Fundamental Problems in Quantum Non-Equilibrium Dynamics I

Hui Zhai
Institute for Advanced Study
Tsinghua University Beijing, China

CSRC Workshop on Quantum Non-Equilibrium Phenomena June 2019

Synthetic Quantum Matter

Cold Atoms

Trapped Ion

Schematic NMR Spectrometer

NMR

NV Center

Synthetic Quantum Matter

Schematic NMR Spectrometer

Cold Atoms Trapped Ion

NMR

NV Center

v.s. Solid State Quantum Materials

Quantum Dynamics

Non-Equilibrium Dynamics

- Simple
- Fundmental
- Universal
- Directly Relevant to Experiments
- Mathematically Solid/Rigorous

Symmetry

Expanding Harmonic Trap

Harmonic trap

Expanding Harmonic Trap

Expanding Harmonic Trap

Harmonic trap
$R=\sqrt{\left\langle\sum r_{i}^{2}\right\rangle} \mathrm{A}$

Scale Invariant Quantum Gas

Harmonic length:

$$
a=\sqrt{\frac{\hbar}{m \omega}}
$$

By dimension analysis: $\quad \mathcal{R} \sim \sqrt{t}$

Expanding Harmonic Trap

Expanding Harmonic Trap

Harmonic trap
$R=\sqrt{\left\langle\sum r_{i}^{2}\right\rangle} \quad \mathrm{A} \quad \begin{aligned} & \text { Scale Invariant Quantum Gas }\end{aligned}$

Scale Invariance

$$
i \hbar \frac{\partial}{\partial t} \Psi=-\sum_{i} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2} \Psi
$$

Scale Transformation

$$
\begin{aligned}
\mathbf{r}_{i} & \rightarrow \Lambda \mathbf{r}_{i} \\
t & \rightarrow \Lambda^{2} t
\end{aligned}
$$

$$
\frac{1}{\Lambda^{2}}
$$

$$
\frac{1}{\Lambda^{2}}
$$

No other energy scale except for the kinetic energy

Zoo of Scale Invariant Quantum Gases

Non-interacting bosons/ fermions at any dimension	No other length scale except for density
Unitary Fermi gas at three dimension	Density and a_{s} $a_{s}=\infty$
Tonks gas of bosons/ fermions at one dimension	Density and $g_{1 D}$ $g_{1 D}=\infty$

Universal behavior:

$$
\langle V\rangle=\alpha\langle T\rangle
$$

Universal Discrete Scaling Symmetry

Harmonic trap
$R=\sqrt{\left\langle\sum r_{i}^{2}\right\rangle} \mathrm{A}$
Scale Invariant Quantum Gas

Universal Phenomena

$\square \quad$ Universal
\square Independent of Temperature
\square Independent of State of Matter
\square Independent Dimension

Scaling Symmetry in a Harmonic Trap

$$
i \hbar \frac{\partial}{\partial t} \Psi=\left[H+\sum_{i} \frac{1}{2} m \omega^{2} r_{i}^{2}\right] \Psi
$$

Scale Transformation

$$
\begin{aligned}
\mathbf{r}_{i} & \rightarrow \Lambda \mathbf{r}_{i} \\
t & \rightarrow \Lambda^{2} t
\end{aligned}
$$

$$
\begin{gathered}
\downarrow \\
\frac{1}{\Lambda^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& \downarrow \\
& \frac{1}{\Lambda^{2}}
\end{aligned}
$$

This scaling symmetry exists only if

$$
\omega=\frac{1}{\sqrt{\lambda} t}
$$

Expansion Dynamics

$$
\begin{aligned}
& i \frac{d}{d t} R^{2}=\sum_{i} \\
& {\left.\left[r_{i}^{2}, H\right]\right\rangle=2 i\langle\hat{D}\rangle } \\
& \frac{1}{2} \sum_{i}\left(\mathbf{r}_{i} \cdot \mathbf{p}_{i}+\mathbf{p}_{i} \cdot \mathbf{r}_{i}\right)
\end{aligned}
$$

