plays a crucial role, but also pro-
vide an avenue to explore many-body phases re-
sulting from the interplay of complex lattice ge-
ometries with interactions [11, 12].

Ultracold Fermi gases have emerged as a versatile tool
to simulate condensed matter phenomena [3, 4, 13]. For
example, the control of interactions in optical lattices has
lead to the observation of Mott insulating phases [14, 15],
providing new access to the physics of strongly correlated
materials. However, the topology of the band struc-
ture is equally important for the properties of a solid.
A prime example is the honeycomb lattice of graphene,
where the presence of topological defects in momentum

space – the Dirac points – leads to extraordinary trans-
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particles, as well as their interactions. A di↵er-
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report on the creation of Dirac points with ad-
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transitions, we observe a minimum band gap in-
side the Brillouin zone at the position of the Dirac
points. We exploit the unique tunability of our
lattice potential to adjust the e↵ective mass of
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allows us to move the position of the Dirac points
inside the Brillouin zone. When increasing the
anisotropy beyond a critical limit, the two Dirac
points merge and annihilate each other – a situ-
ation which has recently attracted considerable
theoretical interest [5–9], but seems extremely
challenging to observe in solids [10]. We map
out this topological transition in lattice param-
eter space and find excellent agreement with ab
initio calculations. Our results not only pave the
way to model materials where the topology of the
band structure plays a crucial role, but also pro-
vide an avenue to explore many-body phases re-
sulting from the interplay of complex lattice ge-
ometries with interactions [11, 12].

Ultracold Fermi gases have emerged as a versatile tool
to simulate condensed matter phenomena [3, 4, 13]. For
example, the control of interactions in optical lattices has
lead to the observation of Mott insulating phases [14, 15],
providing new access to the physics of strongly correlated
materials. However, the topology of the band struc-
ture is equally important for the properties of a solid.
A prime example is the honeycomb lattice of graphene,
where the presence of topological defects in momentum
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154 13 Topological Bands
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Fig. 13.1 The Bravais lattice and the primitive vector of a honeycomb lattice (a) and its Brillouin
zone (b). (c) The dispersion with Dirac points.
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Now we consider a tight-binding model in the honeycomb lattice. First let us
only include the nearest neighboring hopping, which only occurs between A and B
sub-lattices, and the tight-binding Hamiltonian is given by

Ĥ =�t1 Â
hi ji

⇣
ĉ†

B, j ĉA,i +h.c.
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where hi ji denotes all the nearest neighboring bonds. Introducing three displace
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with Âi di = 0, this tight-binding Hamiltonian can be written into momentum space
as

Ĥ = Â
k
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where the matrix is given by:

H (k) =
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. (13.7)

H (k) can be expanded in term of the Pauli matrix as H (k) = B(k) ·s , where

Bx(k) =�t1 Â
a

cos(k ·da) ;By(k) =�t1 Â
a

sin(k ·da) , (13.8)

and Bz(k) = 0. So the band structure can be obtained as

E± (k) =⌥
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Ĥ = Â
k

⇣
ĉ†
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ĉB (k)

◆
, (13.6)

where the matrix is given by:

H (k) =
✓

0 �t1 Âa e�ik·da

�t1 Âa eik·da 0

◆
. (13.7)

H (k) can be expanded in term of the Pauli matrix as H (k) = B(k) ·s , where

Bx(k) =�t1 Â
a

cos(k ·da) ;By(k) =�t1 Â
a

sin(k ·da) , (13.8)

and Bz(k) = 0. So the band structure can be obtained as

E± (k) =⌥
q

B2
x(k)+B2

y(k) (13.9)

154 13 Topological Bands

(a) (b) (c)

Fig. 13.1 The Bravais lattice and the primitive vector of a honeycomb lattice (a) and its Brillouin
zone (b). (c) The dispersion with Dirac points.

K =
2p
a

✓
0,

2
3
p

3

◆
, K0 =

2p
a

✓
0,� 2

3
p

3

◆
. (13.3)

Now we consider a tight-binding model in the honeycomb lattice. First let us
only include the nearest neighboring hopping, which only occurs between A and B
sub-lattices, and the tight-binding Hamiltonian is given by
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B, j ĉA,i +h.c.
⌘
, (13.4)

where hi ji denotes all the nearest neighboring bonds. Introducing three displace
vectors as

d1 = (�1,0)a, d2 =

 
1
2
,

p
3

2

!
a, d3 =

 
1
2
,�

p
3

2

!
a (13.5)

with Âi di = 0, this tight-binding Hamiltonian can be written into momentum space
as
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ĉ†

A (k) , ĉ†
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ĉ†
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Model for a Quantum Hall Eff'ect without Landau Levels:
Condensed-Matter Realization of the "Parity Anomaly"
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A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance a" in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called "parity
anomaly" of (2+1)-dimensional field theories.

PACS numbers: 05.30.Fk, 11.30.Rd

The quantum Hall effect' (QHE) in two-dimensional
(2D) electron systems is usually associated with the pres-
ence of a uniform externally generated magnetic field,
which splits the spectrum of electron energy levels into
Landau levels. In this Letter I show how, in principle, a
QHE may also result from breaking of time-reversal
symmetry (i.e., magnetic ordering) without any net mag-
netic fiux through the unit cell of a periodic 2D system.
In this case, the electron states retain their usual Bloch
state character.

The model presented here is also interesting in that if
its parameters are on a critical line at which its ground
state changes from the normal semiconductor state to
this new type of QHE state, its low-energy states simu-
late a "(2+1)-dimensional" relativistic quantum field
theory exhibiting the so-called "parity anomaly" and a
(2+1)-D analog of "chiral" fermions without the
opposite-chirality anomaly-canceling partners that usu-
ally accompany them in lattice realizations of field
theories ("fermion doubling" ).

In the zero-temperature limit, the transverse conduc-
tivity o "3' of a periodic 2D electron system with a gap in
the single-particle density of states at the Fermi level
takes quantized values ve /h, where v is generally ra-
tional, but can only take i nteger values in the absence of
electron interactions. This property of a pure system is
stable against sufficiently weak disorder effects. Since
a" is odd under time reversal, a nonzero value can only
occur if time-reversal invariance is broken.

In the usual QHE, the gap at the Fermi level results
from the splitting of the spectrum into Landau levels by
an external magnetic field. The scenario considered here
is different, and involves a 2D semimetal where there is a
degeneracy at isolated points in the Brillouin zone be-
tween the top of the valence band and the bottom of the
conduction band, that is associated with the presence of
both inversion symmetry and time-reversal invariance.
If inversion symmetry is broken, a gap opens and the sys-
tem becomes a normal semiconductor (v=0), but if the
gap opens because time-reversal invariance is broken the
system becomes a v=+ 1 integer QHE state. If both
perturbations are present, their relative strengths deter-

,bg qb, ~,

FIG. 1. The honeycomb-net model ("2D graphite") showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds
(dashed lines). Open and solid points, respectively, mark the A
and 8 sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked "+")and is then bounded by the hexagon of nearest-
neighbor bonds. Arrows on second-neighbor bonds mark the
directions of positive phase hopping in the state with broken
time-reversal invariance.

mine which type of state is realized.
To model a 2D semimetal, I use the "2D graphite"

model investigated previously by Semenoff as a possible
lattice realization of a (2+I)-D field theory with the
anomaly. 2D graphite has the honeycomb net structure,
consisting of two interpenetrating triangular lattices
("A" and "8"sublattices) with one lattice point of each
type per unit cell (Fig. 1). A 2D inversion (i.e., a rota-
tion in the plane by tr) interchanges the two sublattices.
Since spin-orbit coupling effects will not be included, the
electron spin will (for the moment) be suppressed.

Semenoff investigated the tight-binding model with
one orbital per site and a real hopping matrix element t ~

between nearest neighbors on different sublattices, and
also considered the effect of an inversion-symmetry-
breaking on-site energy +M on /I sites and —M on 8
sites. The model has point group Cs„(M=O) or C3„
(MAO). In this original version of the model, time-
reversal invariance is present, and Semenoff found com-
plete cancellation of the anomaly in the M =0 model due
to fermion doubling, and normal semiconductor behavior
for MAO.

1988 The American Physical Society 2015
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to a band with nontrivial topological number [4]. This is now referred
to as “the Haldane model”. The Haldane model introduces the next-
nearest-neighbor hopping, with a phase �� for hopping between A
sites and a phase � between B site, as shown in Fig. 3. t2e�i� t2ei�

The Hamiltonian is written as
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Now in momentum space H (k) becomes:

H (k) = E0 (k) I +B (k) · � (11)
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One can see that Bz(k) term contains two terms. One breaks spa-

tial inversion symmetry, and the other breaks time reversal symmetry.
The spatial inversion symmetry is defined as

H (k) ! �xH (�k)�x = H (k) . (14)

Because under spatial inversion transformation, �z ! ��z, one can
see that the M -term breaks inversion symmetry while t2-term does
not. The time reversal symmetry is defined as:

H (k) ! H� (�k) = H (k) , (15)

one can see that t2-term breaks time-reversal symmetry while M -term
does not.

Now at each momentum k we have introduced a B(k) vector, and
the eigen-state of each given band can described by a pseudo-spin
which is always in the same direction of B(k) field. Thus, it defines a
mapping from the momentum space of the first Brillouin zone to S2

Bloch sphere. Such a mapping can also be classified by the homotopy
group and is characterized by the Chern number. In this case, the
Chern number of the lower band is defined as

C =
1

4�

Z

BZ
d2k

 
�B̂

�kx
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�ky
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Fig. 11.4 Schematic of the Haldane model.

other 2, after which the dispersion becomes fully gapped. This moving and merging
of the Dirac points have been observed in Ref. [1], as shown in Fig. 11.3(b).

11.2 Haldane Model.

Based on the analysis above, in order to open up the band gap, one needs to introduce
a Bz(k)sz term in H(k), for generically a momentum (kx,ky) can not make all three
functions of Bx(k), By(k) and Bz(k) vanish simultaneously. One simply way to add
an on-site energy offset between A and B sub-lattice denoted by M, which gives
rise to a constant Bz = M and gaps out the Dirac point. This has also been observed
in Ref. [1]. The spatial inversion symmetry along the dashed line presented in Fig.
11.4 is defined as

H (k)! sxH (�k)sx = H (k) . (11.11)

Because under spatial inversion transformation, sz !�sz, one can see that the M-
term breaks this inversion symmetry.

In a seminal paper, Haldane proposed an alternative way to open up the gap
and as we will show, this will lead to a band with nontrivial topological number
[4]. Haldane introduces the next-nearest-neighbor hopping, with a phase �f for
hopping between A sites and a phase f between B site, as shown in Fig. 11.4. This
term does not break the inversion symmetry, but breaks the time-reversal symmetry
defined as H⇤ (�k) = H (k).

Let us again consider the simplest nearest neighboring hopping with C6 symme-
try, and the M-term and the t2 term introduced by Haldane. This is now referred to
as “the Haldane model” and the total Hamiltonian is now written as

2 That corresponds to the solution is no longer real.

How to realize this 
nontrivial next-

nearest hopping ??
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geometrical constant of order unity, and g is the Lande g
factor for the electrons.

While the particular model presented here is unlikely
to be directly physically realizable, it indicates that, at
least in principle, the QHE can be placed in the wider
context of phenomena associated with broken time-
reversal invariance, and does not necessarily require
external magnetic fields, but could occur as a conse-
quence of magnetic ordering in a quasi-two-dimensional
system.

This requirement is not fulfilled by the physical system
(a domain wall in a PbTe-type semiconductor) in which
Fradkin, Dagotto, and Boyanovsky (FDB) have recent-
ly proposed related effects may be realized. In this mod-
el, spin-orbit coupling is supposed to give rise to the
effect, but this does not break time-reversal symmetry.
In fact, in "simplifying" the p bands of the Hamiltonian
that describes PbTe, FDB introduce an unphysical
effective spin-dependent hopping term that is odd under
time reversal, and thus break the time-reversal invari-
ance of the original physically motivated model. This,
rather than any topological character of the domain wall,
is the reason that FDB find the "parity anomaly" at the

end of their calculation.
I thank E. Fradkin and T. A. L. Ziman for very useful

discussions. The author would like to thank the Alfred
P. Sloan Foundation for financial support.
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
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h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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also be classified by the homotopy group ⇠ Z and is characterized by
the Chern number. Mathematically, the Chern number is defined as

C =
1

4�

Z

BZ
d2k

 
�B̂

�kx
⇥ �B̂

�ky

!
· B̂, (15)

where B̂ (k)= B (k) / |B (k)|. The Chern number describes how many
times that the spin have fully covered the Bloch sphere when the
momentum k scans through the entire Brillouin zone. If C is a non-
zero integer, this state is a topological nontrivial state. Therefore, a
necessary (but not su�cient) condition for C = ±1 is that the Bloch
vector must at least cover both the north pole and the south pole
once, thus, at K and K � points where Bx = By = 0, Bz must point
to the opposite direction. This gives the condition �3

p
3|t2 sin�| <

M < 3
p
3|t2 sin�|, and in fact, for this model, this turns out to be a

su�cient condition for a non-zero C, under which C equals +1 or �1.
The non-zero Chern-number has two implications: 1) a quantized

Hall conductance e2C/� and 2) discrete number (= |C|) of stable edge
states residing inside the gap. The fact that the information about
quantum state at the edge is determined by the topological number of
the bulk is called “bulk-edge correspondence”. Here one should also
emphasize that the edge state is stable in the sense that weak pertur-
bations can not gap out these states, as long as these perturbations
have the same symmetry as the bulk Hamiltonian. More over, the
quantized Hall conductance and the quantized edge states are con-
nected. It is because the bulk Hamiltonian is gapped and the only
states that can conduct charge are these edge states inside the gap,
and each edge state contributes a quantized conductance e2/�. Thus,
the Haldane model in the topological nontrivial phase displays quan-
tum Hall e�ect without applying external magnetic field, which is
named as “quantum anomalous Hall e�ect”.

C = 1 C = �1 C = 0

3 Floquet Topological Phase

In optical lattices, the next-nearest-neighbor hopping is usually quite
small. It is the major challenging for implementing the Haldane model.
To overcome this problem, one comes to the idea of using periodically
driven system, for which we shall first introduce the Floquet theory
for a time-periodic system.
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Abstract

In previous chapters we focus mostly on square or cubic lattices.
In recent years, experimentalists have also realized other types of op-
tical lattices, including triangular, honeycomb and kagome lattices.
One major motivation for studying these lattice geometries is to real-
ize various topological nontrivial phases. In this chapter we will use
honeycomb lattice as an example to illustrate recent progresses on
topological matters in cold atom optical lattices setup.

1 Dirac Point

As shown in Fig. 1(a), the unit cell of a honeycomb lattice contains
two sites denoted by A and B. The Bravais lattice of the honeycomb
lattice is a hexagonal lattice. We choose the primitive vectors of the
Bravais lattice as
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Fig. 13.5 The phase diagram for the Haldane model in term of f and M/t2. The Chern number C
is marked in different regimes. The red and green lines are the phase boundary between topological
and trivial phases, at which one of the Dirac point becomes gapless, as shown in the left column.

H =� t1 Â
hi ji

⇣
ĉ†

B, j ĉA,i +h.c.
⌘
+ t2 Â

hhi jii

⇣
e�if ĉ†

A, j ĉA,i + eif ĉ†
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⌘

+MÂ
i

⇣
ĉ†

A,iĉA,i � ĉ†
B,iĉB,i

⌘
. (13.12)

Now in momentum space H (k) becomes:

H (k) = E0 (k) I+B(k) ·s , (13.13)

where
E0 (k) = 2t2 cosf Â

a
cos(k ·aa) . (13.14)

Bx(k) and By(k) still behave the same as Eq. 13.8, but now Bz(k) term becomes
non-zero and it is given by

Bz(k) = M+2t2 sinf Â
a

sin(k ·aa) . (13.15)

Chern Number and the Phase Diagram. Now at each momentum k we have
introduced a three-dimensional B(k) vector, and the eigen-state of the upper and the
lower bands can described by a pseudo-spin that is either parallel or anti-parallel
to the direction of B(k) field. Thus, it defines a mapping from the first Brillouin
zone of the momentum space to the S2 Bloch sphere. Such a mapping can also be
classified by the homotopy group ⇠ Z and is characterized by the Chern number.
Mathematically, the Chern number is defined as
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

(̂
†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

ϵp ih
sp
0 sin(ωt)

−ih
sp
0 sin(ωt) ϵs

)
, (7)

J (t) =
(

tp − ih
pp
1 sin(ωt) ih

sp
1 sin(ωt)

−ih
sp
1 sin(ωt) ts − ihss

1 sin(ωt)

)
, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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In this Rapid Communication we propose realistic schemes to realize topologically nontrivial Floquet states
by shaking optical lattices, using both the one-dimensional lattice and two-dimensional honeycomb lattice as
examples. The topological phase in the two-dimensional model exhibits quantum anomalous Hall effect. The
transition between topological trivial and nontrivial states can be easily controlled by both shaking frequency
and shaking amplitude. Our schemes have two major advantages. First, both the static Hamiltonian and the
shaking scheme are sufficiently simple to implement. Secondly, it requires relatively small shaking amplitude
and therefore heating can be minimized. These two advantages make our schemes much more practical.

DOI: 10.1103/PhysRevA.89.061603 PACS number(s): 67.85.−d, 03.75.Ss

Introduction. Topological states of matter have been exten-
sively studied in equilibrium systems. Recently, topological
nontrivial quantum states have been proposed in a periodically
driven nonequilibrium system called “Floquet topological
insulators” [1– 3]. The Floquet topological band has been first
realized in photonic crystals and the edge state of light has
been observed [4], while so far it has not been realized in any
solid-state or cold-atom system.

Realizing and studying the topological state of matter is
also one of the major trends for cold atom physics nowadays,
for which Raman laser coupling [5– 12] and shaking optical
lattice [13– 15] have been developed. It has been demonstrated
that fast shaking optical lattices can generate synthetic Abelian
gauge field and magnetic flux [13,14], and various theoretical
proposals also exist [16– 25]. In this Rapid Communication
we propose that shaking optical lattice is also a powerful tool
to realize Floquet topological states in cold-atom systems.
We demonstrate that a system equivalent to the Su-Schrieffer-
Heeger model in one dimension [26] and a system equivalent
to the Haldane model [28] in a two-dimensional honeycomb
lattice [27] can be realized, and the latter exhibits quantum
anomalous Hall effect.