Generator of spatial scaling transformation

Expansion Dynamics

$$
\begin{gathered}
i \frac{d}{d t} R^{2}=\sum_{i}\left\langle\left[r_{i}^{2}, H\right]\right\rangle=2 i\langle\hat{D}\rangle \\
i \frac{d}{d t}\langle\hat{D}\rangle=\langle[\hat{D}, H]\rangle=2 i\left(\langle H\rangle-\omega^{2} R^{2}\right) \\
\frac{d}{d t}\langle H\rangle=\left\langle\frac{\partial}{\partial t} H\right\rangle=\omega \dot{\omega} R^{2}
\end{gathered}
$$

Expansion Dynamics

$$
\begin{gathered}
i \frac{d}{d t} R^{2}=\sum_{i}\left\langle\left[r_{i}^{2}, H\right]\right\rangle=2 i\langle\hat{D}\rangle \\
i \frac{d}{d t}\langle\hat{D}\rangle=\langle[\hat{D}, H]\rangle=2 i\left(\langle H\rangle-\omega^{2} R^{2}\right) \\
\frac{d}{d t}\langle H\rangle=\left\langle\frac{\partial}{\partial t} H\right\rangle=\omega \dot{\omega} R^{2}
\end{gathered}
$$

$$
\frac{d^{3}}{d t^{3}} R^{2}+4 \omega^{2} \frac{d}{d t} R^{2}+4 \omega \dot{\omega} R^{2}=0
$$

$\omega \sim \frac{1}{t}$

$$
\frac{1}{t^{3}}
$$

$$
\frac{1}{t^{3}}
$$

$$
\frac{1}{t^{3}}
$$

Scaling Symmetry in Time: $\quad t \rightarrow \lambda t$

Expansion Dynamics

Boundary Condition Breaks the Scaling Symmetry to a Discrete One:

$$
\frac{\left\langle\hat{R}^{2}\right\rangle(t)}{R_{0}^{2}}=\frac{t}{t_{0}} \frac{1}{\sin ^{2} \varphi}\left[1-\cos \varphi \cdot \cos \left(s_{0} \ln \frac{t}{t_{0}}+\varphi\right)\right]
$$

Why plateaus ?

$$
\left.\frac{d^{n}}{d t^{n}}\left\langle\hat{R}^{2}\right\rangle\right|_{t=t_{0}}=0
$$

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

$$
1970
$$

Universal Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970

$$
\left[-\frac{\hbar^{2} \mathrm{~d}^{2}}{2 m \mathrm{~d} \rho^{2}}-\frac{s_{0}^{2}+1 / 4}{m \rho^{2}}\right] \psi=E \psi
$$

$$
\psi=\sqrt{\rho} \cos \left[s_{0} \log \left(\rho / \rho_{0}\right)\right]
$$

$$
\begin{gathered}
\rho \rightarrow e^{2 \pi / s_{0}} \rho \\
E_{\mathrm{T}}^{(n+1)} / E_{\mathrm{T}}^{(n)} \simeq e^{-2 \pi / s_{0}}
\end{gathered}
$$

Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

Innsbruck 2005, and many later

Connection to the Efimov Effect

The Efimov Effect
$-\frac{\hbar^{2} d^{2}}{2 m d^{2} \rho} \psi-\frac{\lambda}{\rho^{2}} \psi=E \psi$
Spatial continuous scaling symmetry

The "Efimovian" Expansion

$$
\frac{d^{3}}{d t^{3}}\left\langle\hat{R}^{2}\right\rangle+\frac{4}{\lambda t^{2}} \frac{d}{d t}\left\langle\hat{R}^{2}\right\rangle-\frac{4}{\lambda t^{3}}\left\langle\hat{R}^{2}\right\rangle=0 .
$$

Temporal continuous scaling symmetry

Short-range boundary condition
$\psi=\sqrt{\rho} \cos \left[s_{0} \log \left(\rho / \rho_{0}\right)\right] \quad \frac{\left\langle R^{2}\right\rangle(t)}{R_{0}^{2}}=\frac{t}{t_{0}} \frac{1}{\sin ^{2} \varphi}\left[1-\cos \varphi \cdot \cos \left(s_{0} \ln \frac{t}{t_{0}}+\varphi\right)\right]$