So far, quantum anomalous Hall effect has only been found
in chromium-doped (Bi,Sb)2Te3, and growing this material is
extremely challenging [29]. It is therefore highly desirable
that one can quantum simulate this effect with the cold-
atom system. However, although there already exist several
proposals using atom-light interactions [20– 25], this effect has
not yet been realized in a cold-atom setup. The key technique
challenge is to have a scheme that is sufficiently simple to be
implemented within a currently available experimental setup
and can also avoid unwanted heating. Our scheme fulfills these
two requirements and therefore can help to overcome this
challenge.

The first is its simplicity. To realize a topological state
in a static system, it usually requires a particular form of
hopping term. For instance, in order to realize the Haldane
model [28], one needs to generate a special next-nearest
range hopping term, which usually requires engineering laser-
assisted tunneling in a cold-atom system [9– 12]. In contrast,
in our scheme, the static Hamiltonian is quite simple (it only
contains normal nearest neighboring hopping without an extra
phase factor) and has been realized in different laboratories
already. We will show that the beauty of this scheme is that

such a simple static Hamiltonian can result in a topological
nontrivial state when a proper and also sufficiently simple way
of shaking is turned on.

The second is minimizing heating. In contrast to other
shaking schemes [13,14], a key ingredient of our scheme is that
shaking provides a resonant coupling between different bands;
therefore, as we shall show later, it only demands a shaking
amplitude much smaller than lattice spacing in order to reach
the topological phase, and consequently this scheme avoids
the heating problem often encountered in schemes utilizing
atom-light interactions. In a recent experiment by a Chicago
group, it is found that heating from such a small shaking
amplitude is insignificant [15].

We also remark that our shaking scheme in a honey-
comb lattice can be regarded mathematically as generating
a synthetic circular polarized light for neutral atoms [1,30].
However, to realize this with real light in graphene the required
frequency has to be in a soft x-ray regime [30] which makes the
experiment extremely challenging. While in our scheme the
required shaking frequency is within a very practical regime
of about hundreds of hertz.

General method. Our theoretical treatment of shaking
optical lattices is based on the Floquet theory. The Floquet
operator of a periodically driven Hamiltonian Ĥ (t) with period
T is defined as (! = 1)

F̂ = Û (Ti + T ,Ti) = T̂ exp
{
−i

∫ Ti+T

Ti

dt Ĥ (t)
}

, (1)

where T̂ denotes time order, and Ti is the initial time. The
eigenvalue and eigenstates of F̂ are given by

F̂ |ϕn⟩ = e−iεnT |ϕn⟩, (2)

where −π/T < εn < π/T is the quasienergy. Below, two
different methods are used to evaluate the Floquet operator,
and each method has its own advantage.

Method I. We can numerically evaluate Floquet operator
F̂ according to Eq. (1) and determine its eigenvalues and
eigen-wave-functions from Eq. (2). If a periodically driven
system exhibits nontrivial topological states, there must be
in-gap quasienergies ϵ and their corresponding wave functions
ϕ are spatially well localized at the edge of the system [2]. The
advantage of this method is that once Ĥ (t) is given, there are
no further approximations.
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FIG. 1. (Color online) (a) The typical energy structure under
consideration. (b) The laser setup of the one-dimensional shaking
optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.

Method II. We can introduce a time-independent effective
Hamiltonian Ĥeff via F̂ = e−iĤeffT . Expanding Ĥ (t) as Ĥ (t) =∑∞

n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as

Ĥeff = Ĥ0 +
∞∑

n=1

{
[Ĥn,Ĥ−n]

nω
− [Ĥn,Ĥ0]

e−2πniαnω
+ [Ĥ−n,Ĥ0]

e2πniαnω

}
,

(3)

where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i

(̂
†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
†
i = (â†

p,i ,â
†
s,i) are creation operators for s and p

orbitals, and

K(t) =
(

ϵp ih
sp
0 sin(ωt)

−ih
sp
0 sin(ωt) ϵs

)
, (7)

J (t) =
(

tp − ih
pp
1 sin(ωt) ih

sp
1 sin(ωt)

−ih
sp
1 sin(ωt) ts − ihss

1 sin(ωt)

)
, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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optical lattice. Solid and dashed lines represent lattice potential at two
different times. (c) The laser setup of the two-dimensional honeycomb
optical lattice. The dashed circle with arrow indicates how each lattice
potential rotates in time.
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n=−∞ Ĥn(t)einωt with ω = 2π/T , we consider a situation as
shown in Fig. 1(a), that is, the static component Ĥ0 contains
m bands within an energy range of # and ω ≫ #. The
two concrete examples discussed below either belong to this
situation or can be transferred into this situation by a rotating
wave transformation, with m = 2. Under this condition, it is
straightforward to show that to the leading order of #/ω, Ĥeff
can be deduced as
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where Ti is taken as αT with 0 ! α < 1. Since F̂ with
different choices of initial time Ti relate to each other by
a unitary transformation, quasienergy is independent of the
choice of Ti . In particular, we can choose an optimal α that
simplifies Ĥeff . Then we can apply schemes developed for
a time-independent Hamiltonian to Ĥeff for classifying the
topology of this time-periodic system. Although this method
involves further approximations, it has the advantage that it is
physically more transparent and can bring out the connection
to topological phenomena in equilibrium systems.

One-dimensional case. A one-dimensional lattice is formed
by two counterpropagating lasers. As one time-periodically
modulates the relative phase θ between two lasers, it will
result in a time-dependent lattice potential [31,32], as shown
in Fig. 1(b),

H (t) = k̂2
x

2m
+ V cos2[kr x + θ (t)], (4)

where θ (t) = krb cos (ωt), and b is the maximum lattice
displacement. By transferring to the comoving frame, x →
x + b cos (ωt), the Hamiltonian acquires a time-dependent
vector potential term as

H (t) = k̂2
x

2m
+ V cos2(kr x ) − bω sin(ωt) · k̂x . (5)

The first two static terms give a static band structure with Bloch
wave function ϕλ(kx ). In this basis, by only keeping the s and
p bands, we can write down a tight-binding Hamiltonian as

Ĥ (t) =
∑

i
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†
i K(t)(̂i +

∑

i

[(̂†
i J (t)(̂i+1 + H.c.], (6)

where (̂
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, (8)

where ϵs and ϵp are the on-site energy, ts and tp are
the hopping amplitude from the static part, and h

sp
0 =

bω
∫

dx φs (x ) ∂x φp (x ) denotes shaking-induced on-site cou-
pling processes. hλλ′

1 = bω
∫

dx φλ (x − a) ∂x φλ′ (x ), where
λλ′ = ss,pp,sp denotes shaking-induced nearest neighboring
hopping processes. Here φs (x ) and φp (x ) are the Wannier
wave functions of the s orbit and the p orbit, and a = π/kr is
the lattice constant. For a given lattice depth V , ϵs , ϵp, ts , and
tp are fixed, and h

sp
0 , hss

1 , h
pp
1 , and h

sp
1 scale linearly with krb.

With the Hamiltonian equations (6)–(8) and method I, we
find phase transitions between topological trivial and nontrivial
phases, by changing frequency via #0 = (ϵp − ϵs − 2ω)/2
and shaking amplitude krb. A phase diagram is shown in
Fig. 2(a). The topological nontrivial state possesses a pair

FIG. 2. (Color online) (a) Phase diagram in terms of shaking
frequency #0/Er and shaking amplitude krb. V = 3Er is fixed.
(b), (d) Quasienergy spectrum of a finite size one-dimensional shaking
optical lattice. #0/Er = 0 and krb = 0.5 for (b); and #0/Er = 0.8
and krb = 0.5 for (d), as marked in (a). Inset: Winding of B(kx ) in
the yz plane as kx changes from −π to π . See text for a definition of
B(kx ). (c) The wave functions for the in-gap states of (b).
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FIG. 3. (Color online) (a) Phase diagram in terms of the on-site
energy difference of the AB sublattice of a honeycomb lattice
M/Er and the shaking amplitude krb. ω/Er is fixed at 0.2. (b),
(d) Quasienergy spectrum of a finite size two-dimensional shaking
honeycomb lattice with armchair edge. M/Er = 0 and krb = 0.1
for (b) and M/Er = 0.003 and krb = 0.1 for (d), as marked in (a).
(c) The wave functions for the in-gap states of (b). The lattice potential
VX̄/Er = 5, VX/Er = 0.65, VY /Er = 2, and α = 0.8.

is given in the Supplemental Material [35]. This effective
Hamiltonian can be compared with the Haldane model. If B(k)
fully covers the Bloch sphere as k goes over the Brillouin zone,
this phase is topologically nontrivial and exhibits quantum
anomalous Hall effect [28].

For small shaking amplitude, at the leading order of krb,
Bx(k) and By (k) are given by the static part of the honeycomb

lattice Hamiltonian. Due to the Dirac point structure, {Bx,By }
has desired winding structure in the xy plane. Bz(k) can
be generally written as M + D(k), where D(k) represents
terms generated by shaking, and therefore for small shaking
amplitude, D(k) scales linearly with krb. If |M| > D(k) for
all k, either due to small krb or large |M|, Bz always has the
same sign as M and therefore spin can only point to half of
the Bloch sphere; the resulting state will still be topological
trivial, as shown in Fig. 3(d).

As krb increases, D(k) will become larger than M in a
certain regime of k space. In particular, for our model, similar
to the case of the Haldane mode, D(k) takes opposite sign
between two Dirac points (where both Bx and By vanish), and
its absolute value is larger than |M|. Thus, Bz takes opposite
values between two Dirac points and the spin vector points to
north and south poles, respectively, at two Dirac points. This
feature, together with nontrivial winding of {Bx,By } in the xy
plane, gives rise to a topologically nontrivial coverage of spin
vector in the Bloch sphere. Consequently, it enters topological
nontrivial phase, with a nonzero Chern number and chiral
edge state, as shown in Fig. 3. With noninteracting fermions
in this setup, it will exhibit quantum anomalous Hall effect
with quantized Hall conductance, which can be measured by
various methods [20,36– 38].

We believe the schemes and examples presented in this
work open a route toward realizing topological states in
cold-atom systems. It will be very interesting to generalize
the current work to three dimensions and the case with
interactions.
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calculated with Method 1. The answer to this question is quite involved, in particular,
when H0 itself is already topological nontrivial. Here we will not get involved in this
sophisticated discussion.

Haldane Model from Shaking Honeycomb Lattice. In the experiment, a hon-
eycomb lattice potential V (x,y) is realized by interference of three laser beams. By
time-periodically modulating the relative phase between lasers, one can realize a
shaken optical lattice whose Hamiltonian is given by

H =� h̄2—2

2m
+V [x+bsin(wt +j) ,y+bsin(wt)] (13.22)

where b is the shaking amplitude, and w is the shaking frequency. Note that here
we choose the phase difference j = p/2 between the shaking along the x and along
the y direction. By making a coordinate transformation x0 = x+bcos(wt) and y0 =
y+bsin(wt), the new Hamiltonian in the comoving frame reads

H (x,y, t) =
h̄2

2m
[�i∂x �Ax (t)]2 +

1
2m

[�i∂y �Ay (t)]2 +V (x,y) , (13.23)

where

Ax (t) = mwbsin(wt)/h̄, Ay (t) =�mwbcos(wt)/h̄. (13.24)

With this transformation, the lattice potential becomes static, but it appears a time-
dependent vector potential. This model is equivalent to a condensed matter system
that a circular polarized light is applied to graphene [5]. However, as we will see
later, we require that w is larger than the band width. This condition is hard to fulfill
in real graphene system, but in cold atom optical lattice, the typical band width is
of the order of ⇠KHz, and thus it is easy to shake the lattice with a frequency larger
than this.

For simplicity, let us consider a tight-binding model with three equal nearest
neighbor hopping t1 and the on-site energy difference M, by employing the Peiels
substitution, it leads to

H (k, t) =
✓

M �t1 Âa e�i[k�A(t)]·da

h.c. �M

◆
. (13.25)

The Hamiltonian can be approximately written as

H (k,t)⇡ H0 (k)+H1 (k)eiwt +H�1 (k)e�iwt , (13.26)

where
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to the geometric phase picked up along an infinitesimal loop. When
only IS is broken, the Berry curvature is point-antisymmetric, and its
sign inverts for oppositeDAB; see Fig. 2e. The spread ofV(q) increases
with the size of the gap. Its integral over the first Brillouin zone, theChern
number n, is zero, corresponding to a topologically trivial system.How-
ever,withonlyTRSbroken, n561,V(q) is point-symmetric, and its sign
changeswhen reversing the rotation direction of the latticemodulation.
To determine the topology of the lowest band, we move the atoms

along the ydirection such that their trajectories sample the regionswhere
the Berry curvature is concentrated, and record their final position. As
atomsmove through regions of q-space with non-zero curvature, they
acquire anorthogonal velocityproportional to the applied force andV(q)
(refs 23–26). The underlyingharmonic confinement causedby the laser
beams in the experiment couples real andmomentum space, meaning
that a displacement in real space leads to a drift in quasi-momentum.
We apply a gradient of DE/h5 114.6(1)Hz per site and measure the
centre ofmass of the quasi-momentumdistribution in the lowest band
after one full Bloch cycle. Because the velocity caused by the Berry cur-
vature inverts when inverting the force, we subtract the result for the
opposite gradient toobtain thedifferential driftD. This quantity ismore
suitable for distinguishing trivial fromnon-trivial Berry-curvature dis-
tributions than the response to a single gradient (Methods)25. The latter
does however provide information about the local Berry curvature and
is shown in Extended Data Fig. 2.
Whenbreakingonly IS,weobserve thatD vanishes and is independent

ofDAB, because the Berry curvature is point-antisymmetric; see Fig. 2c.
In contrast,whenonlyTRS is broken,we explore the topological regime
of the Haldanemodel withDAB5 0. A differential drift is observed for
Q5 90u, which, as expected, is opposite for Q5290u; see Figs 2d and
4c. This is a direct consequence of the Berry curvature being point-
symmetric,with its sign givenby the rotationdirectionof the latticemod-
ulation. In fact, here a non-zeroD can only originate from a non-zero
integratedBerry curvature (Methods).As themodulationbecomes linear,
the drift disappears. This is smoothed by the increased transfer to the
higher bandwhen thegapbecomes smaller,whichpredominantly affects
atoms thatwould experience the strongest Berry curvature. These obser-
vations are qualitatively confirmedby semiclassical simulations shown
in Extended Data Fig. 1.
Within theHaldanemodel, the competitionof simultaneouslybroken

TRS and IS is of particular interest, as it features a topological transition
betweena trivial band insulator andaChern insulator. In this regime, both
the band structure and Berry curvature are no longer point-symmetric
and the energy gap G6 at the two Dirac points is given by

G+~ DAB+Dmax
T sin Qð Þ

!! !! ð3Þ

On the transition lines the system is gapless with one closed and one
gappedDirac point,G15 0orG25 0.Wenowdiscussmeasurements
inwhichwe extend the parameter regime to allow for the simultaneous
breaking of both symmetries.
Wemapout the transitionbymeasuring the transferj6 for eachDirac

point separately, see Fig. 3a.j1 (j2) is the fraction of atoms occupying
theupper (lower) half of the secondBrillouin zone after oneBlochoscil-
lation along the x direction. We observe a difference between j1 and
j2, which shows that the band structure is no longer point-symmetric,
allowing for theparity anomaly predictedbyHaldane1.When the topol-
ogy of the band changes, the gap at one of the Dirac point closes. We
identify the closingof a gapwith thepointofmaximummeasured transfer
whenvaryingDAB. ForQ5 0uwe find, as expected forpreservedTRS, that
the maxima of bothj1 and j2 coincide; see Fig. 3b. The maxima are
shifted in opposite directions for Q5 90u, showing that the minimum
gap for each Dirac point occurs at different values of DAB. In between
these values the system is in the topologically non-trivial regime. We
explore the position of eachmaximum for varying Q and find opposite
shifts for negative Q as predicted by equation (3) using no free param-
eters; see Fig. 3c.

In Fig. 4 we show themeasured differential driftD for all topological
regimes, allowing for simultaneouslybroken IS andTRS.Here,we reduce
the modulation frequency to 3.75 kHz, where the signal-to-noise ratio
ofD is larger, but which is less suited for a quantitative comparison of
the transferjbecause the lattice modulation ramps are expected to be
less adiabatic.D is non-zeroonly forbrokenTRSand shows the expected
antisymmetrywithQ and symmetrywithDAB. For largeDAB, deep inside
the topologically trivial regime,D vanishes for all Q. For smallerDAB, the
differential drift shows precursors of the regimes with non-zero Chern
number: non-zero values ofD extend well beyond the transition lines
when IS and TRS are both broken. Semiclassical simulations (see Ex-
tended Data Fig. 1c) suggest that the main contribution to this effect
arises from the transfer to the higher band.
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Figure 3 | Mapping out the transition line. a, Atomic quasi-momentum
distribution (averaged over six runs) after one Bloch oscillation for Q5190u,
DAB/h5 292(7)Hz. A line sum along qx shows the atomic density in the first
Brillouin zone in grey; atoms transferred at the upper (lower) Dirac point
are shown in orange (green) throughout. The fraction of atoms in the
second Brillouin zone differs for qywv0. This is a direct consequence of
simultaneously broken IS and TRS, which allows band structures that are not
point-symmetric. b, Fractions of atomsj6 in each half of the second Brillouin
zone. For linear modulation (left) the gap vanishes at DAB5 0 for both
Dirac points, while for circularmodulation (right) it vanishes at opposite values
of DAB. Gaussian fits (solid lines) are used to find the maximum transfer,
which signals the topological transition. Data are mean6 s.d. of at least six
measurements. c, Solid lines show the theoretically computed topological
transitions, without free parameters. Dotted lines represent the uncertainty
of themaximumgap Dmax

T

!! !!"h~88z10
{34 Hz, originating from the uncertainty of

the lattice parameters. Data are the points of maximum transfer for each Dirac
point,6 the fitting error, obtained from measurements as in b for various Q.
Data points for Q56180u correspond to the same measurements. Between
the lines, the system is in the topologically non-trivial regime.
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Extending our work to interacting systems requires sufficiently low
heating.We investigate this with a repulsively interacting spinmixture
in the honeycomb lattice previously used for studying the fermionic
Mott insulator27.Wemeasure the entropy in theMott insulating regime
by loading atoms into the lattice and reversing the loading procedure
(seeMethods andExtendedDataFig. 3).The entropy increase is only25%
larger thanwithoutmodulation. This opens up the possibility of study-
ing topological models with interactions28 in a controlled and tunable
way. For example, latticemodulation couldbeused to create topological
flat bands,whichhavebeen suggested togive rise to interaction-induced
fractional Chern insulators29,30. Furthermore, our approach of periodi-
callymodulating the systemcanbe directly extended to engineerHamil-
tonianswith spin-dependent tunnellingamplitudesandphases (Methods).
This canbe achievedbymodulatingamagnetic field gradient,which leads
to spin-dependent oscillating forces owing to the differential Zeeman
shift. For example, TRS topological Hamiltonians, such as the Kane–
Mele model3, can be implemented by simultaneously modulating the
lattice on one axis and a magnetic field gradient on the other.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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Figure 4 | Drift measurements. a, Differential drift D in quasi-momentum.
Eachpixel corresponds to at least onepair ofmeasurements,where themodulation
frequency was set to 3.75 kHz. Data points for Q56120u, DAB/h5 503(7)Hz
were not recorded and are interpolated. b, All topological regimes are
explored and the expected momentum-space drifts caused by the Berry
curvature are sketched for selectedparameters. c, Cut along theDAB/h5 15(7)Hz
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c
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Fig. 13.6 Physical realization of the Haldane model and measurement of its phase diagram. Figure
reprinted from Ref. 13.4. (b) is the phase diagram measured by Landau-Zener tunneling during the
Bloch oscillation, and (a) show the Landau-Zenner tunneling rate after a circle of Bloch oscillation.
(c) shows the phase diagram measured from the drift experiment; and (d) show the drift after a full
Bloch cycle for M = 0 case.