Spatial discrete scaling symmetry
$\rho \rightarrow e^{2 \pi / s_{0}} \rho$

Initial time

Temporal discrete scaling symmetry

$$
t \rightarrow e^{2 \pi / s_{0}} t
$$

Experimental Observation

by Haibin Wu in East China Normal University

Non-interacting

Unitary Fermions

$$
\frac{\left\langle\hat{R}^{2}\right\rangle(t)}{R_{0}^{2}}=\frac{t}{t_{0}} \frac{1}{\sin ^{2} \varphi}\left[1-\cos \varphi \cdot \cos \left(s_{0} \ln \frac{t}{t_{0}}+\varphi\right)\right]
$$

Experimental Observation

by Haibin Wu in East China Normal University

Independent of Temperature

Science, 371, 353 (2016)

Experimental Observation

by Haibin Wu in East China Normal University

Science, 371, 353 (2016)
Independent of State of Matter

Fractal: Weierstrass Functions

$$
a b<1
$$

$a b=1$

$$
W(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right)
$$

Eigen-Energy with Scaling Symmetry

$$
\left[-\frac{\hbar^{2} \mathrm{~d}^{2}}{2 m \mathrm{~d} \rho^{2}}-\frac{s_{0}^{2}+1 / 4}{m \rho^{2}}\right] \psi=E \underbrace{E \psi}_{E \rightarrow \frac{E}{\lambda^{2}}}
$$

The Equation is Invariant

Eigen-Energy with Scaling Symmetry

$$
\rho \rightarrow \lambda \rho>\underbrace{2 m \mathrm{~d} \rho^{2}}_{E \rightarrow \frac{E}{\lambda^{2}}}-\frac{\hbar_{0}^{2} \mathrm{~d}^{2}+1 / 4}{m \rho^{2}}] \psi=E \psi
$$

The Equation is Invariant

Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

Dynamical Fractal from Quench Dynamics

Potential Quench:

$$
V(x)=-\frac{\hbar^{2}}{2 m} \frac{s_{0}^{2}+1 / 4}{x^{2}+r_{0}^{2}}
$$

$$
t=0
$$

Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

Dynamical Fractal from Quench Dynamics

Potential Quench:

$$
t=0
$$

Loschmidt Echo

$$
V(x)=-\frac{\hbar^{2}}{2 m} \frac{s_{0}^{2}+1 / 4}{x^{2}+r_{0}^{2}}
$$

Zero-momentum Distribution

Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

Topology

Topological Band Theory

$$
\begin{gathered}
\hat{\mathcal{H}}=\sum_{\mathbf{k}}\left(\hat{c}_{\uparrow, \mathbf{k}}^{\dagger}, \hat{c}_{\downarrow, \mathbf{k}}^{\dagger}\right) H_{\mathbf{k}}\binom{\hat{c}_{\uparrow, \mathbf{k}}}{\hat{c}_{\downarrow, \mathbf{k}}} \\
\mathcal{H}(\mathbf{k})=\frac{1}{2} \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}
\end{gathered}
$$

Topological Trivial

Topological Non-trivial

$$
\Pi_{2}\left(S^{2}\right)=Z
$$

Optical Lattice

Cubic Lattice

π

Triangular Lattice

Honeycomb 1D chains

Tunable Geometry (ETH, 2012)

Dirac Point: Gapless

$$
\hat{H}=-t_{1} \sum_{\langle i j\rangle}\left(\hat{c}_{\mathrm{B}, j}^{\dagger} \hat{c}_{\mathrm{A}, i}+\text { h.c. }\right)
$$