H0 (k) = Msz � t1J0( f )Â
a
[cos(k ·da)sx � sin(k ·da)sy] , (13.27)

H1 (k) =�it1J1 ( f )Â
a

e�iqa [sin(k ·da)sx � cos(k ·da)sy] , (13.28)

H�1 (k) = it1J1 ( f )Â
a

eiqa [sin(k ·da)sx � cos(k ·da)sy] , (13.29)

where f = mwba/h̄, and qa is the angle of da . H0 is basically the static part of the
honeycomb lattice Hamiltonian, with tunneling modified by shaking. H±1 describes
shaking induced tunneling between neighboring sites. With the help of Eq. (13.21),
the effective Hamiltonian is given by:

Heff (k)⇡ H0 (k)+
[H1 (k) ,H�1 (k)]

w

=

(
M� 4t2

1 J2
1 ( f )
w Â

ab
sin

�
qa �qb

�
cos(k ·da)sin

�
k ·db

�
)

sz

�
⇢

t1J0 ( f )Â
a

cos(k ·da)

�
sx �

⇢
t1J0 ( f )Â

a
sin(k ·da)

�
sy. (13.30)

One can see that a next nearest tunneling term emerges in Bz(k) of the effective
Hamiltonian, which breaks the time-reversal symmetry. The strength of this term
is proportional to t2

1 because it results from the second-order perturbation effect of
shaking induced hopping, that is, a nearest neighboring tunneling with absorbing
an energy h̄w followed by another nearest tunneling with emitting an energy h̄w .
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Experimental realization of the topological Haldane
model with ultracold fermions
Gregor Jotzu1, Michael Messer1, Rémi Desbuquois1, Martin Lebrat1, Thomas Uehlinger1, Daniel Greif1 & Tilman Esslinger1

TheHaldanemodelonahoneycomb lattice is aparadigmatic example
of aHamiltonian featuring topologically distinct phases ofmatter1.
It describes a mechanism through which a quantumHall effect can
appear as an intrinsic propertyof a band structure, rather thanbeing
caused by an externalmagnetic field2. Although physical implemen-
tation has been considered unlikely, theHaldanemodel has provided
the conceptualbasis for theoretical and experimental research explor-
ing topological insulators and superconductors2–6. Here we report
the experimental realization of the Haldane model and the charac-
terization of its topological band structure, using ultracold fermi-
onic atoms in a periodically modulated optical honeycomb lattice.
TheHaldanemodel isbasedonbreakingboth time-reversal symmetry
and inversion symmetry.Tobreak time-reversal symmetry,we intro-
duce complex next-nearest-neighbour tunnelling terms, which we
induce through circularmodulationof the lattice position7. Tobreak
inversion symmetry, we create an energy offset between neighbour-
ingsites8.Breaking eitherof these symmetries opens agap in theband
structure,whichweprobeusingmomentum-resolved interband tran-
sitions.We explore the resulting Berry curvatures, which character-
ize the topology of the lowest band, by applying a constant force to
the atoms and find orthogonal drifts analogous to a Hall current.
The competition between the two broken symmetries gives rise to a
transitionbetween topologically distinct regimes.By identifying the
vanishing gap at a singleDirac point, wemapout this transition line
experimentally and quantitatively compare it to calculations using
Floquet theorywithout freeparameters.Weverify that our approach,
whichallowsus to tune the topological properties dynamically, is suit-
able even for interacting fermionic systems. Furthermore,wepropose
adirect extension to realize spin-dependent topologicalHamiltonians.
Inahoneycomb lattice that is symmetricunder time-reversal and inver-

sion, the two lowest bands are connected at twoDirac points. Each broken
symmetry leads to a gapped energy spectrum. F.D.M.Haldane realized
that the resulting phases are topologically distinct1: A broken inversion
symmetry (IS), caused by an energy offset between the two sublattices,
leads to a trivial band insulator at half-filled lattice sites. Time-reversal
symmetry (TRS) canbebrokenbycomplexnext-nearest-neighbour tunnel
couplings (Fig. 1a). The corresponding staggered magnetic fluxes sum
up to zero in one unit cell, thereby preserving the translation symmetry
of the lattice.This gives rise to a topologicalChern insulator,where anon-
zero Hall conductance appears despite the absence of a net magnetic
field1,2. When both symmetries are broken, a topological phase transi-
tionconnects two regimeswithadistinct topological invariant, theChern
number, which changes from 0 to11 or to21; see Fig. 1b. There, the
gap closes at a singleDirac point. These transitions have attracted great
interest because they cannot be described by Landau’s theory of phase
transitions, owing to the absence of a changing local order parameter6.
A crucial experimental challenge for the realization of the Haldane

model is the creationof complexnext-nearest-neighbour tunnelling.Here
we show that this is possiblewithultracold atoms inoptical lattices peri-
odicallymodulated in time.Pioneering experimentswith bosons showed
a renormalizationof existing tunnelling amplitudes in onedimension9,10,
and were extended to control tunnelling phases11,12 and higher-order

tunnelling13. In higher dimensions this allowed the study of phase
transitions14,15, and topologically trivial staggered fluxeswere realized16,17.
Furthermore, uniform flux configurationswere observed using rotation
and laser-assisted tunnelling18,19, although for the lattermethod, heating
seemed to prevent the observation of a flux in some experiments20. In a
honeycomb lattice, a rotating force, as proposedbyT.OkaandH.Aoki,
can induce the required complex tunnelling7. Using arrays of coupled
waveguides, a classical version of this proposal was used to study topo-
logicallyprotected edgemodes in the inversion-symmetric regime21.We
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Figure 1 | The Haldane model. a, Tight-binding model of the honeycomb
lattice realized in the experiment. An energy offset DAB between sublattice
A and B breaks IS. Nearest-neighbour tunnel couplings tij have real values,
whereas next-nearest-neighbour tunnelling eiWij t’ij carries tunable phases
indicated by arrows. i and j indicate the indices of the connected lattice sites.
For a detailed discussion of anisotropies and higher-order tunnelling terms,
see the Supplementary Information. The corresponding staggered magnetic
fluxes (sketched on the right) sum up to zero but break TRS. b, Topological
regimes of the Haldane model, for isotropic tij, t9ij5 t9 andWij5W. The trivial
(Chern number n5 0) and Chern-insulating (n56 1) regimes are connected
by topological transitions (black lines), where the band structure (shown on the
right) becomes gapless at a single Dirac point. c, Laser beam set-up forming
the optical lattice. The laser !X is frequency-detuned from the other beams.
Piezo-electric actuators sinusoidallymodulate the retro-reflectingmirrors, with
a controllable phase difference Q. Acousto-optic modulators (AOMs) ensure
the stability of the lattice geometry (Methods). d, The resulting Brillouin zones
(BZ), featuring two Dirac points in quasi-momentum space q.
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to the geometric phase picked up along an infinitesimal loop. When
only IS is broken, the Berry curvature is point-antisymmetric, and its
sign inverts for oppositeDAB; see Fig. 2e. The spread ofV(q) increases
with the size of the gap. Its integral over the first Brillouin zone, theChern
number n, is zero, corresponding to a topologically trivial system.How-
ever,withonlyTRSbroken, n561,V(q) is point-symmetric, and its sign
changeswhen reversing the rotation direction of the latticemodulation.
To determine the topology of the lowest band, we move the atoms

along the ydirection such that their trajectories sample the regionswhere
the Berry curvature is concentrated, and record their final position. As
atomsmove through regions of q-space with non-zero curvature, they
acquire anorthogonal velocityproportional to the applied force andV(q)
(refs 23–26). The underlyingharmonic confinement causedby the laser
beams in the experiment couples real andmomentum space, meaning
that a displacement in real space leads to a drift in quasi-momentum.
We apply a gradient of DE/h5 114.6(1)Hz per site and measure the
centre ofmass of the quasi-momentumdistribution in the lowest band
after one full Bloch cycle. Because the velocity caused by the Berry cur-
vature inverts when inverting the force, we subtract the result for the
opposite gradient toobtain thedifferential driftD. This quantity ismore
suitable for distinguishing trivial fromnon-trivial Berry-curvature dis-
tributions than the response to a single gradient (Methods)25. The latter
does however provide information about the local Berry curvature and
is shown in Extended Data Fig. 2.
Whenbreakingonly IS,weobserve thatD vanishes and is independent

ofDAB, because the Berry curvature is point-antisymmetric; see Fig. 2c.
In contrast,whenonlyTRS is broken,we explore the topological regime
of the Haldanemodel withDAB5 0. A differential drift is observed for
Q5 90u, which, as expected, is opposite for Q5290u; see Figs 2d and
4c. This is a direct consequence of the Berry curvature being point-
symmetric,with its sign givenby the rotationdirectionof the latticemod-
ulation. In fact, here a non-zeroD can only originate from a non-zero
integratedBerry curvature (Methods).As themodulationbecomes linear,
the drift disappears. This is smoothed by the increased transfer to the
higher bandwhen thegapbecomes smaller,whichpredominantly affects
atoms thatwould experience the strongest Berry curvature. These obser-
vations are qualitatively confirmedby semiclassical simulations shown
in Extended Data Fig. 1.
Within theHaldanemodel, the competitionof simultaneouslybroken

TRS and IS is of particular interest, as it features a topological transition
betweena trivial band insulator andaChern insulator. In this regime, both
the band structure and Berry curvature are no longer point-symmetric
and the energy gap G6 at the two Dirac points is given by

G+~ DAB+Dmax
T sin Qð Þ

!! !! ð3Þ

On the transition lines the system is gapless with one closed and one
gappedDirac point,G15 0orG25 0.Wenowdiscussmeasurements
inwhichwe extend the parameter regime to allow for the simultaneous
breaking of both symmetries.
Wemapout the transitionbymeasuring the transferj6 for eachDirac

point separately, see Fig. 3a.j1 (j2) is the fraction of atoms occupying
theupper (lower) half of the secondBrillouin zone after oneBlochoscil-
lation along the x direction. We observe a difference between j1 and
j2, which shows that the band structure is no longer point-symmetric,
allowing for theparity anomaly predictedbyHaldane1.When the topol-
ogy of the band changes, the gap at one of the Dirac point closes. We
identify the closingof a gapwith thepointofmaximummeasured transfer
whenvaryingDAB. ForQ5 0uwe find, as expected forpreservedTRS, that
the maxima of bothj1 and j2 coincide; see Fig. 3b. The maxima are
shifted in opposite directions for Q5 90u, showing that the minimum
gap for each Dirac point occurs at different values of DAB. In between
these values the system is in the topologically non-trivial regime. We
explore the position of eachmaximum for varying Q and find opposite
shifts for negative Q as predicted by equation (3) using no free param-
eters; see Fig. 3c.

In Fig. 4 we show themeasured differential driftD for all topological
regimes, allowing for simultaneouslybroken IS andTRS.Here,we reduce
the modulation frequency to 3.75 kHz, where the signal-to-noise ratio
ofD is larger, but which is less suited for a quantitative comparison of
the transferjbecause the lattice modulation ramps are expected to be
less adiabatic.D is non-zeroonly forbrokenTRSand shows the expected
antisymmetrywithQ and symmetrywithDAB. For largeDAB, deep inside
the topologically trivial regime,D vanishes for all Q. For smallerDAB, the
differential drift shows precursors of the regimes with non-zero Chern
number: non-zero values ofD extend well beyond the transition lines
when IS and TRS are both broken. Semiclassical simulations (see Ex-
tended Data Fig. 1c) suggest that the main contribution to this effect
arises from the transfer to the higher band.
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Figure 3 | Mapping out the transition line. a, Atomic quasi-momentum
distribution (averaged over six runs) after one Bloch oscillation for Q5190u,
DAB/h5 292(7)Hz. A line sum along qx shows the atomic density in the first
Brillouin zone in grey; atoms transferred at the upper (lower) Dirac point
are shown in orange (green) throughout. The fraction of atoms in the
second Brillouin zone differs for qywv0. This is a direct consequence of
simultaneously broken IS and TRS, which allows band structures that are not
point-symmetric. b, Fractions of atomsj6 in each half of the second Brillouin
zone. For linear modulation (left) the gap vanishes at DAB5 0 for both
Dirac points, while for circularmodulation (right) it vanishes at opposite values
of DAB. Gaussian fits (solid lines) are used to find the maximum transfer,
which signals the topological transition. Data are mean6 s.d. of at least six
measurements. c, Solid lines show the theoretically computed topological
transitions, without free parameters. Dotted lines represent the uncertainty
of themaximumgap Dmax

T

!! !!"h~88z10
{34 Hz, originating from the uncertainty of

the lattice parameters. Data are the points of maximum transfer for each Dirac
point,6 the fitting error, obtained from measurements as in b for various Q.
Data points for Q56180u correspond to the same measurements. Between
the lines, the system is in the topologically non-trivial regime.
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Extending our work to interacting systems requires sufficiently low
heating.We investigate this with a repulsively interacting spinmixture
in the honeycomb lattice previously used for studying the fermionic
Mott insulator27.Wemeasure the entropy in theMott insulating regime
by loading atoms into the lattice and reversing the loading procedure
(seeMethods andExtendedDataFig. 3).The entropy increase is only25%
larger thanwithoutmodulation. This opens up the possibility of study-
ing topological models with interactions28 in a controlled and tunable
way. For example, latticemodulation couldbeused to create topological
flat bands,whichhavebeen suggested togive rise to interaction-induced
fractional Chern insulators29,30. Furthermore, our approach of periodi-
callymodulating the systemcanbe directly extended to engineerHamil-
tonianswith spin-dependent tunnellingamplitudesandphases (Methods).
This canbe achievedbymodulatingamagnetic field gradient,which leads
to spin-dependent oscillating forces owing to the differential Zeeman
shift. For example, TRS topological Hamiltonians, such as the Kane–
Mele model3, can be implemented by simultaneously modulating the
lattice on one axis and a magnetic field gradient on the other.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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Physical Consequence of 2D Chern Insulator

Physical Consequence of 
Topological Number  

At or Near Equilibrium 

Quantized Edge State 
Quantized Hall Conductance ?

Bulk-Edge Correspondence 

From from Equilibrium 

ζðk; tÞ ¼ exp
!
−
i
2
hfðkÞ · σt

"
ζiðkÞ; ð2Þ

and by introducing a Bloch vector,

n ¼ ζ†ðk; tÞσζðk; tÞ; ð3Þ

Eqs. (2) and (3) together define a mapping f from ½kx; ky; t%
to the Bloch sphere n.
Scheme.—Taking any two constant vectors n1 and n2 on

the Bloch sphere, their inverse images f−1ðn1Þ and f−1ðn2Þ
are two trajectories in the ½kx; ky; t% space. The linking
number of these two trajectories within the first Brillouin
zone equals the Chern number of the ground state for the
final Hamiltonian at the same filling [23].
Example to illustrate the scheme.—As a concrete exam-

ple to illustrate our proposal, we consider the Haldane
model in a honeycomb lattice [see Fig. 1(a)]. The particle
annihilation operators at two sublattices of the honeycomb
lattices are denoted by âri and b̂ri . The tight-binding model
is written as

Ĥ ¼ −J0
X

ri;j

ðâ†ri b̂riþ dj þ H:c:Þ þ M
X

ri

ðâ†ri âri − b̂†ri b̂riÞ

þ J1
X

ri;j

ðe−iϕâ†ri âriþ aj þ eiϕb̂†ri b̂riþ aj þ H:c:Þ; ð4Þ

where d1;2 ¼ ð'
ffiffiffi
3

p
=2; 1=2Þa0, d3 ¼ ð0;−1Þa0 are the

three vectors connecting the nearest-neighboring sites,
and a1;2 ¼ ð−

ffiffiffi
3

p
=2; ' 3=2Þa0 and a3 ¼ ð

ffiffiffi
3

p
; 0Þa0 are

the three vectors connecting the next-nearest-neighboring
sites, with a0 being the lattice spacing. The next-nearest
hopping has a phase factor that is opposite between A and B
sublattices. In the momentum space, Eq. (4) becomes

Ĥ ¼
X

k

ðâ†k; b̂
†
kÞHðkÞ

!
âk
b̂k

"
; ð5Þ

and aside from a term proportional to the identity matrix,
HðkÞ takes the same form as Eq. (1), with

hxðkÞ ¼ −2J0
X

i

cosðk · diÞ; ð6Þ

hyðkÞ ¼ −2J0
X

i

sinðk · diÞ; ð7Þ

hzðkÞ ¼ 2M þ 4J1 sinϕ
X

i

sinðk · aiÞ: ð8Þ

The phase diagram of this Haldane model at half filling
(with the lower band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have Chern numbers
þ 1 and −1, respectively. Here, we consider a sudden
change of M and ϕ starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Figs. 2(a)

and 2(b), we consider the inverse image of two vectors n
and −n on the equator. One can see that if Hf is in the
topologically trivial regime, as shown in Fig. 2(a), f−1ðnÞ
sits inside the trajectory of f−1ð−nÞ, and the linking
number is zero; while if Hf is in the topologically non-
trivial regime, as shown in Fig. 2(b), these two trajectories
link 3 times. This is because, to avoid the discontinuity
of the trajectory across the boundary of the first Brillouin
zone, our plot spans the momentum regime including
three replicas of the first Brillouin zone. Within the first
Brillouin zone, the linking number is unity that equals
to the Chern number of Hf. Similarly, we consider the
inverse images of the north and the south pole. As shown in

(b)(a)
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FIG. 1. (a) Schematic of hopping in the Haldane model in a
honeycomb lattice. (b) Phase diagram of the Haldane model. The
arrow indicates a quench from a topologically trivial regime to a
topologically nontrivial regime.