Dirac Point

Honeycomb lattice

$$
\begin{aligned}
& \hat{H}=\sum_{\mathbf{k}}\left(\hat{c}_{\mathrm{A}}^{\dagger}(\mathbf{k}), \hat{c}_{\mathrm{B}}^{\dagger}(\mathbf{k})\right) H(\mathbf{k})\binom{\hat{c}_{\mathrm{A}}(\mathbf{k})}{\hat{c}_{\mathrm{B}}(\mathbf{k})} \\
& H(\mathbf{k})=\left(\begin{array}{cc}
0 & -t_{1} \sum_{\alpha} e^{-i \mathbf{k} \cdot \mathbf{d}_{\alpha}} \\
-t_{1} \sum_{\alpha} e^{i \mathbf{k} \cdot \mathbf{d}_{\alpha}} & 0
\end{array}\right)
\end{aligned}
$$

$$
B_{x}=0
$$

$$
H(\mathbf{k})=\mathbf{B}(\mathbf{k}) \cdot \sigma
$$

$$
B_{y}=0
$$

$$
B_{x}(\mathbf{k})=-t_{1} \sum_{\alpha} \cos \left(\mathbf{k} \cdot \mathbf{d}_{\alpha}\right) ; B_{y}(\mathbf{k})=-t_{1} \sum_{\alpha} \sin \left(\mathbf{k} \cdot \mathbf{d}_{\alpha}\right)
$$

From Dirac Point to Haldane Model

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 16 September 1987)

Photo: A. Mahmoud
F. Duncan M. Haldane

Prize share: 1/4

How to realize this nontrivial nextnearest hopping ??

While the particular model presented here is unlikely to be directly physically realizable, it indicates that, at

Haldane Model

Shaking Optical Lattice

$$
\hat{F}=\hat{U}\left(T_{i}+T, T_{i}\right)=\hat{\mathcal{T}} \exp \left\{-i \int_{T_{i}}^{T_{i}+T} d t \hat{H}(t)\right\}
$$

For sufficiently fast modulation, if one only concerns the observation

$$
\hat{F}=e^{-i \hat{H}_{\mathrm{eff}} T}
$$ at integer period

$$
\hat{H}_{\mathrm{eff}}=\hat{H}_{0}+\sum_{n=1}^{\infty}\left\{\frac{\left[\hat{H}_{n}, \hat{H}_{-n}\right]}{n \omega}-\frac{\left[\hat{H}_{n}, \hat{H}_{0}\right]}{e^{-2 \pi n i \alpha} n \omega}+\frac{\left[\hat{H}_{-n}, \hat{H}_{0}\right]}{e^{2 \pi n i \alpha} n \omega}\right\}
$$

Shaking Optical Lattice

$$
H=-\frac{\hbar^{2} \nabla^{2}}{2 m}+V[x+b \sin (\omega t+\varphi), y+b \sin (\omega t)]
$$

$$
x^{\prime}=x+b \cos (\omega t)
$$

$$
y^{\prime}=y+b \sin (\omega t)
$$

$$
H(x, y, t)=\frac{\hbar^{2}}{2 m}\left[-i \partial_{x}-A_{x}(t)\right]^{2}+\frac{1}{2 m}\left[-i \partial_{y}-A_{y}(t)\right]^{2}+V(x, y)
$$

$$
\begin{aligned}
& A_{x}(t)=m \omega b \sin (\omega t) / \hbar \\
& A_{y}(t)=-m \omega b \cos (\omega t) / \hbar
\end{aligned}
$$

$$
H_{\mathrm{eff}}(\mathbf{k}) \approx H_{0}(\mathbf{k})+\frac{\left[H_{1}(\mathbf{k}), H_{-1}(\mathbf{k})\right]}{\omega}
$$

Wei Zheng and Hui Zhai, PRA 2014

Experimental Realization

ETH, Nature (2014), See also Hamburg group, USTC group

Physical Consequence of 2D Chern Insulator

At or Near Equilibrium

Quantized Edge State

Quantized Hall Conductance
Bulk-Edge Correspondence

Xue's group
Science 2013

Description of Quench Dynamics

A two-band Chern Insulator

$$
\mathcal{H}(\mathbf{k})=\frac{1}{2} \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}
$$

Initial
hamiltonian $h^{i}(k)$
/r
开

Description of Quench Dynamics

A two-band Chern Insulator $\quad \mathcal{H}(\mathbf{k})=\frac{1}{2} \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$ Quench from $h^{\mathrm{i}}(\mathbf{k}) \quad \mathbf{h}^{\mathrm{f}}(\mathbf{k})$.

Description of Quench Dynamics

A two-band Chern Insulator $\quad \mathcal{H}(\mathbf{k})=\frac{1}{2} \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$ Quench from $h^{i}(\mathbf{k}) \quad h^{\mathrm{f}}(\mathbf{k})$.

$$
\zeta(\mathbf{k}, t)=\exp \left\{-\frac{i}{2} \mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma} t\right\} \zeta^{\mathrm{i}}(\mathbf{k})
$$

$$
\mathbf{n}=\zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t)
$$

$\left[k_{x}, k_{y}, t\right]$
n

Theorem: Topology from Dynamics

For a two-band Chern Insulator

$$
\mathcal{H}(\mathbf{k})=\frac{1}{2} \mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}
$$

Considering the quench dynamics described by:

$$
\zeta(\mathbf{k}, t)=\exp \left\{-\frac{i}{2} \mathbf{h}^{\mathrm{f}}(\mathbf{k}) \cdot \boldsymbol{\sigma} t\right\} \zeta^{\mathrm{i}}(\mathbf{k}),
$$

$$
\mathbf{n}=\zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t)
$$

this defines a Hopf map $f:\left[k_{x}, k_{y}, t\right] \longmapsto \mathbf{n}$

$$
f^{-1}\left(\mathbf{n}_{1}\right)
$$

Theorem: Topology from Dynamics

linking number $=0$

linking number = 1

The linking number of $f^{-1}\left(\mathbf{n}_{1}\right)$ and $f^{-1}\left(\mathbf{n}_{2}\right)$
$=$ The Chern number of the final Hamiltonian

$$
\Pi_{3}\left(S^{2}\right)=\Pi_{2}\left(S^{2}\right)=Z
$$

Ce Wang, Pengfei Zhang, Xin Chen, Jinlong Yu and Hui Zhai, PRL (2017)

Example of Theorem

Topological Trivial

Topological Non-trivial

Experimental Observations

Haldane Model: Hamburg group

Nat. Comm. 2019
See similar result from USTC group

We thereby map out the trivial and non-trivial Chern number areas of the phase diagram. As shown by Wang et al. (ref. [13]), the Chern number of the post quench Hamiltonian maps onto the linking number between this contour and the position of the static vortices [Fig. 1(a)]. We thus demonstrate that the direct mapping between two topological indices - a static and a dynamical one - allows for an unambiguous measurement of the Chern number.

Take-Home Message

Symmetry and Topology can be detected from non-equilibrium dynamics.

	Symmetry
Linking Number	Topology

Thank You Very Much for Attention !

Fundamental Problems in Quantum Non-Equilibrium Dynamics II

Hui Zhai

Institute for Advanced Study Tsinghua University

CSRC Workshop on Quantum Non-Equilibrium Phenomena June 2019

What this is all about?

Hayden and Preskill ask:

Can one retrieval information from a black hole ?

What this is all about?

Hayden and Preskill ask:

Can one retrieval information from a black hole ?

Why you talk about this HERE?

Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation
- Thermofield Double State

Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation
- Thermofield Double State

Quantum Thermalization

Quantum wave function

Unitary evolution

T, μ, \ldots

Thermal equilibrium

Eigenstate Thermalization Hypothesis

Quantum wave function

Unitary evolution

T, μ, \ldots

Thermal equilibrium

Eigenstate Thermalization Hypothesis

Sufficient Long Time Evolution

Quantum Thermalization " Paradox "

Quantum wave function

Paradox:

Contains local information

Unitary evolution

Perserve
Information

T, μ, \ldots

Thermal equilibrium

Where is the information?