FIG. 2. (a),(b) Inverse images of two vectors n and −n on the
equator, when the Hamiltonian is quenched from hiðkÞ with
M ¼ −∞ (topologically trivial regime) to hfðkÞ with ϕ ¼ 0.1
and M ¼ 1 (topologically trivial regime) (a), and to hfðkÞ with
ϕ ¼ π=2 and M ¼ 0 (topologically nontrivial regime) (b), re-
spectively. (c),(d) Inverse images of the north and the south poles,
when the Hamiltonian is quenched from hiðkÞ withM ¼ −1 and
ϕ ¼ π=2 to hfðkÞwithM ¼ 0.33

ffiffiffi
3

p
and ϕ ¼ π=2 (topologically

trivial regime) (c), and to hfðkÞ with M ¼ 0.27
ffiffiffi
3

p
and ϕ ¼ π=2

(topologically nontrivial regime) (d). For all plots we have taken
J0 ¼ 1 and J1 ¼ 0.1.
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Quench Dynamics Figure 6: The blue curve shows the Hall resistance ⇢yx as a function of the gate

voltage at zero magnetic field. Note the plateau at Vg = 0, which is the point corre-

sponding to a filled band. (Figure from Ref. [15].)

breaks the invariance under time reversal, which is necessary to have a Hall
effect. This phase of matter described by Haldane is now called a Chern insu-

lator, and twentyfive years later, in 2013, a quantized Hall effect was observed
in thin films of Cr-doped (Bi,Sb)2Te3 at zero magnetic field, thus providing
the first experimental detection of this phase of matter [15]. In Fig. 6 we see
a clear plateau in the Hall resistance ⇢yx at a density (regulated by the gate
voltage) corresponding to a filled band. The later development of topological

band theory will be discussed in the concluding section.

5 Quantum spin chains and symmetry-protected

topological phases of matter

One dimensional systems, such as spin chains, or electrons moving in thin
wires, are radically different from their relatives in higher dimensions. The
reason for this is that both thermal and quantum fluctuations are much more
important and prevent most of the symmetry-breaking patterns that charac-
terise phases in higher dimension. A lot of important work in the 1960s and
1970s had established quite a complete and coherent picture of both quantum
and classical one-dimensional systems. In the quantum case there are various
transformations, both in the continuum and on the lattice, that map seem-
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

Description of Quench Dynamics

A two-band Chern Insulator

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)

Initial  
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

A two-band Chern Insulator
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
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f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣
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5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

A two-band Chern Insulator

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
ri âri � b̂

†
ri b̂ri

⌘

+ J1

X

ri,j

⇣
e
�i�

â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)

Quench from 
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
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In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as
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Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1
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h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

2

FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t
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Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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and aside from a term proportional to the identity ma-
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
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equals to the Chern number of Hf. Similarly, we consider
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and by introducing a Bloch vector
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and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
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[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
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particle annihilation operators at two sublattices of the
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two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as
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and by introducing a Bloch vector
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Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as
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(â†k, b̂
†
k)H(k)

✓
âk
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as
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and by introducing a Bloch vector
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Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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and aside from a term proportional to the identity ma-
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the
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direction of J with [22]
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In this letter we show how the topological number of a static Hamiltonian can be measured
from a dynamical quench process. We focus on a two-band Chern insulator in two-dimension, for
instance, the Haldane model, whose dynamical process can be described by a mapping from the
[kx, ky, t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been
constructed experimentally by measurements in cold atom systems. We show that, taking any two
constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in
the [kx, ky, t] space, and the linking number of these two trajectories exactly equals to the Chern
number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg
group, we show that the linking number of the trajectories of the phase vortices determines the
phase boundary of the static Hamiltonian.

Recently cold atom experiments have realized a num-
ber of topological models including the Hofstadter model
[1–3], the Haldane (and the Haldane-type) model [4,
5], the Su-Schrie↵er-Heeger model [6] and its Thouless
charge pumping [7–9]. One major advantage of studying
topological models in the context of cold atom systems,
in comparison with its condensed matter counterpart, is
that the experimental investigation of the dynamic pro-
cesses can be more easily accessible. For example, consid-
ering non-interacting fermions initially in a topologically
trivial insulator state of the initial Hamiltonian H

i, we
shall focus on a sudden quench to a final Hamiltonian
H

f, whose ground state is a topologically nontrivial insu-
lator (e.g. a Chern insulator) at the same filling, and the
question is whether the change of the topological number
can be revealed from measuring the dynamical process af-
ter the quench. In fact, such a quench experiment has
been performed recently in a Haldane-type model with
cold atoms by the Hamburg group [10]. Using a momen-
tum resolved quantum state tomography method [11–13],
they can map out the evolution of the wave function as
time evolves after the quench.

At equilibrium, for a Chern insulator, it is known that
the bulk Chern number, the number of edge states and
the quantization value of the Hall conductance are equal,
which is termed as “ the bulk-edge correspondence ”.
While for the non-equilibrium process after the quench,
there is no such clear relations between them. First of
all, because the time evolution after the quench is unitary,
the Chern number of the quantum state does not change
and does not reflect the topological number of the final
Hamiltonian [14]. Nevertheless, the edge state gradually
emerges [14–17]. Second, without dephasing, the Hall re-
sponse will not be well quantized for either a slow or a
sudden quench [18, 19]. While it is also found that the
Hall conductance can become finite even after quenching
to a topologically trivial final Hamiltonian [20]. There-
fore, it is desirable to know whether there is a way to
rigorously map out the topology of the band structure of
H

f through the quench dynamics.
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FIG. 1: (a) Schematic of hopping in the Haldane model in
a honeycomb lattice; (b) The phase diagram of the Haldane
model. The arrow indicates a quench from topologically triv-
ial regime to a topologically nontrivial regime.

In this letter we present a scheme to extract a quan-
tized value from the dynamical process after the quench,
and this quantized value is exactly the same as the topo-
logical Chern number of the final Hamiltonian H

f. This
scheme can be directly applied to analyze the recent ex-
perimental data from the Hamburg group (Ref. [10]), as
well as other similar systems (such as the ETH [4] and
the USTC experiments [5]), to determine the topological
phase diagram.
Summary of the Scheme. Before proceeding to details,

let us briefly summarize our scheme as follows:
Let us consider a general two-band tight-binding model

in two-dimension, and at each momentum, the Hamilto-
nian can be written as

H(k) =
1

2
h(k) · �, (1)

where � = (�x,�y,�z) is a vector of the Pauli matri-
ces. Thus, the eigen-energies of the Hamiltonian are
±|h(k)|/2, corresponding to the upper- and the lower-
bands, respectively. We further consider at each k, |h(k)|
is always non-zero, and the system is an insulator at half
filling. The two-component wave function is denoted by
⇣(k).
Here we consider the quench process that corresponds

to a sudden change of h(k) from a topologically trivial
hi(k) to hf(k). The initial wave function ⇣

i(k) is taken as

Theorem: Topology from Dynamics

For a two-band Chern Insulator
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33
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3 and
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(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp
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i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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Ĥ =
X

k
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
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shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
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0 point if Hf is in the topologically trivial regime [Fig.
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The linking number of these two trajectories within the
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Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
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0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the
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and by introducing a Bloch vector
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The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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B sublattices. In the momentum space, Eq. 4 becomes
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and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
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the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
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and by introducing a Bloch vector
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The Scheme: Taking any two constant vectors n1
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and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
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trix, H(k) takes the same form as Eq. 1 with
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the
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ĉ#,k

1

A (6)

R
= 4⇡

nlink = Ci � Cf mod 2Ci

2

X Y1 = f(W1X +B1)

f(x) = 0; x < 0 f(x) = x; x > 0 Y2 = f(W2Y1 +B2) Y = W3Y2 +B3

Y = W3f(W2f(W1X +B1) + B2) + B3 {Xn, Yn}

D(k) (L+ 1)⇥ 8

M =

0

@ ei✓1 0

0 ei✓2

1

A (7)

3⇥ (L+ 1)⇥ (L+ 1) V =

0

BBBBBB@

V
⇣

R
N0

⌘

V
⇣

2R
N0

⌘

. . .

V (R)

1

CCCCCCA
Y1 = WV +B ⇠ ⇣ ⇠ r2

V (r) ⇢(r)

Krr0 =
P
n
�n⇠n(r)⇠n(r0)

r ! r+R r ! r+ nR0 r ! �r r ! �r t ! �2t

2d sin ✓ = n�

Bx = 0 By = 0

C =
1

4⇡

Z

BZ

d2k

 
@ĥ
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· ĥ (8)

C = 1 V I

⇢1 = ⇢2 hV2i = tr(⇢2) | i = (â†1 � â†2)
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(â†1 + â†2)
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27

p
3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
ter the quench, the wave function will involve according
to the final Hamiltonian as

⇣(k, t) = exp

⇢
�
i

2
hf(k) · �t

�
⇣
i(k), (2)

and by introducing a Bloch vector

n = ⇣
†(k, t)�⇣(k, t), (3)

Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
dane model in a honeycomb lattice [see Fig. 1(a)]. The
particle annihilation operators at two sublattices of the
honeycomb lattices are denoted by âri and b̂ri . The tight-
binding model is written as

Ĥ =� J0

X

ri,j

⇣
â
†
ri b̂ri+dj + h.c.

⌘
+M

X

ri

⇣
â
†
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†
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â
†
ri âri+aj + e

i�
b̂
†
ri b̂ri+aj + h.c.

⌘
,

(4)

where d1,2 = (±
p
3/2, 1/2)a0, d3 = (0,�1)a0 are the

three vectors connecting the nearest neighboring sites;
and a1,2 = (�

p
3/2,±3/2)a0 and a3 = (

p
3, 0)a0 are

the three vectors connecting the next nearest neighboring
sites, with a0 being the lattice spacing. The next nearest
hopping has phase factor that is opposite between A and
B sublattices. In the momentum space, Eq. 4 becomes

Ĥ =
X

k

(â†k, b̂
†
k)H(k)

✓
âk

b̂k

◆
, (5)

and aside from a term proportional to the identity ma-
trix, H(k) takes the same form as Eq. 1 with

hx(k) = �2J0
X

i

cos(k · di), (6)

hy(k) = �2J0
X

i

sin(k · di), (7)

hz(k) = 2M + 4J1 sin�
X

i

sin(k · ai). (8)

The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
K

0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
Here we should put a remark of how to determine the

sign of the linking number. First of all, we note that
each trajectory actually has a direction, defining as the
direction of J with [22]

J
µ =

1

8⇡
✏
µ⌫�n · (@⌫n⇥ @�n), (9)

Topological Trivial Topological Non-trivial
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FIG. 2: (a-b) The inverse images of two vectors n and �n on
the equator, when the Hamiltonian is quenched from hi(k)
withM = �1 (topologically trivial regime) to hf(k) with � =
0.1 and M = 1 (topologically trivial regime)(a), and to hf(k)
with � = ⇡/2 and M = 0 (topologically nontrivial regime)(b),
respectively; (c-d) The inverse images of the north and the
south poles, when the Hamiltonian is quenched from hi(k)
with M = �1 and � = ⇡/2 to hf(k) with M = 0.33

p
3 and

� = ⇡/2 (topologically trivial regime) (c), and to hf(k) with
M = 0.27
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3 and � = ⇡/2 (topologically nontrivial regime)

(d). For all plots we have taken J0 = 1 and J1 = 0.1.

the lower-band eigenstate of the initial Hamiltonian. Af-
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to the final Hamiltonian as
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and by introducing a Bloch vector
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Eq. 2 and Eq. 3 together define a mapping f from
[kx, ky, t] to the Bloch sphere n.

The Scheme: Taking any two constant vectors n1

and n2 on the Bloch sphere, their inverse images f�1(n1)
and f

�1(n2) are two trajectories in the [kx, ky, t] space.
The linking number of these two trajectories within the
first Brillouin zone equals to the Chern number of the
ground state for the final Hamiltonian at the same filling
[21].

Example to Illustrate the Scheme. As a concrete ex-
ample to illustrate our proposal, we consider the Hal-
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The phase diagram of this Haldane model at half filling
(with the lower-band filled) is shown in Fig. 1(b), where
two topologically nontrivial regimes have the Chern num-
bers +1 and �1, respectively. Here we consider a sudden
change of M and � starting from the topologically trivial
regime, as indicated by the arrow in Fig. 1(b).
In Fig. 2 we show two sets of examples. In Fig. 2(a-b),

we consider the inverse image of two vectors n and �n
on the equator. One can see that if Hf is in the topolog-
ically trivial regime, as shown in Fig. 2(a), f�1(n) sets
inside the trajectory of f�1(�n), and the linking num-
ber is zero; while if Hf is in the topologically nontrivial
regime, as shown in Fig. 2(b), these two trajectories
link three times. This is because, to avoid the disconti-
nuity of the trajectory across the boundary of the first
Brillouin zone, our plot spans the momentum regime in-
cluding three replicas of the first Brillouin zone. Within
the first Brillouin zone, the linking number is unity that
equals to the Chern number of Hf. Similarly, we consider
the inverse images of the north and the south pole. As
shown in Fig. 2(c-d), the inverse image of the north pole
is a straight line in the K and K

0 points. While the in-
verse image of the south pole does not enclose the K or
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0 point if Hf is in the topologically trivial regime [Fig.
2(c)], giving rise to linking number zero; and it encloses
three equivalent K or K 0 point when H

f is topologically
nontrivial [Fig. 2(d)], giving rise to linking number unity
within the first Brillouin zone.
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FIG. 3. Mapping out the topological phase diagram using the linking number. (a) Original data of the observed vortices summed over all time
steps (red dot: positive chirality, blue dot: negative chirality; the hue indicates the time step where the vortex was present). The hexagon marks
the first Brillouin zone. The dynamical vortex contours are highlighted by a guide-to-the-eye (grey line). (b) The Chern number is obtained
from the linking number of these dynamical vortex contours (or the absence of a contour) and plotted for various shaking detunings (cut
through the phase diagram corresponding to the grey line in Fig. 1). The region with non-trivial Chern number agrees well with the prediction
from a full numerical calculation (solid line). (c) Calculated Floquet bands for various detunings illustrating the closing of the Dirac points at
the topological phase transitions.

FIG. 4. Sign of the linking number. (a) Vortex data in the non-trivial regime (shaking phase of p/2 and shaking detuning of d/2p =�372 Hz).
The first subfigure shows the time-integrated data, while the other subfigures show successive stroboscopic time steps t1 = 13 · T/4, t2 =
17 ·T/4, t3 = 21 ·T/4 after the quench. The vortex contour has a positive chirality, while the enclosed static vortex has a negative chirality,
revealing the Chern number +1 (see text). (b) Reverse shaking (grey point in Fig. 1) for d/2p = �359 Hz and for time steps t1 = 14 ·T/4,
t2 = 18 ·T/4, t3 = 22 ·T/4 after the quench. The chirality of the enclosed vortex is now inverted and the Chern number is �1.
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Characterizing topology by dynamics: Chern number from linking number
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Topology plays an important role in modern solid state physics describing intriguing quantum states such
as topological insulators. It is an intrinsically non-local property and therefore challenging to access, often
studied only via the resulting edge states. Here, we measure the topological index directly from the far-from-
equilibrium dynamics of the bulk. We use the mapping of the Chern number to the linking number of dynamical
vortex trajectories appearing after a quench to the Hamiltonian of interest. We thereby map out the topological
phase diagram of quantum gases in optical lattices via a purely dynamical response. Such relations between
two topological indices in static and dynamical properties could be also an important approach for exploring
topology in the case of interactions.

PACS numbers: 67.85.-d, 67.85.Lm

Topological quantum matter has recently received much at-
tention, because it opens an entirely new class of quantum
phases and has potential applications ranging from precision
measurements to quantum information and spintronics [1]. A
paradigmatic role is played by the Chern number, which char-
acterizes the topology of filled bands in two-dimensional lat-
tice systems and also describes the integer Quantum Hall ef-
fect. Even richer is the interplay between topological band
structures and interactions giving rise to topologically ordered
states of matter, such as fractional quantum Hall states, with
intriguing emergent properties like abelian or nonabelian any-
onic excitations. A widely unexplored field are the fundamen-
tal connections between the dynamical behavior of (highly)
excited states of a system and the underlying ground-state
properties.

Ultracold quantum gases are a promising experimental plat-
form to explore these questions. On the one hand they allow
for the realization of topologically non-trivial band structures
and artificial gauge fields [2–9] and on the other hand typical
time scales for dynamical studies are experimentally well ac-
cessible. Moreover, they offer the perspective of combining
these effects with strong interactions (see, e.g., refs. [10–12]).

Here we establish a new approach by connecting a central
quantity of the ground state topology – the Chern number –
with the dynamical evolution of highly excited states of the
system via the measurement of a linking number. That is we
study in detail the contour of dynamically created vortex pairs
in momentum space following a sudden quench of the system.
We thereby map out the trivial and non-trivial Chern number
areas of the phase diagram. As shown by Wang et al. (ref.
[13]), the Chern number of the post quench Hamiltonian maps
onto the linking number between this contour and the position
of the static vortices [Fig. 1(a)]. We thus demonstrate that the
direct mapping between two topological indices – a static and
a dynamical one – allows for an unambiguous measurement
of the Chern number.

This is a first step in the more general direction of relation-
ships between static non-local topological properties and dy-
namical properties in complex quantum systems. Besides this
it also circumvents difficulties of other measurement schemes
to detect Chern numbers, e.g. drift measurements [5, 6], for
which the signal cannot unambiguously distinguish between
trivial and non-trivial Chern numbers when inversion symme-
try is broken [5]. It also goes far beyond the characterization
of topology, e.g. by the complete measurement of the Berry
curvature [8], as in these studies non-trivial Chern numbers
cannot be reached in an adiabatic preparation in the thermo-
dynamic limit [14].

Our system is described by a Haldane-like Hamiltonian
realized via Floquet engineering of lattices [2–8, 15–21].
We start with a hexagonal optical lattice [22] with nearest-
neighbor (NN) tunneling element JAB and sublattice offset DAB
[see Fig. 1(b)] described by the bare Hamiltonian

Ĥ0 =� Â
hl0li

JABâ†
l0 âl + Â

l2B
DABn̂l (1)

(see supplementary [23] for definitions). By circular lattice
shaking with a near-resonant angular frequency w = DAB/h̄�
d with detuning d and driving strength a , we arrive at a Flo-
quet system described by the effective Hamiltonian

ĤF =� Â
hl0li

Jeff
ABâ†

l0 âl+ Â
hhl0liiA

Jeff
AAâ†

l0 âl+ Â
hhl0liiB

Jeff
BBâ†

l0 âl+Â
l2B

Deffn̂l .

(2)
In the limit of low driving strength, the expressions for the ef-
fective tunnel elements read Jeff

AB ' ±a
2 JABe⌥ifl0l with Peierls

phases fl0l for the NN tunneling and Jeff
AA =�Jeff

BB ' J2
AB/h̄w for

the next-nearest neighbor (NNN) tunneling, which arises as
a super-exchange process. The effective sublattice offset be-
comes Deff = h̄d +3J2

AB/h̄w [see Fig. 1(b)]. Note that in con-
trast to the case without initial sublattice offset [5, 24, 25], we
realize the Hamiltonian in a gauge, where the Peierls phases
appear at the NN tunneling, which gives rise to a shifted band
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Take-Home Message

Symmetry and Topology can be detected from non-equilibrium dynamics.

Symmetry

Topology

Efimovian  
Expansion
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FIG. 3. Real part of the Loschmidt echo amplitude L(t) cal-
culated using the same experimental parameters as in Fig. 2.
The bottom plot is a zoom in of the top plot by a scale of
�2 = 3, which shows a clear self-similar pattern. The inset in
the lower panel shows that the L(t) is indeed a smooth func-
tion in very short time scale. The time interval of the inset is
around 300µs.

above, both quantities satisfy Condition 3. We have
numerically checked that the contribution of the scatter-
ing states is indeed much smaller than the contribution
of bound states by two orders of magnitude throught the
whole time interval. This verifies our argument about
the satification of Condition 1.

Comparing the numerical results with the Weierstrass
function W (x), indeed both L(t) and ⇢0(t) are smooth
when we zoom into an extremely small time interval, as
shown in the inset of the bottom panel. Nevertheless,
both curves display typical self-similar fractal structures
in a practical temporal window, which means EN is deep
enough such that Condition 5 is satisfied.

Conclusions and Outlook. In summary, we have dis-
cussed general conditions under which the dynamics of
a quantum system with DSS can exhibit fractal behav-
ior in the time domain, which we name as a “dynami-
cal fractal”. These conditions cover the requirements for
choosing the initial wave function, the measurement, the
dimensionality and the proper energy and time scales.
Our numerical simulation shows that all these require-
ments can be simultaneously satisfied rather easily with
practical parameters in cold atomic gases. The current
calculation is based on a single particle picture which ig-
nores inter-particle interactions. However, we expect the
many-body e↵ect would not bring any qualitative di↵er-
ence as long as the interaction strength is much weaker
than the attractive 1/r2 potential. Practically, one can
also choose certain atomic species with small or vanish-
ing scattering length in the experiments. The interaction
e↵ects on the dynamical fractal by itself is an interesting
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FIG. 4. Normalized zero-momentum occupation ⇢0(t) =
n0(t)
n0(0)

calculated using same experimental parameters as Fig. 2 and
3. The bottom plot is a zoom in of the top plot by a scale of
�2 = 3, which indicates self-similarity. The inset in the lower
panel shows ⇢0(t) is a smooth function in short time scale.
The time interval of the inset is around 200µs.

subject and we leave it for future investigation.

Note added.- During the preparation of this
manuscript, another preprint Ref. [22] appears. The
paper introduces the “time fractal” in a trapped ion
system with DSS, while it does not relate this fractal
behavior to the Weierstrass function W (x) and the
general conditions for the fractal behavior are not
discussed either.
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ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

4

Thermal 
equilibrium



Eigenstate Thermalization Hypothesis
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ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

4

Paradox:

Contains local 
information

Perserve  
Information

Where is the 
information?

Thermal 
equilibrium



Information Scrambling 
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Thus,

S
(2)(RC) = (r + c)log2 (11)

I
(2)(R,C) = rlog2 + clog2� (r + c)log2 = 0 (12)

Similarly ,we have

I
(2)(R,D) = 0 (13)

Thus, using only the information of Hawking radiation of the black hole or that of the remaining
black hole, one cannot retrieve the information of Alice’s diary. Therefore, we have to use other
information as well in order to discover Alice’s secret.

We can verify that using the information of the system C (the Hawking radiation) and system
B’(the maximally entangled state of the black hole B) together, one is possible to retrieve Alice’s
secret.

I
(2)(R,DB

0) = S
(2)(R) + S

(2)(DB
0)� S

(2)(RDB
0)

= S
(2)(R) + S

(2)(RC)� S
(2)(C) = rlog2 + (r + c)log2� clog2 = 2rlog2

(14)

Similarly, we also have

I
(2)(R,CD) = 2rlog2 (15)

i.e. with the help of the information of remaining black hole and the Hawking radiation, one is also
possible to recover Alice’s secret.

4 some relations and graph of OTOC

There is a relation between the Renyi-2 entropy and the average of OTOC.
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HB � HD � HA

4

U
Unitary Evolution

A Large System 

Local System for 
Measurement 



Dicke Model Realization
Realization of Hayden-Preskill protocol with Dick model

Yanting Cheng

1 Introdution to the Dick model

Alice wanted to destroy her diary, so she tossedit into a black hole. Here, we use a spin to play the
role of the Alice’s diary in the Hayden-Preskill protocol, and a cavity palys the role of the black
hole. At the t = 0 moment, we toss a spin into a cavity by turning on the interaction between the
spin and the cavity using the Hamiltonian that

Ĥ = ~!0a
†a+ g(a† + a)�x + !z�z. (1)

First, we prepare the initial state that

 in =
1p
2
(|""i+ |##i)RA ⌦ 1P

n
e��n

X

n

e��n |ni , (2)

where the first arrow denotes the reference spin R and the second arrow denotes the spin A, and the
n denotes the photo number in the cavity. And we write the spin desity matrix into the Bell states
as

⇢i
RA

=

0

BB@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA . (3)

And this is the information Alice tossed into the black hole. After the scambling time, the system
evolute with the Dick model Hamiltonian, and the information is scambed into the whole space.
Thus the spin density matrix becomes that

⇢f
RA

=

0

BB@

1

4
0 0 0

0 1

4
0 0

0 0 1

4
0

0 0 0 1

4

1

CCA . (4)

We set ~ = !0 = 1, g = 2 and !z = 3, then we can get the numerical ⇢RA(t) in figure (1). At
the initial time, the state is prepared in |""i+ |##i, thus only blue dot equals to 1. At last, density
matrix elements for these four states all saturate to 0.25. Now we want to answer the queation what
is the time of matrix elements of ⇢RA getting to the aymptotic value? The state can be denoted by

| (t)i =

B(t)

. (5)

1
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hÔi1 = h⇢eq(E)Ôi
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Out-of-time-ordered Correlation and Chaos

hŴ †
(t)V̂ †

(0)Ŵ (t)V̂ (0)i�
Ŵ (t) = eiĤtWe�iĤt

2

hŴ †(t)V̂ †(0)Ŵ (t)V̂ (0)i�
Ŵ (t) = eiĤtŴe�iĤt

OTOC = hy|xi

|yi = V̂ (0)Ŵ (t)|i |xi = Ŵ (t)V̂ (0)|i = eiĤtŴe�iĤtV̂ |i = V̂ |i

2

VIEWPOINT

Seeing Scrambled Spins
Two experimental groups have taken a step towards observing the ‘‘scrambling’’ of
information that occurs as a many-body quantum system thermalizes.

by Brian Swingle⇤ and Norman Y. Yao†

Physicists have long wondered whether and how iso-
lated quantum systems thermalize—questions that
are relevant to systems as diverse as ultracold atomic
gases and black holes. Recent theoretical and ex-

perimental advances are bringing fresh insight into this line
of inquiry. At one extreme, researchers have shown that
disorder can fully arrest thermalization in certain isolated
many-body quantum systems [1]. At the other extreme,
surprising results from the field of quantum gravity have
established that black holes are, in some sense, the fastest
thermalizers in nature [2–4]. A common thread running
through these developments is an emerging focus on the dy-
namics of quantum information, in which thermalization is
associated with “scrambling,” or the loss of accessible infor-
mation. Two groups, one in China [5] and one in the US [6],
have taken a step towards tracking this scrambling of infor-
mation in systems of quantum spins.

The lore of thermalization goes as follows. Suppose you
initialize a collection of quantum spins into one of two dis-
tinct configurations. Now couple the system to a large heat
bath. After equilibrium is reached, the final state of the spins
will be independent of the spins’ initial configuration. In
other words, information about the initial state of the spins
has been irrevocably lost to the bath.

But thermalization does not require a bath to proceed. In
a complex many-body quantum system, information about
the initial state may instead be “hidden” in elaborate corre-
lations among the system’s constituents. The information in
such a scrambled state is not lost, because the final state can
be related to the initial state by a unitary transformation. But
it may be inaccessible to any reasonable local measurement.

The concept of information scrambling first arose in at-
tempts to understand the black hole information paradox,
which asks: How can information about what fell into a
black hole be both trapped inside the event horizon and lib-
erated as the black hole “evaporates” by emitting Hawking

⇤Department of Physics, University of Maryland, College Park, MD
20740, USA
†Department of Physics, University of California, Berkeley, CA
94720, USA

Figure 1: A classical chaotic system can be diagnosed by the
presence of the butterfly effect, in which a small perturbation like
the tiny flap of a butterfly’s wing has a huge effect on the system at
some later point in time. (Left) Another version of the classical
butterfly effect compares the situations of running time forward
(blue line) with running it backward after the butterfly is still (white)
or after the butterfly flaps its wings (red). Without the butterfly flap,
the system returns to its initial state; with it, the state of the system
eventually differs drastically from its initial state. (Right) Li et al. [5]
and Gärttner et al. [6] performed an analogous experiment with
quantum spin systems, here described by a wave function Y. Both
groups used quantum-control techniques to evolve their systems
forward in time (blue line), to apply a perturbation W, and to evolve
the systems backward in time (red line). They then performed a
measurement of V to diagnose the effect of the perturbation.
(APS/Alan Stonebraker)

radiation? Since a black hole is fundamentally a thermal ob-
ject, this paradox is intimately related to how information
dynamics leads to thermalization. Specifically, one could
imagine that when something falls into a black hole, the in-
formation about it is encoded—albeit in scrambled form—in
the radiation emitted during evaporation.

Experiments that can probe the quantum dynamics of
black holes are currently out of reach. But scrambling is also
relevant to isolated collections of strongly interacting atoms,
ions, molecules, and photons—all systems that physicists
can prepare in the lab. As a bonus, it may be possible to
engineer Hamiltonians in these systems that scramble infor-
mation as fast as black holes. The most direct way to detect
scrambling would be to measure a system’s entropy over
time, though this is typically too hard to do. Instead, re-
searchers have figured out that they can partially diagnose
scrambling using unusual correlation functions called out-
of-time-order correlators (OTOCs) [2, 3, 7]. These correlators
effectively involve a many-body “time machine.” Given two
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2
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Generic Behavior of OTOC
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Figure 1: Schematic of a typical behavior of the normalized OTOC, which
shows the separation of time scales.

normal correlation becomes separable, i.e

hV †(0)Ŵ †(t)Ŵ (t)V̂ (0)i = hV †(0)V̂ (0)ihW †(t)Ŵ (t)i. (5)

Why Eq. 5 defines the dissipation time ? Considering a normalized quantum
state | i and a local operator V̂ , V̂ (0) changes the quantum state from | i
to V̂ | i at time t = 0. After certain time td, this local change dissipates,
and since V̂ only changes few local degree of freedom in the thermodynamic
degree of freedom of the system. Thus, once the excitation V̂ (0)| i thermal-
izes, the system returns to the original state | i, except for a normalization
factor, i.e.

| ̃i =
q
hV̂ †(0)V̂ (0)i| i. (6)

Hence, the L.H.S. of Eq. 5 becomes the expectation value of Ŵ †(t)Ŵ (t)
under | ̃i, which gives the R. H. S. of Eq. 5.

After the dissipation time td, C(t) defined in Eq. 4 becomes

C(t) = hV †(0)V̂ (0)ihW †(t)Ŵ (t)i(2� 2G̃(t)), (7)

where G̃(t) is the normalized OTOC defined as

G̃(t) =
hŴ †(t)V̂ †(0)Ŵ (t)V̂ (0)i
hV †(0)V̂ (0)ihW †(t)Ŵ (t)i

. (8)

It becomes clear that if G̃(t) behaves as at the scrambling time ts

G̃(t) = 1� ↵e�Lt, (9)
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Quench Experiment
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2

to

F (t) = cos (4Jijt) . (4)

Further averaging over all random configurations results
in

F (t) =
sin(4J exp(�|i� j|/⇠)t)

4J exp(�|i� j|/⇠)t . (5)

Before proceeding, we would like to make a few com-
ments on the result Eq. 5. (i) Eq. 5 can be expanded as
1+↵t2 for the early-time behavior. The absence of linear
t term means that at early time the OTOC deviates from
unity in power law instead of exponentially. This shows
the di↵erence in the OTOC between an MBL state and
a thermalized state. When the distribution function of
J̃ij changes or higher order terms in the Hamiltonian Eq.
2 are included, this power law behavior is quite robust
while ↵ is a non-universal value and will change corre-
spondingly. (ii) J = 0 describes the AL limit where F (t)
becomes a constant. This shows that the OTOC can also
distinguish the MBL phase from the AL phase. (iii) The
typical time scale of the decay time is given by

t0 =
⇡

4J
e|i�j|/⇠, (6)

which increases exponentially as the the distance between
i- and j-sites increases.

OTOC in a Random-field XXZ Model. We now
come to a more microscopic model for MBL, that is
the one-dimensional XXZ model in a random magnetic
field28,29,36

Ĥ =
X

i

J?(ŝ
x

i
ŝx
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i
ŝy
i+1) + Jz ŝ

z

i
ŝz
i+1 + hiŝ

z

i
. (7)

Here ŝx,y,z
i

are three spin operators at site-i, J? and Jz
are both constants, and hi are random fields uniformly
distributed among [�h, h]. Using a Jordan-Wigner trans-
formation to map this model into a spinless fermion
model, ŝz

i
ŝz
i+1 gives a nearest neighbour interaction be-

tween fermions. Thus in this model, Jz represents the
interaction e↵ect.

In Fig. 1 we show the entanglement von Neumann en-
tropy, the second Rényi entropy and the OTOC for both
the MBL case and the AL case. For the EE calculation,
the system is divided into two parts A and B, where A
(B) is the left (right) half of this eight-site system. The

second Rényi EE is defined as S(2)
A

= � log TrA⇢̂2A and
⇢A = TrB⇢. The initial state is prepared in a Néel state
along ẑ direction, and evolves from there under the XXZ
Hamiltonian Eq. 7. This initial state preparation can in
fact be viewed as a global quench. For the OTOC cal-
culation, we choose Ŵ as ŝx at site i = 2 and V̂ as ŝx
at site j = 8. The temperature is also set at infinity and
we sum over all configurations with equal weight. We do
check other choices of operators and most of the OTOCs
all behave similarly.

FIG. 1: The calculation of the von Neumann EE, the second
Rényi EE and the OTOC for the MBL and the AL cases
in random-field XXZ model Eq. 7. The OTOC has been
rescaled to drop from unity. The horizontal axis is tJ? in
the logarithmic scale. The calculation is done for on an 8-site
model with open boundary condition, and is averaged over
103 disorder configurations. Here J? > 0, hi/J? is uniformly
distributed between [�5, 5]. For the MBL case Jz/J? = 0.2
where the system is known to be fully localized36. For the AL
case Jz = 0. The dashed line indicates a logarithmic growth
of the von Neumann and the second Rényi EE.