Information Scrambling

Quantum wave function

Unitary evolution
Thermal
equilibrium
T, μ, \ldots

Black Hole Information Paradox

Quantum wave function

$$
T, \mu, \ldots
$$

Thermal
equilibrium
Thermal
equilibrium

$+$
Hawking
Radiation

Blackhole has no hair

Quantum Information Perspective

Page 1993, Hayden, Priskill, 2007

Quantum Information Perspective

Dicke Model Realization

$$
\hat{H}=\hbar \omega_{0} a^{\dagger} a+\quad+\omega_{z} \sigma_{z}
$$

$\rho_{\mathrm{RA}}^{\mathrm{i}}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

Dicke Model Realization

$$
\hat{H}=\hbar \omega_{0} a^{\dagger} a+g\left(a^{\dagger}+a\right) \sigma_{x}+\omega_{z} \sigma_{z}
$$

$$
\begin{aligned}
& \text { (隹 } \\
& \rho \mathrm{RA}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation
- Thermofield Double State

Out-of-time-ordered Correlation and Chaos

$$
\begin{aligned}
\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle_{\beta} \\
\hat{W}(t)=e^{i \hat{H} t} \hat{W} e^{-i \hat{H} t}
\end{aligned}
$$

- OTOC measures the difference when exchanging orders of two operations

$$
\hat{W}(t) \hat{V}(0)\rangle \quad \hat{V}(0) \hat{W}(t)|\rangle
$$

Out-of-time-ordered Correlation

$$
\begin{aligned}
\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle_{\beta} \\
\hat{W}(t)=e^{i \hat{H} t} \hat{W} e^{-i \hat{H} t}
\end{aligned}
$$

$F(t)$

Quench Experiment

Local quench $\quad \hat{b}_{i}^{\dagger}|\Psi\rangle$

$$
S_{i}^{-}|\Psi\rangle
$$

र \uparrow

$$
\downarrow>\downarrow \downarrow
$$

Quench Experiment

The Second Renyi Entropy
$S_{A}^{(2)}=-\log \operatorname{Tr}_{A} \hat{\rho}_{A}^{2}$

OTOC: Information Scrambling

$$
\exp \left(-S_{A}^{(2)}\right)=\sum_{M \in B} \operatorname{Tr}[\hat{M}(t) \hat{V}(0) \hat{M}(t) \hat{V}(0)]
$$

Non-Equilibrium Properties
Quench the system by arbitrary operator \mathcal{O}

Entanglement Entropy

Equilibrium Properties

$$
\hat{V}=\hat{O} \hat{O}^{\dagger}
$$

\hat{M} is a complete set of operators in B OTOC

OTOC: Information Scrambling

$$
\exp \left(-S_{A}^{(2)}\right)=\sum_{M \in B} \operatorname{Tr}[\hat{M}(t) \hat{V}(0) \hat{M}(t) \hat{V}(0)]
$$

Thermal Phase (ETH): Bose-Hubbard Model

Single-Particle Localized and MBL:
XXZ Model + Random field

Shen, Zhang, Fan, Zhai, PRB, 2017
Fan, Zhang, Shen, Zhai, Science Bulletin, 2017

OTOC: Information Scrambling

$$
\underbrace{\exp \left(-S_{A}^{(2)}\right)=\sum_{M \in B} \operatorname{Tr}[\hat{M}(t) \hat{V}(0) \hat{M}(t) \hat{V}(0)]}
$$

Thermal						
Phase (ETH)	Single-Particle Localized	Many-Body Localized				
Linear increasing of entanglement	No spreading of entanglement	Logarithmic spreading of entanglement				
OTOC exponential decay	OTOC remains constant	OTOC power-law decay				
Our Results						

Fan, Zhang, Shen, Zhai, Science Bulletin, 2017

Measurements of OTOC for Ising Chain

(a) ${ }^{\mathrm{F}_{1}}$

$$
\hat{H}=\sum_{i}\left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z}+g \hat{\sigma}_{i}^{x}+h \hat{\sigma}_{i}^{z}\right)
$$