From Fig. 1 one can see that, after a linear increase at
the initial time (0 < t . 1/J?), both two EEs saturate
for the AL case, while they continuously grow logarithmi-
cally for the MBL case. The von Neumann EE and the
second Rényi EE behave similarly. For the MBL case,
at the time scale that EE starts logarithmic growth, the
OTOC also starts to drop. While in the AL case, the
OTOC always remains constant. We also calculate the
normal correlators in this model and find they always re-
main as constants in both the MBL phase and the AL
phase. These results are consistent with the results from
the phenomenological model.
OTOC-EE Theorem. Motivated by the calculation

above, here we prove a general theorem as
Theorem. For a system at T = 1 quenched by an

arbitrary operator Ô at t = 0, we divide it into two sub-
parts A and B and considering the second Rényi entropy

S(2)
A

. The growth of this second Rényi EE is related to
the OTOC of the original equilibrium state via

exp(�S(2)
A

) =
X

M̂2B

hM̂(t)V̂ (0)M̂(t)V̂ (0)i�=0 (8)

where V̂ = ÔÔ† and the summation is taken over a
complete set of operators M̂ in the part B. Here we
have chosen the normalization condition for M̂ and Ô
as

P
M̂2B

MijMlm = �im�lj , Tr[ÔÔ†] = 1.
Before the proof of this theorem, we would like to add

a few remarks on this theorem:
i) This theorem applies to generic quantum systems, no

matter whether they are chaotic, thermalized, localized

2

to

F (t) = cos (4Jijt) . (4)

Further averaging over all random configurations results
in

F (t) =
sin(4J exp(�|i� j|/⇠)t)

4J exp(�|i� j|/⇠)t . (5)

Before proceeding, we would like to make a few com-
ments on the result Eq. 5. (i) Eq. 5 can be expanded as
1+↵t2 for the early-time behavior. The absence of linear
t term means that at early time the OTOC deviates from
unity in power law instead of exponentially. This shows
the di↵erence in the OTOC between an MBL state and
a thermalized state. When the distribution function of
J̃ij changes or higher order terms in the Hamiltonian Eq.
2 are included, this power law behavior is quite robust
while ↵ is a non-universal value and will change corre-
spondingly. (ii) J = 0 describes the AL limit where F (t)
becomes a constant. This shows that the OTOC can also
distinguish the MBL phase from the AL phase. (iii) The
typical time scale of the decay time is given by

t0 =
⇡

4J
e|i�j|/⇠, (6)

which increases exponentially as the the distance between
i- and j-sites increases.

OTOC in a Random-field XXZ Model. We now
come to a more microscopic model for MBL, that is
the one-dimensional XXZ model in a random magnetic
field28,29,36
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S(2)
A

. The growth of this second Rényi EE is related to
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†(t)V̂ †(0)Ŵ (t)V̂ (0)i�
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Ŵ (t) = e
iĤt
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iĤt
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iĤt

Ŵe
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Theorem. For a system constituted by subparts A and B at T = 1, after quenching

by an arbitrary operator O, the second entanglement Renyi entropy S
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and the summation is taken over a complete set of operators M̂ in the subpart B.
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Figure 2: Experimental results of OTOC measurement for an Ising spin chain: (a) Â = �̂z

1 at
the first site, and B̂ = �̂x

4 at the fourth site. (b) Â = �̂x

1 at the first site, and B̂ = �̂y

4 at the
fourth site. The three columns correspond to g = 1, h = 0; g = 1.05, h = 0.5; and g = 1,
h = 1 of model Eq. (2), respectively. The red points are experimental data, the blue curves are
theoretical calculation of OTOC with model Eq. (2) for four sites.
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quantum system holographic dual to a black hole saturate an upper bound 2⇡/� (11–15). This

establishes a profound connection between the existence of holographic duality and the chaotic

behavior in many-body quantum systems. In the high temperature limit (i.e. � = 0), intimate

connection between the OTOC and the growth of entanglement entropy in quantum many-body

systems are also established (6, 7).

Despite of the significance of the OTOC revealed by recent theories, experimental measure-

ment of the OTOC remains challenging. Unlike the normal correlators, the OTOC cannot be re-

lated to conventional spectroscopy measurements through linear response theory. Recently, sev-

eral theory proposals have been put forward to measure OTOC, using echo- and interferometric-

approaches (16–19). Since the OTOC involves system dynamics and its time reversal, quantum

computers provide an ideal platform to simulate these systems and their dynamics. Histori-

cally, one of the key motivations to develop quantum computers is to simulate the dynamics of

many-body quantum systems (20), and quantum simulation of many-body dynamics has been

theoretically shown to be efficient with practical algorithms proposed (21).

In this work, we report measurements of OTOCs on a NMR quantum simulator. The system

to simulate is an Ising spin chain model, whose Hamiltonian is written as

Ĥ =
X

i

�
��̂z

i
�̂z

i+1 + g�̂x

i
+ h�̂z

i

�
, (2)

where �̂x,y,z

i
are Pauli matrices on the i-site. The parameter values g = 1, h = 0 correspond

to the traverse field Ising model, where the system is integrable. The system is non-integrable

whenever both g and h are non-zero. We simulate the dynamics governed by the system Hamil-

tonian Ĥ , and measure the OTOCs of operators that are initially acting on different local sites.

The time dynamics of OTOCs is observed, from which entanglement entropy of the system and

butterfly velocities of the chaotic systems are extracted.

NMR Quantum Simulation of OTOC. The physical system to perform the quantum simu-

3
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Ĥ(g ,h)

B̂
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Figure 1: Illustration of the physical system, the Ising model and the experimental scheme. (a)
The structure of the C2F3I molecule used for the NMR simulation. (b) The four sites Ising spin
chain, A and B label dividing the entire system into two subsystems in the later discussion of
entanglement entropy. (c) Quantum circuit for measuring the OTOC for general N -site Ising
chain when � = 0 (in our case N = 4). Here R̂ = 1, R̂x(�⇡/2), R̂y(⇡/2) for Â = �̂z
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1 ,
respectively.
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normalization factor) is applied to the system at t = 0, and the entropy is measured by tracing
out the fourth site as the subsystem B. Different colors correspond to different parameters of
g and h in the Ising spin model. The points are experimental data, the curves are theoretical
calculations.
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Â
〉

··
·

··
·

(a) (b)

(c)

Figure 1: Illustration of the physical system, the Ising model and the experimental scheme. (a)
The structure of the C2F3I molecule used for the NMR simulation. (b) The four sites Ising spin
chain, A and B label dividing the entire system into two subsystems in the later discussion of
entanglement entropy. (c) Quantum circuit for measuring the OTOC for general N -site Ising
chain when � = 0 (in our case N = 4). Here R̂ = 1, R̂x(�⇡/2), R̂y(⇡/2) for Â = �̂z
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OTOC for Bose-Hubbard Model

OUT-OF-TIME-ORDER CORRELATION AT A QUANTUM . . . PHYSICAL REVIEW B 96, 054503 (2017)
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FIG. 3. (a) The amplitude of normalized OTOC |F̃ (t)| as a function of time tJ for U/J = 4,6 and 8 at βJ = 0.9 and N = L = 7. N is the
number of bosons and L is the system size. The inset is a zoom-in plot of the early-time deviation behavior with t0 aligned together. It is clear
that the U/J = 6 curve deviates faster than the U/J = 4 and 8 curves. (b)–(c) The Lyapunov exponents as a function of U/J . The error bars
come from the fitting. (b) is plotted for βJ = 0.9 and 0.2 with N = L = 7; (c) is plotted for N = 7 and N = 3 with L = 7, βJ = 0.9. In all
the three figures above, we have chosen V̂ = b̂1, Ŵ = b̂4 and the periodic boundary condition. For the fitting, we take the fitting parameters
Fc = 0.99 and p = 0.2. We have verified that changing the fitting parameters will not affect the trend of the data, but will only modify the
exponents quantitatively.

calculation of a single-point correlation function on a manifold
with a boundary. More details can be found in the Appendix.
The final result is

S
(2)
A = c

8
ln[sinh(πT t)] + const., (6)

and the long-time behavior is given by

S
(2)
A ∼ cπT t

8
. (7)

Therefore the second Rényi entropy grows linearly, again
indicating the exponential deviation of the OTOC.

III. LYAPUNOV EXPONENT

Having shown that the OTOC should deviate exponentially
in time, we are now in a position to extract the Lyapunov
exponent. Three typical curves of the OTOC are shown in
Fig. 3(a). In order to fit the Lyapunov exponent at the early
time, we adapt the following fitting scheme shown in Fig. 1(b):

(i) We choose a threshold Fc (Fc ! 1) to determine a
starting time t0 as F̃ (t0) = Fc. t0 is the initial time when the
OTOC starts to deviate exponentially.

(ii) The second-order derivative of F̃ (t) is denoted as
F̃ ′′(t). We take t2 to be the last point (after t0) that satisfies
F̃ ′′(t) < 0. In other words, for t > t2, F̃ ′′(t) > 0 and obviously
F̃ (t) can no longer be fitted by an exponential.

(iii) In fact, the OTOC deviates from the exponential even
before reaching t2. Therefore we introduce another parameter
p, which we call the retaining fraction. Assuming all data
points are uniformly taken along the time direction, we define
t1 < t2 to satisfy (t1 − t0)/(t2 − t0) = p. The principle of
choosing p is to set p as large as possible as long as the
error of the fitting is small.

(iv) We fit all the data points between t0 and t1 by a function
f (t) = AeλLt + B. We take the logarithm of the first-order
derivative of f (t) as

ln(f ′(t)) = ln(AλLeλLt ) = ln(AλL) + λLt, (8)

where the Lyapunov exponent λL is just the slope of this linear
regression ln[f ′(t)] ∼ t .

Before presenting our results, we would like to comment
on the separation of time scales in our calculation. There
are two time scales involved: the dissipation time td and the
scrambling time ts [9], which can be extracted from the normal
time-order correlators and the OTOC respectively. Roughly
speaking, td characterizes the time when the excitation
V̂ (0)|β⟩ is smeared out, so the normal time-ordered correlator
factorizes as ⟨V̂ †(0)Ŵ †(t)Ŵ (t)V̂ (0)⟩ = ⟨V̂ †V̂ ⟩⟨Ŵ †Ŵ ⟩. The
scrambling time ts characterizes the time when the information
is scrambled and is identified when F̃ (t) first reaches its local
minimum. In order for the scrambling to be well defined, the
separation of time scale is required, i.e., the scrambling takes
place at td ≪ t < ts. This usually requires a large number of
degrees of freedom such as those in some large-N models.

Here, we consider the case when Ŵ and V̂ are located at
different sites so that their spatial distance can guarantee the
separation of time scale. For operators with spatial separation
|x|, the OTOC could be expanded as

F̃ (t) = α0 − α1e
λL(t−|x|/vB), (9)

where the small parameter e−λL|x|/vB suppresses the high-order
terms in the expansion. vB is called the butterfly velocity [7,39],
which is to be discussed in detail in the next section.

We plot three OTOCs at temperature βJ = 0.9 starting
from their corresponding t0 in the inset of Fig. 3(a). As can
be seen clearly, the deviation first becomes more rapid as
U/J increases (from 4 to 6), and then becomes slower as
U/J further increases (from 6 to 8). By fitting the Lyapunov
exponents using the scheme introduced above, we find that λL
displays a broad peak around U/J = 6, and the peak value is
very close to the 2π/β bound [Fig. 3(b)]. It is instructive to
consider the system at high temperature that is away from the
quantum critical region. For temperature as high as βJ = 0.2,
not only the peak of the Lyapunov exponent disappears, but
the magnitude of these exponents are considerably smaller
compared with the bound.

To further confirm that the peak indeed comes from the
quantum criticality, we calculate the OTOC in the system that
is away from the integer filling and hence the quantum critical
region. As shown in Fig. 3(c), there is no peak in λL as U/J
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Out-of-time-order correlation at a quantum phase transition
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Motivated by the recent studies of out-of-time-order correlation functions and the holographic duality, we
propose the quantum critical point conjecture, which is stated as: For a many-body quantum system with a
quantum phase transition, the Lyapunov exponent extracted from the out-of-time-order correlators will exhibit a
maximum around the quantum critical region. We first demonstrate that the Lyapunov exponent is well defined
in the one-dimensional Bose-Hubbard model with the help of the out-of-time-order correlation–Rényi-entropy
theorem. We then support the conjecture by numerically computing the out-of-time-order correlators. We also
compute the butterfly velocity, and propose an experiment protocol of measuring this correlator without inverting
the Hamiltonian.

DOI: 10.1103/PhysRevB.96.054503

I. INTRODUCTION

Recently there is an increasing interest in the out-of-time-
order correlation functions (OTOC) [1–22] defined as

F (t) = ⟨Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)⟩β, (1)

where Ŵ and V̂ are normally chosen as local operators. Ŵ (t) ≡
eiĤ t Ŵ e− iĤ t , and ⟨. . .⟩β ≡ tr[e− βH . . .] denotes the thermal
average at temperature 1/β = kBT . Intuitively, this correlation
function can be considered as the overlap of two states
⟨y |x ⟩, where |x ⟩ = Ŵ (t)V̂ (0)|β⟩ and |y ⟩ = V̂ (0)Ŵ (t)|β⟩.
|β⟩ ≡

∑
n e− βEn/2/

√
Z|n⟩|ñ⟩ is the thermofield double state

[23]. Z = tr e− βH is the partition function, |n⟩ and |ñ⟩ are the
corresponding energy eigenstates of the Hamiltonian, but in
different Hilbert spaces. In this sense, the inner product ⟨y |x ⟩
measures the difference in the outcome when the order of
two operations V̂ (0) and Ŵ (t) is exchanged. The exponential
deviation of the normalized OTOC

F̃ (t) = ⟨y |x ⟩√
⟨x |x ⟩⟨y |y ⟩

, (2)

from unity diagnoses the chaos and the so-called butterfly
effect in a quantum many-body system [2–12]. This deviation
can be explicitly written as F̃ (t) = α0 − α1e

λL(t− t0) (α0 ≈ 1).
Here the deviation starts from t0, and λL defines the Lyapunov
exponent for this quantum system.

It turns out that the same correlator has emerged in the
gravity physics, in the context of which it describes a bulk
scattering near the horizon and characterizes the information
scrambling [2–6]. More interestingly, it was shown recently
that for quantum systems, the Lyapunov exponent is always
bounded by 2π/β [9]. If a quantum many-body system
has an exact holographic duality to a black hole at finite
temperature [24–26], the Lyapunov exponent will saturate
the bound λL = 2π/β. While a more nontrivial speculation
is that if the Lyapunov exponent of a quantum system saturates
this bound, this system displays a holographic duality to a
black hole [9]. In this sense, the previously defined Lyapunov
exponent measures how close a quantum many-body system
is to having a holographic duality to a black hole. A quantum
mechanical model, which is known as the Sachdev-Ye-Kitaev

model [6,27], has been shown to have the emergent conformal
symmetry [6,13,27,28] and the holographic duality [14–17].
The OTOC in this model can be calculated explicitly and the
Lyapunov exponent is found to saturate the bound [6,13,18].

In this paper we are interested in studying the OTOC for
more realistic models. We will mainly focus on the Bose-
Hubbard model (BHM). This model has been well studied as a
textbook example for quantum phase transitions [29,30]. Since
its first realization in the optical lattice in 2011, the BHM has
become one of the most well-studied models experimentally
in cold atom physics [31–33]. The Hamiltonian of the BHM is

Ĥ = − J
∑

⟨ij⟩
(b̂†i b̂j + H.c.) + U

2

∑

i

n̂i(n̂i − 1), (3)

where b̂i is the spinless boson operator at ith site and n̂i = b̂
†
i b̂i

is the boson number operator. At integer filling, as U/J
increases, this model exhibits a quantum phase transition from
the superfluid phase to the Mott insulator phase. Figure 1(a)
is the schematic phase diagram for the BHM [30,34]. Since
there is also an emergent conformal symmetry near the critical
point, and the quantum critical region is so strongly interacting
that there are no well-defined single-particle excitations, it is
believed that a (2 + 1)-dimensional BHM at the quantum crit-
ical regime is dual to a gravity model in the four-dimensional
anti-de Sitter space [35,36]. Motivated by this argument, along
with the aforementioned insight from the recent studies of the
OTOC, we propose a quantum critical point (QCP) conjecture
for the Lyapunov exponent, which is stated as: the Lyapunov
exponent will display a maximum around the quantum critical
region. In the BHM, we will consider increasing U/J across
the quantum critical region with a temperature higher than the
superfluid transition temperature, as shown by the dotted line
in Fig. 1(a).

Hereafter we present several calculations to support this
conjecture. Due to the lack of a general effective scheme
to calculate the OTOC in strongly interacting systems, we
perform an exact diagonalization calculation, in which we
first obtain all eigenstates for this many-body system and
then compute the time-evolution under the basis of these
eigenstates. The calculation is limited to a one-dimensional

2469-9950/2017/96(5)/054503(7) 054503-1 ©2017 American Physical Society



OTOC for Dicke Model

Realization of Hayden-Preskill protocol with Dick model

Yanting Cheng

1 Introdution to the Dick model

Alice wanted to destroy her diary, so she tossedit into a black hole. Here, we use a spin to play the
role of the Alice’s diary in the Hayden-Preskill protocol, and a cavity palys the role of the black
hole. At the t = 0 moment, we toss a spin into a cavity by turning on the interaction between the
spin and the cavity using the Hamiltonian that

Ĥ = ~!0a
†a+ g(a† + a)�x + !z�z. (1)

First, we prepare the initial state that

 in =
1p
2
(|""i+ |##i)RA ⌦ 1P

n
e��n

X

n

e��n |ni , (2)

where the first arrow denotes the reference spin R and the second arrow denotes the spin A, and the
n denotes the photo number in the cavity. And we write the spin desity matrix into the Bell states
as

⇢i
RA

=

0

BB@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA . (3)

And this is the information Alice tossed into the black hole. After the scambling time, the system
evolute with the Dick model Hamiltonian, and the information is scambed into the whole space.
Thus the spin density matrix becomes that

⇢f
RA

=

0

BB@

1

4
0 0 0

0 1

4
0 0

0 0 1

4
0

0 0 0 1

4

1

CCA . (4)

We set ~ = !0 = 1, g = 2 and !z = 3, then we can get the numerical ⇢RA(t) in figure (1). At
the initial time, the state is prepared in |""i+ |##i, thus only blue dot equals to 1. At last, density
matrix elements for these four states all saturate to 0.25. Now we want to answer the queation what
is the time of matrix elements of ⇢RA getting to the aymptotic value? The state can be denoted by

| (t)i =

B(t)

. (5)
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Thermofield Double State 

Generalized EPR State 
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HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

4

Left Right
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ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .
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Thermofield Double State: Example 

Quantum Simulation of Coherent Hawking-Unruh Radiation

Jiazhong Hu, Lei Feng, Zhendong Zhang, and Cheng Chin
James Franck Institute, Enrico Fermi Institute and Department of Physics,

University of Chicago, Chicago, Illinois 60637, USA

Exploring quantum phenomena in a curved spacetime is an emerging interdisciplinary area relating
many fields in physics such as general relativity [1–4], thermodynamics [4–6], and quantum informa-
tion [7, 8]. One famous prediction is the Hawking-Unruh thermal radiation [3], the manifestation
of Minkowski vacuum in an accelerating reference frame. We simulate the radiation by evolving a
parametrically driven Bose-Einstein condensate of ⇡ 105 atoms [9], which radiates coherent pairs of
atoms with opposite momenta. We observe a matterwave field which follows a Boltzmann distribu-
tion for a local observer. The extracted temperature and entropy from the atomic distribution are in
agreement with Unruh’s predictions [3]. We further observe the long-distance phase coherence and
temporal reversibility of emitted matter-waves, hallmarks that distinguish Unruh radiations from
classical counterparts. Our results may lead to further insights regarding the nature of the Hawking
and Unruh e↵ects and behaviors of quantum physics in a curved spacetime.