Integrable Case

See also,
M. Garttner, et.al. Nat. Phys. 2017

Measurements of OTOC for Ising Chain

$$
\exp \left(-S_{A}^{(2)}\right)=\sum_{M \in B} \operatorname{Tr}[\hat{M}(t) \hat{V}(0) \hat{M}(t) \hat{V}(0)]
$$

OTOC: Holographic Duality

Quantum Side

- Lyapunov exponent has a upper bound

$$
\lambda_{L} \leqslant \frac{2 \pi}{\beta}
$$

Gravity Side

OTOC has also emerged, and with a black hole

$$
\lambda_{L}=\frac{2 \pi}{\beta}
$$

A quantum system with holographically dual to a black hole saturates the bound
== Black hole is a faster scrambler in nature
An example is the SYK model
Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC: Holographic Duality

A gravity theory in D+1-dimension

A quantum many-body system in D-dimension (strongly interacting, emergent conformal field symmetry)

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC for Bose-Hubbard Model

$$
\hat{H}=-J \sum_{\langle i j\rangle}\left(\hat{b}_{i}^{\dagger} \hat{b}_{j}+\text { H.c. }\right)+\frac{U}{2} \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Shen, Zhang, Fan, Zhai, PRB, 2017

OTOC for Dicke Model

$$
\hat{H}=\hbar \omega_{0} a^{\dagger} a+g\left(a^{\dagger}+a\right) \sigma_{x}+\omega_{z} \sigma_{z}
$$

Intermediate g

Introduction

- Quantum Thermalization
- Out-of-Time-Ordered Correlation
- Thermofield Double State

Thermofield Double State

Left

$$
|\Psi\rangle_{T F D}=\sum_{n} e^{-\beta E_{n} / 2}|n\rangle_{L}|n\rangle_{R}
$$

$$
\operatorname{Tr}_{R}|\Psi\rangle\langle\Psi|=\sum_{n} e^{-\beta E_{n}}|n\rangle\langle n|
$$

Generalized EPR State

$$
\beta \rightarrow 0 \quad|\Psi\rangle_{T F D} \rightarrow \sum_{n}|n\rangle_{L}|n\rangle_{R}
$$

Thermofield Double State: Example

$$
\begin{gathered}
H=i \hbar g \sum_{|\vec{k}|=k_{f}}\left(a_{k}^{\dagger} a_{-k}^{\dagger}-a_{k} a_{-k}\right) \\
|\psi(\tau)\rangle=e^{-i h \tau / \hbar}|0\rangle=\frac{1}{\cosh (g \tau)} \sum_{n=0}^{\infty} \tanh ^{n}(g \tau)|n, n\rangle \\
\text { Long time limit }
\end{gathered}
$$

J. Hu. et.al. Nat. Phys. 2018

Thermofield Double State: Example

$$
\begin{gathered}
H=i \hbar g \sum_{|\vec{k}|=k_{f}}\left(a_{k}^{\dagger} a_{-k}^{\dagger}-a_{k} a_{-k}\right) \\
|\psi(\tau)\rangle=e^{-i h \tau / \hbar}|0\rangle=\frac{1}{\cosh (g \tau)} \sum_{n=0}^{\infty} \tanh ^{n}(g \tau)|n, n\rangle \\
\text { Long time limit }
\end{gathered}
$$

J. Hu. et.al. Nat. Phys. 2018

Two-Mode Squeezed State:

$$
\hat{H}=\hat{a}_{L}^{\dagger} \hat{a}_{R}^{\dagger}+\hat{a}_{L} \hat{a}_{R}
$$

ER=EPR Conjecture

Einstein Rosen
Einstein-Rosen Bridge
Wormhole

Einstein Podolsky Rosen Thermofield Double State Quantum Entanglement
"=" best understood in term of holographic duality
Maldacena and Susskind, 2013

Wormhole

The movie＂Interstellar＂星际穿越

Visualizing Interstellar＇s Wormhole

Oliver James，Eugénie von Tunzelmann，Paul Franklin，and Kip S．Thorne

Citation：American Journal of Physics 83， 486 （2015）；doi：10．1119／1．4916949

Wormhole

The movie＂Interstellar＂星际穿越

－The Wormhole in＂Interstellar＂is traversable
－The Einstein－Rosen Bridge is NOT traversable

What this is all about?