Applying quantum mechanics to gravitational systems
is one of the hot areas to explore the not-yet-understood
physics of quantum gravity. Ideas such as Hawking radi-
ation [1, 2], gauge-gravity duality [10], and the black hole
information paradox [11–13] inspire understanding of the
role of quantum mechanics in gravitational fields, and are
essential steps toward a new approach to the foundations
of physics.

Among these pioneering approaches, Unruh radiation
[3] is predicted to describe quantum fluctuations in a non-
inertial frame. A vacuum state of fields in the Minkowski
space can appear as a thermal state to an accelerating
observer. The thermal radiation is characterized by the
Unruh temperature TU [3], and this temperature depends
on the acceleration of the observer A as

TU =
~A

2⇡ckB
, (1)

where kB is the Boltzmann constant, ~ is the reduced
Planck constant and c is the speed of light. Because of
the equivalence of inertial and gravitational acceleration,
this surprising phenomenon shares the same root as the
Hawking radiation [2] near the black hole horizon. Thus
the Unruh radiation is also known as Hawking-Unruh
radiation. Experimentally, it is extremely challenging to
observe Unruh e↵ect; an enormous acceleration of A =
2.5⇥ 1014 m/s2 is required to create an Unruh radiation
of TU = 1 µK.

Consider a quantum field  0 in an inertial frame which
is transformed into a new field  R according to an ac-
celerating observer. Such conversion is realized by the
Rindler transformation  R = R̂A 0 [4], where R̂A is the
operator which maps the quantum states to the acceler-
ating basis.

We propose that the frame transformation R̂A can
be simulated based on an evolution operator Û(⌧) =
e
�iH⌧/~ such that (see Fig. 1)

R̂A 0 = Û(⌧) 0, (2)

where the time ⌧ in the lab frame acts as a parameter to
control the acceleration A in the simulated frame. The

a

b

FIG. 1. Quantum simulation of Hawking-Unruh radi-
ation. a, To an accelerating observer, a vacuum state in the
inertial frame appears identical to a thermal state. b, We
simulate the Hawking-Unruh e↵ect by a pair-creation pro-
cess in a driven condensate, whose evolution is equivalent to
a coordinate transformation to an accelerating frame. The
matter-wave field shares the same characteristics as the Un-
ruh radiation: it is locally indistinguishable from a Boltz-
mann distribution, but is long-range coherent and temporally
reversible.

Hamiltonian given by H = i~
P

k
gk(a

†

k
a
†

�k
�aka�k) gen-

erates the frame boost, where ak (a†
k
) is the annihilation

(creation) operator of a particle with momentum k and
gk is the coupling constant. We can thus emulate the
physics in the accelerating frame based on a bench-top
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experiment without the need to greatly accelerate the
sample. (See Ref. [14] and Methods for details.)

In this paper we demonstrate quantum simulation of
Unruh e↵ect by only considering the momentum modes
with the same amplitude |~k| = constant (see Fig. 1).
Modulating the interactions between condensed atoms,
we engineer the Hamiltonian H, which approximates (see
Methods)

H = i~g
X

|~k|=kf

(a†
k
a
†

�k
� aka�k), (3)

where kf is a constant. Given this Hamiltonian H,
a condensate acts as a vacuum that radiates atoms to
about 300 momentum modes, su�cient to build statis-
tics, test the Boltzmann distribution, and extract the
e↵ective temperature T of the matter-waves fields. To
verify that our system simulates the Unruh physics, we
demonstrate the spatial coherence and reversibility of the
matter-waves fields, which clearly distinguishes Unruh
radiation from classical counterparts.

The connection between the dynamics of our system
and the Rindler frame transformation with acceleration
A can be best understood from the evolution of the
bosonic fields [14],


ak(⌧)
a
†

�k
(⌧)

�
= R̂


ak(0)
a
†

�k
(0)

�
, (4)

where R̂ = e
g⌧�x is the Rindler coordinate transforma-

tion, �x is the x�component of the Pauli matrix. The ac-
celeration A in the simulated accelerating frame is given
by (see Methods)

A =
2⇡cEkf

~ ln(1 + 1/n̄)
���!
n̄�1

2⇡cEkf

~ n̄, (5)

where Ekf is the energy of the excitation with momentum

k = kf and n̄(⌧) = sinh2(g⌧) is the mean population
in one momentum mode (see Methods). In the large
population limit n̄ >> 1, the acceleration scales linearly
with n̄.

Our experiment starts with a Bose-Einstein condensate
of 6⇥104 atoms confined in a disk-shaped trap. By mod-
ulating the magnetic field at frequency ! near a Feshbach
resonance [15, 16], a jet-like two-dimensional emission of
atoms with momentum kf =

p
m!/~ is observed few

milliseconds after the modulation, where m is the atomic
mass. Such emission forms a fluctuating bosonic field,
also called “Bose fireworks”, and is a result of bosonic
stimulation [9, 17]. Its evolution can be approximately
described by the Hamiltonian in Eq. (3) (see Methods).

In typical experiments, the emission carries as many
as 276 angular modes and each mode acquires a width of
1.33� (see Methods). To study the distribution of mode
population, we divide the emission pattern evenly into
180 angular slices. For each slice, we extract the atom
number n and evaluate the probability distribution of the
mode population P (n) (see Fig. 2a).
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FIG. 2. Thermal behavior of the matter-wave emis-
sion. a shows the measured probability distribution P (n)
within a 2� slice of the emission pattern after modulation
time ⌧ = 0, 3.36, 4.8 and 6.24 ms (black, green, red and blue
circles). The solid lines are fits based on a thermal model
(see Methods). The inset shows the data in the log scale. b
shows the e↵ective temperature T (red circles) and entropy
per mode S (blue circles) versus the mean population per
mode. The derived acceleration A is shown on the top. The
red solid line is a fit of T = A/c. The blue solid line is the
prediction that includes the detection noise while the purple
line is the prediction excluding the noise. The inset shows
the evolution of T and S. The dashed lines are guides to the
eye. Here the condensate’s radius is 13 µm. The scattering
length is modulated at frequency !/2⇡ = 2.1 kHz with a
small o↵set of adc = 3a0 and an amplitude of aac = 50a0,
where a0 is the Bohr radius. All error bars correspond to one
standard deviation of the mean values.

The measured mode population distributions well re-
semble that from a thermal radiation (see Fig. 2a). We
extract the e↵ective temperature T based on a thermal
model (see Methods), which fits the data excellently. Fur-
thermore, the extracted temperature shows a clear linear
dependence on the mean atomic population per mode
n̄ = (1/⇠)

R
nP (n)dn with ⇠ = 2�/1.33� = 1.5 the

average number of modes within a 2� slice (See Fig. 2b).

2

By entering the interaction picture and eliminating H0 =
P

k ✏ka
†

kak, we simplify the Hamiltonian under the
rotating wave and Bogoliubov approximations and only keep the resonant terms. Then the interaction Hamiltionian
becomes

H = i~g
X

|k|=kf

(a†
k
a
†

�k
� aka�k), (M9)

where g = ⇡~N0aac/mV and kf =
p

m!/~.
According to Eq. (M3), we know the evolution of the operators as


ak(⌧)
a
†

�k
(⌧)

�
= e

g⌧�x


ak(0)
a
†

�k
(0)

�
. (M10)

where �x is the x-component of Pauli matrices. In order to simulate the Rindler transformation, we have to match
the form of Eq. (M4) and obtain the simulated acceleration A as

A =
⇡!c

2 ln coth(g⌧)
. (M11)

The mean population per mode increases as n̄ = ha
†

k
(⌧)ak(⌧)i = sinh2(g⌧). Thus, A can be characterized by the

mean population per mode n̄ as

A =
2⇡cEkf

~ ln(1 + 1/n̄)
���!
n̄�1

2⇡cEkf

~ n̄, (M12)

where Ekf = ~!/2 is the kinetic energy of each atom.
Now, let’s consider the evolution of the wave function instead of the operators. Two counter-propagating modes

with momentum k and �k are generated together and we have to consider them at the same time. By grouping k

and �k together, we decompose the Hamiltonian into H =
P

hk, where hk = i~g(a†
k
a
†

�k
� aka�k). Then we only

need to consider the evolution of each hk. To simplify the notation without loss of the generality, we use h to replace
hk. Therefore, the evolution of the wave function can be written as [29]

| (⌧)i = e
�ih⌧/~

|0i =
1

cosh(g⌧)

1X

n=0

tanhn(g⌧)|n, ni. (M13)

The wave function matches the Minkovski vacuum expanding in the basis of the Rindler frame [4]. The density matrix
of one single mode such as k is determined by tracing out the other mode �k, i.e.

⇢̂k(⌧) = Tr�k| (⌧)iIh (⌧)|I =
1X

n=0

pn|nikhn|k (M14)

where pn = tanh2n(g⌧)/ cosh2(g⌧). By comparing with a thermal distribution of an ideal Bose gas

p̃(T ) = e
�

n~!
2kBT (1� e

�
~!

2kBT ), (M15)

we can build a direct mapping between the e↵ective temperature with the time ⌧ or the mean population n̄ as

T =
Ekf

2kB ln coth(g⌧)
(M16)

=
Ekf

kB ln(1 + 1/n̄)
���!
n̄�1

Ekf

kB
n̄. (M17)

where the mean population

n̄ =
1X

n=0

npn =
1

e
Ekf

/kBT
� 1

(M18)

follows the Bose-Einstein statistics.

Long time limit
TFD

J. Hu. et.al. Nat. Phys. 2018



Thermofield Double State: Example 

Quantum Simulation of Coherent Hawking-Unruh Radiation

Jiazhong Hu, Lei Feng, Zhendong Zhang, and Cheng Chin
James Franck Institute, Enrico Fermi Institute and Department of Physics,

University of Chicago, Chicago, Illinois 60637, USA

Exploring quantum phenomena in a curved spacetime is an emerging interdisciplinary area relating
many fields in physics such as general relativity [1–4], thermodynamics [4–6], and quantum informa-
tion [7, 8]. One famous prediction is the Hawking-Unruh thermal radiation [3], the manifestation
of Minkowski vacuum in an accelerating reference frame. We simulate the radiation by evolving a
parametrically driven Bose-Einstein condensate of ⇡ 105 atoms [9], which radiates coherent pairs of
atoms with opposite momenta. We observe a matterwave field which follows a Boltzmann distribu-
tion for a local observer. The extracted temperature and entropy from the atomic distribution are in
agreement with Unruh’s predictions [3]. We further observe the long-distance phase coherence and
temporal reversibility of emitted matter-waves, hallmarks that distinguish Unruh radiations from
classical counterparts. Our results may lead to further insights regarding the nature of the Hawking
and Unruh e↵ects and behaviors of quantum physics in a curved spacetime.

Applying quantum mechanics to gravitational systems
is one of the hot areas to explore the not-yet-understood
physics of quantum gravity. Ideas such as Hawking radi-
ation [1, 2], gauge-gravity duality [10], and the black hole
information paradox [11–13] inspire understanding of the
role of quantum mechanics in gravitational fields, and are
essential steps toward a new approach to the foundations
of physics.

Among these pioneering approaches, Unruh radiation
[3] is predicted to describe quantum fluctuations in a non-
inertial frame. A vacuum state of fields in the Minkowski
space can appear as a thermal state to an accelerating
observer. The thermal radiation is characterized by the
Unruh temperature TU [3], and this temperature depends
on the acceleration of the observer A as

TU =
~A

2⇡ckB
, (1)

where kB is the Boltzmann constant, ~ is the reduced
Planck constant and c is the speed of light. Because of
the equivalence of inertial and gravitational acceleration,
this surprising phenomenon shares the same root as the
Hawking radiation [2] near the black hole horizon. Thus
the Unruh radiation is also known as Hawking-Unruh
radiation. Experimentally, it is extremely challenging to
observe Unruh e↵ect; an enormous acceleration of A =
2.5⇥ 1014 m/s2 is required to create an Unruh radiation
of TU = 1 µK.

Consider a quantum field  0 in an inertial frame which
is transformed into a new field  R according to an ac-
celerating observer. Such conversion is realized by the
Rindler transformation  R = R̂A 0 [4], where R̂A is the
operator which maps the quantum states to the acceler-
ating basis.

We propose that the frame transformation R̂A can
be simulated based on an evolution operator Û(⌧) =
e
�iH⌧/~ such that (see Fig. 1)

R̂A 0 = Û(⌧) 0, (2)

where the time ⌧ in the lab frame acts as a parameter to
control the acceleration A in the simulated frame. The

a

b

FIG. 1. Quantum simulation of Hawking-Unruh radi-
ation. a, To an accelerating observer, a vacuum state in the
inertial frame appears identical to a thermal state. b, We
simulate the Hawking-Unruh e↵ect by a pair-creation pro-
cess in a driven condensate, whose evolution is equivalent to
a coordinate transformation to an accelerating frame. The
matter-wave field shares the same characteristics as the Un-
ruh radiation: it is locally indistinguishable from a Boltz-
mann distribution, but is long-range coherent and temporally
reversible.

Hamiltonian given by H = i~
P

k
gk(a

†

k
a
†

�k
�aka�k) gen-

erates the frame boost, where ak (a†
k
) is the annihilation

(creation) operator of a particle with momentum k and
gk is the coupling constant. We can thus emulate the
physics in the accelerating frame based on a bench-top
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experiment without the need to greatly accelerate the
sample. (See Ref. [14] and Methods for details.)

In this paper we demonstrate quantum simulation of
Unruh e↵ect by only considering the momentum modes
with the same amplitude |~k| = constant (see Fig. 1).
Modulating the interactions between condensed atoms,
we engineer the Hamiltonian H, which approximates (see
Methods)

H = i~g
X

|~k|=kf

(a†
k
a
†

�k
� aka�k), (3)

where kf is a constant. Given this Hamiltonian H,
a condensate acts as a vacuum that radiates atoms to
about 300 momentum modes, su�cient to build statis-
tics, test the Boltzmann distribution, and extract the
e↵ective temperature T of the matter-waves fields. To
verify that our system simulates the Unruh physics, we
demonstrate the spatial coherence and reversibility of the
matter-waves fields, which clearly distinguishes Unruh
radiation from classical counterparts.

The connection between the dynamics of our system
and the Rindler frame transformation with acceleration
A can be best understood from the evolution of the
bosonic fields [14],


ak(⌧)
a
†

�k
(⌧)

�
= R̂


ak(0)
a
†

�k
(0)

�
, (4)

where R̂ = e
g⌧�x is the Rindler coordinate transforma-

tion, �x is the x�component of the Pauli matrix. The ac-
celeration A in the simulated accelerating frame is given
by (see Methods)

A =
2⇡cEkf

~ ln(1 + 1/n̄)
���!
n̄�1

2⇡cEkf

~ n̄, (5)

where Ekf is the energy of the excitation with momentum

k = kf and n̄(⌧) = sinh2(g⌧) is the mean population
in one momentum mode (see Methods). In the large
population limit n̄ >> 1, the acceleration scales linearly
with n̄.

Our experiment starts with a Bose-Einstein condensate
of 6⇥104 atoms confined in a disk-shaped trap. By mod-
ulating the magnetic field at frequency ! near a Feshbach
resonance [15, 16], a jet-like two-dimensional emission of
atoms with momentum kf =

p
m!/~ is observed few

milliseconds after the modulation, where m is the atomic
mass. Such emission forms a fluctuating bosonic field,
also called “Bose fireworks”, and is a result of bosonic
stimulation [9, 17]. Its evolution can be approximately
described by the Hamiltonian in Eq. (3) (see Methods).

In typical experiments, the emission carries as many
as 276 angular modes and each mode acquires a width of
1.33� (see Methods). To study the distribution of mode
population, we divide the emission pattern evenly into
180 angular slices. For each slice, we extract the atom
number n and evaluate the probability distribution of the
mode population P (n) (see Fig. 2a).
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FIG. 2. Thermal behavior of the matter-wave emis-
sion. a shows the measured probability distribution P (n)
within a 2� slice of the emission pattern after modulation
time ⌧ = 0, 3.36, 4.8 and 6.24 ms (black, green, red and blue
circles). The solid lines are fits based on a thermal model
(see Methods). The inset shows the data in the log scale. b
shows the e↵ective temperature T (red circles) and entropy
per mode S (blue circles) versus the mean population per
mode. The derived acceleration A is shown on the top. The
red solid line is a fit of T = A/c. The blue solid line is the
prediction that includes the detection noise while the purple
line is the prediction excluding the noise. The inset shows
the evolution of T and S. The dashed lines are guides to the
eye. Here the condensate’s radius is 13 µm. The scattering
length is modulated at frequency !/2⇡ = 2.1 kHz with a
small o↵set of adc = 3a0 and an amplitude of aac = 50a0,
where a0 is the Bohr radius. All error bars correspond to one
standard deviation of the mean values.

The measured mode population distributions well re-
semble that from a thermal radiation (see Fig. 2a). We
extract the e↵ective temperature T based on a thermal
model (see Methods), which fits the data excellently. Fur-
thermore, the extracted temperature shows a clear linear
dependence on the mean atomic population per mode
n̄ = (1/⇠)

R
nP (n)dn with ⇠ = 2�/1.33� = 1.5 the

average number of modes within a 2� slice (See Fig. 2b).

2

By entering the interaction picture and eliminating H0 =
P

k ✏ka
†

kak, we simplify the Hamiltonian under the
rotating wave and Bogoliubov approximations and only keep the resonant terms. Then the interaction Hamiltionian
becomes

H = i~g
X

|k|=kf

(a†
k
a
†

�k
� aka�k), (M9)

where g = ⇡~N0aac/mV and kf =
p

m!/~.
According to Eq. (M3), we know the evolution of the operators as


ak(⌧)
a
†

�k
(⌧)

�
= e

g⌧�x


ak(0)
a
†

�k
(0)

�
. (M10)

where �x is the x-component of Pauli matrices. In order to simulate the Rindler transformation, we have to match
the form of Eq. (M4) and obtain the simulated acceleration A as

A =
⇡!c

2 ln coth(g⌧)
. (M11)

The mean population per mode increases as n̄ = ha
†

k
(⌧)ak(⌧)i = sinh2(g⌧). Thus, A can be characterized by the

mean population per mode n̄ as

A =
2⇡cEkf

~ ln(1 + 1/n̄)
���!
n̄�1

2⇡cEkf

~ n̄, (M12)

where Ekf = ~!/2 is the kinetic energy of each atom.
Now, let’s consider the evolution of the wave function instead of the operators. Two counter-propagating modes

with momentum k and �k are generated together and we have to consider them at the same time. By grouping k

and �k together, we decompose the Hamiltonian into H =
P

hk, where hk = i~g(a†
k
a
†

�k
� aka�k). Then we only

need to consider the evolution of each hk. To simplify the notation without loss of the generality, we use h to replace
hk. Therefore, the evolution of the wave function can be written as [29]

| (⌧)i = e
�ih⌧/~

|0i =
1

cosh(g⌧)

1X

n=0

tanhn(g⌧)|n, ni. (M13)

The wave function matches the Minkovski vacuum expanding in the basis of the Rindler frame [4]. The density matrix
of one single mode such as k is determined by tracing out the other mode �k, i.e.

⇢̂k(⌧) = Tr�k| (⌧)iIh (⌧)|I =
1X

n=0

pn|nikhn|k (M14)

where pn = tanh2n(g⌧)/ cosh2(g⌧). By comparing with a thermal distribution of an ideal Bose gas

p̃(T ) = e
�

n~!
2kBT (1� e

�
~!

2kBT ), (M15)

we can build a direct mapping between the e↵ective temperature with the time ⌧ or the mean population n̄ as

T =
Ekf

2kB ln coth(g⌧)
(M16)

=
Ekf

kB ln(1 + 1/n̄)
���!
n̄�1

Ekf

kB
n̄. (M17)

where the mean population

n̄ =
1X

n=0

npn =
1

e
Ekf

/kBT
� 1

(M18)

follows the Bose-Einstein statistics.

Long time limit
TFD

Two-Mode Squeezed State:

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR

Ĥ = â†Lâ
†
R + âLâR

4

L R
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ER=EPR Conjecture 

ER = EPR

Einstein-Rosen Bridge 
Wormhole Quantum Entanglement 

Maldacena and Susskind, 2013

Thermofield Double State

“=” best understood in term of holographic duality  

Einstein Rosen Einstein Podolsky Rosen



Wormhole

The movie “ Interstellar ” 星际穿越

The distant end of the wormhole was imagined to be in
the distant galaxy and closer to its center than we are to the
center of our Milky Way. Consequently, the view of the

surrounding galaxy must be recognisably different from the
view we have from Earth: larger and brighter nebulae, more
dense dust, with brighter and more numerous visible stars.
This view was created as an artistic task.
Nebulae were painted (by texture artist Zoe Lord), using a

combination of space photography and imagination, cover-
ing a range of color palettes. These were combined with
layers of painted bright space dust and dark, silhouetted dust
channels, to create a view of the galaxy with as much visual
depth and complexity as possible.
Star layout was achieved by taking real star data as seen

from Earth and performing various actions to make the view
different: the brightest stars were removed from the data set
(to avoid recognisable constellations) and the brightnesses of
all the other stars were increased and shuffled. The result
was a believably natural-looking star layout which was
unrecognisable compared to our familiar view of the night
sky from Earth.
Figure 10 is one of our distant-galaxy images, showing

nebulae, space dust, and stars.

B. View through Interstellar’s Wormhole

When we place this distant-galaxy image on the upper ce-
lestial sphere of Fig. 5 and place a simple star field on the
lower celestial sphere, within which the camera resides, then

Fig. 8. Light rays that travel from Saturn, though the Dneg wormhole, to the
camera, producing the images in Fig. 7. [Adapted from Fig. 15.3 of The
Science of Interstellar (Ref. 5).]

Fig. 9. Images of Saturn on the camera sky, as seen through a wormhole with fixed length equal to the wormhole radius, 2a¼q, and for two lensing widths:
W ¼ 0:014q (top) and W ¼ 0:43 (bottom). [Adapted from Fig. 15.4 of The Science of Interstellar (Ref. 5), and used by permission of W. W. Norton &
Company, Inc. TM & Copyright Warner Bros. Entertainment Inc. (s15), and Kip Thorne. The images on the right may be used under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) license. Any further distribution of these images must maintain attribution to the
author(s) and the title of the work, journal citation and DOI. You may not use the images for commercial purposes and if you remix, transform or build upon
the images, you may not distribute the modified images.]
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Wormhole

The movie “ Interstellar ” 星际穿越

The Wormhole in “Interstellar” is traversable 

The Einstein-Rosen Bridge is NOT traversable

The distant end of the wormhole was imagined to be in
the distant galaxy and closer to its center than we are to the
center of our Milky Way. Consequently, the view of the

surrounding galaxy must be recognisably different from the
view we have from Earth: larger and brighter nebulae, more
dense dust, with brighter and more numerous visible stars.
This view was created as an artistic task.
Nebulae were painted (by texture artist Zoe Lord), using a

combination of space photography and imagination, cover-
ing a range of color palettes. These were combined with
layers of painted bright space dust and dark, silhouetted dust
channels, to create a view of the galaxy with as much visual
depth and complexity as possible.
Star layout was achieved by taking real star data as seen

from Earth and performing various actions to make the view
different: the brightest stars were removed from the data set
(to avoid recognisable constellations) and the brightnesses of
all the other stars were increased and shuffled. The result
was a believably natural-looking star layout which was
unrecognisable compared to our familiar view of the night
sky from Earth.
Figure 10 is one of our distant-galaxy images, showing

nebulae, space dust, and stars.

B. View through Interstellar’s Wormhole

When we place this distant-galaxy image on the upper ce-
lestial sphere of Fig. 5 and place a simple star field on the
lower celestial sphere, within which the camera resides, then

Fig. 8. Light rays that travel from Saturn, though the Dneg wormhole, to the
camera, producing the images in Fig. 7. [Adapted from Fig. 15.3 of The
Science of Interstellar (Ref. 5).]

Fig. 9. Images of Saturn on the camera sky, as seen through a wormhole with fixed length equal to the wormhole radius, 2a¼q, and for two lensing widths:
W ¼ 0:014q (top) and W ¼ 0:43 (bottom). [Adapted from Fig. 15.4 of The Science of Interstellar (Ref. 5), and used by permission of W. W. Norton &
Company, Inc. TM & Copyright Warner Bros. Entertainment Inc. (s15), and Kip Thorne. The images on the right may be used under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) license. Any further distribution of these images must maintain attribution to the
author(s) and the title of the work, journal citation and DOI. You may not use the images for commercial purposes and if you remix, transform or build upon
the images, you may not distribute the modified images.]
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What this is all about ?

Hayden and Preskill ask: 

Can one retrieval information from a black hole ? 
= 

Can one retrieval initial state information  
when a quantum system thermalizes

Information scrambling in quantum thermalization prevents this

The more complicated a quantum system,  
the faster information scrambles 

Thermofield Double State can help !



Hayden-Preskill Protocol 

Hayden, Priskill, 2007

A
Alice

R
Reference

B
Black Hole

D
Hawking RaDiation 

C

EPR Pair

Thus,

S
(2)(RC) = (r + c)log2 (11)

I
(2)(R,C) = rlog2 + clog2� (r + c)log2 = 0 (12)

Similarly ,we have

I
(2)(R,D) = 0 (13)

Thus, using only the information of Hawking radiation of the black hole or that of the remaining
black hole, one cannot retrieve the information of Alice’s diary. Therefore, we have to use other
information as well in order to discover Alice’s secret.

We can verify that using the information of the system C (the Hawking radiation) and system
B’(the maximally entangled state of the black hole B) together, one is possible to retrieve Alice’s
secret.

I
(2)(R,DB

0) = S
(2)(R) + S

(2)(DB
0)� S

(2)(RDB
0)

= S
(2)(R) + S

(2)(RC)� S
(2)(C) = rlog2 + (r + c)log2� clog2 = 2rlog2

(14)

Similarly, we also have

I
(2)(R,CD) = 2rlog2 (15)

i.e. with the help of the information of remaining black hole and the Hawking radiation, one is also
possible to recover Alice’s secret.

4 some relations and graph of OTOC

There is a relation between the Renyi-2 entropy and the average of OTOC.

e
�S

(2)
RC =

Z
dUTr[⇢2

RC
(U)] = hOAOD(t)O†

A
O

†
D
(t)i (16)

Now, we use the diagram to verify this equation. First, we have the diagram of OTOC:

hOAOD(t)O†
A
O

†
D
(t)i = (17)

4

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA

4

U
Unitary Evolution



Hayden-Preskill Protocol 

Hayden, Priskill, 2007

A
Alice

R
Reference

B
Black Hole

D
Hawking RaDiation 

C

EPR Pair

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA

4

U
Unitary Evolution

EPR Pair

B’

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR

Ĥ = â†Lâ
†
R + âLâR

I2(R,DB0
) = 2 log dR

4



Hayden-Preskill Protocol: Measurement-Based

Yoshida, Kitaev, 2017

A

R

B

DC

EPR Pair

U

EPR Pair
B’

U*

EPR Pair
A’

R’
D’EPR Pair

Two identical copy of the Hamiltonian (up to a minus sign)
Fully scrambled (black hole type dynamics)

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR

Ĥ = â†Lâ
†
R + âLâR

I2(R,DB0
) = 2 log dR P (RR0|DD0

) = 1

4



Physical Realization 

A

R

B

DC

EPR Pair

U

EPR Pair
B’

U*

EPR Pair
A’

R’
D’EPR Pair

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR

Ĥ = â†Lâ
†
R + âLâR

I2(R,DB0
) = 2 log dR P (RR0|DD0

) = 1

4

Two identical copy of the Hamiltonian (up to a minus sign)
Fully scrambled (black hole type dynamics) ?

?

?



Physical Realization 

L R

⇢0 = V̂ Ĥ R̂(�) �Ĥ V̂ V̂ (t)

ttofv � ⇢0

⇢ = | (r)|2

W̃ (vt) = W̃ 0
+ W̃ 1vt

{V (r), ⇢(r)}
R
BZ F(h(k)) = C

V (r) ⇢(r)

| i T, µ, . . .

hÔi1 = h⇢eq(E)Ôi

HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR

Ĥ = â†Lâ
†
R + âLâR

I2(R,DB0
) = 2 log dR P (RR0|DD0
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HB � HD � HA {|ni}

| iAR =
1p
2
(| ""i+ | ##i)

PBell t

| iTFD =

X

n

e��En/2|niL|niR. (13)

{|niL} {|niR}

TrR| ih | =
P
n
e��En |nihn|

� ! 0 | iTFD !
P
n
|niL|niR
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Initial State Preparation

Turn on coupling and let the system evolve until scrambling 

Realization of Hayden-Preskill protocol with Dick model

Yanting Cheng

1 Introdution to the Dick model

Alice wanted to destroy her diary, so she tossedit into a black hole. Here, we use a spin to play the
role of the Alice’s diary in the Hayden-Preskill protocol, and a cavity palys the role of the black
hole. At the t = 0 moment, we toss a spin into a cavity by turning on the interaction between the
spin and the cavity using the Hamiltonian that

Ĥ = ~!0a
†a+ g(a† + a)�x + !z�z. (1)

First, we prepare the initial state that

 in =
1p
2
(|""i+ |##i)RA ⌦ 1P

n
e��n

X

n

e��n |ni , (2)

where the first arrow denotes the reference spin R and the second arrow denotes the spin A, and the
n denotes the photo number in the cavity. And we write the spin desity matrix into the Bell states
as

⇢i
RA

=

0

BB@

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA . (3)

And this is the information Alice tossed into the black hole. After the scambling time, the system
evolute with the Dick model Hamiltonian, and the information is scambed into the whole space.
Thus the spin density matrix becomes that

⇢f
RA

=

0

BB@

1

4
0 0 0

0 1

4
0 0

0 0 1

4
0

0 0 0 1

4

1

CCA . (4)

We set ~ = !0 = 1, g = 2 and !z = 3, then we can get the numerical ⇢RA(t) in figure (1). At
the initial time, the state is prepared in |""i+ |##i, thus only blue dot equals to 1. At last, density
matrix elements for these four states all saturate to 0.25. Now we want to answer the queation what
is the time of matrix elements of ⇢RA getting to the aymptotic value? The state can be denoted by

| (t)i =

B(t)

. (5)
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Ô
i

H
B
�

H
D
�

H
A
{|
n
i}

| 
i A

R
=

1 p
2
(
|"

"i
+
|#

#i
)

P
B
el
l
t

| 
i T

F
D
=

X n

e�
�
E

n
/
2
|n
i L
|n
i R
.

(
1
3
)

{|
n
i L
}
{|
n
i R
}

T
r
R
| 

ih
 
|=

P n
e�

�
E

n
|n
ih
n
|

�
!

0
| 

i T
F
D
!

P n
|n
i L
|n
i R

Ĥ
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â† L
â† R

+
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â†
â
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3 The stability of the Hayden-Preskill protocol

Next we are going to study the stability of this model, where the ”backward” time-evolution is not
perfect. In this case, the probabilities are

P(EPRDD0 ,EPRRR0) = h in|EPRiDD0DD0 hEPR|EPRiRR0RR”
hEPR| ini

=
1

d2
A

. (19)

P (EPRDD0) = h in|EPRiDD0DD0 hEPR| ini = (20)
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â
+
g(
â†
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â
�
g(
â†
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3 The stability of the Hayden-Preskill protocol

Next we are going to study the stability of this model, where the ”backward” time-evolution is not
perfect. In this case, the probabilities are

P(EPRDD0 ,EPRRR0) = h in|EPRiDD0DD0 hEPR|EPRiRR0RR”
hEPR| ini

=
1

d2
A
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1

d2
A
d2
D

X

OA⇢PA,OD⇢PD

hOAUODU†O†
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†
R + âLâR
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Ĥ

V̂
V̂
(
t)

t t
of
v
�

⇢ 0

⇢
=

| 
(
r)
|2

W̃
(
v t
)
=

W̃
0
+
W̃

1
v t

{V
(
r)
,⇢
(
r)
}

R B
Z
F
(
h
(
k
)
)
=

C

V
(
r)
⇢(
r)

| 
i
T
,µ

,.
..

hÔ
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3 The stability of the Hayden-Preskill protocol

Next we are going to study the stability of this model, where the ”backward” time-evolution is not
perfect. In this case, the probabilities are

P(EPRDD0 ,EPRRR0) = h in|EPRiDD0DD0 hEPR|EPRiRR0RR”
hEPR| ini

=
1

d2
A

. (19)

P (EPRDD0) = h in|EPRiDD0DD0 hEPR| ini = (20)
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And we can construct that UE = V and EO†
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E
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Ĥ = â†Lâ
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†â� g0(â† + â)�x � ~!0
z�z

4
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†
R + âLâR
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random

1

We can check two limiting cases. At t = 0, E = I. Thus, F = d
2
D

d2
A+d2

D�1
⇡ 1 (dD � dA).

And when U and V are far away from each other, the E can be regarded as random matrix, thus
hODEO†

D
E†i becomes zero unless OD is an identity operator. So in this limit, F = 1

d2
A
.

And we plot the F versus parameter di↵erences between evolution U and evolution V in figure
(5)(6)(7) at t = 25 when F gets to it’s asymptotic value. According to above discussed relation,
the behavior of F depandes on the behavior of two point correlation function hODEO†

D
E†i. To

verify this relation numerically, we also plot the haDEa†
D
E†i versus parameter di↵erences between

evolution U and evolution V in figure (8)(9)(10), where aD is the annihilation operator in subsystem
D. We can see that the energy scales for F and haDEa†

D
E†i gets to their asymptotic value consistent

with each other.
In the figure (5)(6)(7), their asymptotic values are little above 0.25, which results from equation

(24). When OD = I, hODEO†
D
E†i becomes 1. And for other Pauli operator, it will decays to zero

if the system is chaotic enough. For example, the OTOCs in figure (8)(9)(10) almost decay to zero.
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Summary

败也萧何

Because of information scrambling, we can not decode the initial 
state information for a single system 
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Take Home Message

败也萧何

Because of information scrambling, we can not decode the initial 
state information for a single system 
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成也萧何

Thank to information scrambling, we can decode the initial state 
information for a thermofield double system 



Outlook: Traversable Wormhole 

How to make a wormhole traversable ?

FIG. 1. The setup for the regenesis phenomenon. At t = �ts, uncoupled systems L,R are in an

entangled state (1.1). The signal in JR disappears shortly after we turn o↵ the source 'R. At t = 0,

we turn on a local coupling between L and R for a short time, which we have approximated as a

delta function in time in (1.2). At t = ts, the signal reappears in the L system if ts is su�ciently

large. The reappeared signal is not identical to the original signal, but related by a transformation.

g; (ii) as a function of ts,
⌦
JL(t = ts, ~x)

↵
g
has the following behavior

⌦
JL(ts, ~x)

↵
g
⇡ C(g)'R(�ts, ~x), ts � t⇤ (1.4)

where C(g) is an O(1) constant depending on g. We thus find the “input signal” 'R from

the R system at t = �ts regroups at t = ts in the L system long after it has dissipated!3

The result (1.4) is insensitive to the specific form of L� R interaction V . The behavior for

a system with ts ⇠ t⇤ is more complicated and will be mentioned later.

The essential elements behind the regenesis behavior (1.4) are: (i) scrambling in a chaotic

system makes out-of-time-ordered correlation functions (OTOCs) vanish for t � t⇤ [7, 8],

and (ii) the entanglement structure of (1.1) which strongly correlates an operator inserted at

(�t, ~x) with an operator at (t, ~x). Compared to other manifestations of quantum chaos such

3 Note that in (1.4) signals which are input earlier in the R systems appear later in the L system, so in fact

what one finds is the time reversed form of the input signal.

5

Gao, Jafferies and Wall, 2017; Maldacena, Stanford and Yang, 2017 
Ping Gao and Hong Liu, 2018

To be continued …
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