Hayden and Preskill ask:

Can one retrieval information from a black hole?
Can one retrieval initial state information when a quantum system thermalizes

- Information scrambling in quantum thermalization prevents this
- The more complicated a quantum system, the faster information scrambles
- Thermofield Double State can help !

Hayden-Preskill Protocol

Hayden-Preskill Protocol

Hayden-Preskill Protocol: Measurement-Based

- Fully scrambled (black hole type dynamics)
- Two identical copy of the Hamiltonian (up to a minus sign)

$$
P\left(R R^{\prime} \mid D D^{\prime}\right)=1
$$

Yoshida, Kitaev, 2017

Physical Realization

- Fully scrambled (black hole type dynamics)
?
- Two identical copy of the Hamiltonian (up to a minus sign) ?

$$
P\left(R R^{\prime} \mid D D^{\prime}\right)=1 \text { ? }
$$

Physical Realization

$$
H_{L}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}+\quad+\hbar \omega_{z} \sigma_{z} \quad H_{R}=-\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}-\quad-\hbar \omega_{z} \sigma_{z}
$$

- Initial State Preparation

Physical Realization

$$
H_{L}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}+g\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}+\hbar \omega_{z} \sigma_{z} \quad H_{R}=-\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}-g\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}-\hbar \omega_{z} \sigma_{z}
$$

- Initial State Preparation
- Turn on coupling and let the system evolve until scrambling

$$
\rho_{\mathrm{RA}}^{\mathrm{i}}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \rho_{\mathrm{RA}}^{\mathrm{f}}=\left(\begin{array}{cccc}
\frac{1}{4} & 0 & 0 & 0 \\
0 & \frac{1}{4} & 0 & 0 \\
0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right)
$$

Physical Realization

$$
H_{L}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}+g\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}+\hbar \omega_{z} \sigma_{z} \quad H_{R}=-\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}-g\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}-\hbar \omega_{z} \sigma_{z}
$$

EPR Pair

- Initial State Preparation
- Turn on coupling and let the system evolve until scrambling
- Projected into EPR state of D and D'

$$
\begin{aligned}
& \left|D D^{\prime}\right\rangle_{E P R}=\sum_{n=1}^{n_{D}}\left|n_{L} n_{R}\right\rangle \\
& \mathcal{P}_{D D^{\prime}}=\left|D D^{\prime}\right\rangle\left\langle D D^{\prime}\right|
\end{aligned}
$$

Decoding Efficiency v.s. Coupling Constant

Decoding v.s. Scrambling

Stability of the decoding protocol

$H_{L}=\hbar \omega_{0} \hat{a}^{\dagger} \hat{a}+g\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}+\hbar \omega_{z} \sigma_{z} \quad H_{R}=-\hbar \omega_{0}^{\prime} \hat{a}^{\dagger} \hat{a}-g^{\prime}\left(\hat{a}^{\dagger}+\hat{a}\right) \sigma_{x}-\hbar \omega_{z}^{\prime} \sigma_{z}$

~ 1
$\sim 1 / 4$

Stability of the decoding protocol

Exact Relation:

$$
\begin{gathered}
P\left(R R^{\prime} \mid D D^{\prime}\right)=\frac{\sum_{O_{D} \subset P_{D}}\left\langle O_{D} E O_{D}^{\dagger} E^{\dagger}\right\rangle}{d_{A}^{2}-1+\sum_{O_{D} \subset P_{D}}\left\langle O_{D} E O_{D}^{\dagger} E^{\dagger}\right\rangle} \\
\hat{E}=\hat{U} \hat{U}^{\prime}
\end{gathered}
$$

Stability of the decoding protocol

Exact Relation:
 $$
\delta g \rightarrow 0 \quad \hat{E} \rightarrow \hat{I}
$$

$$
\begin{gathered}
P\left(R R^{\prime} \mid D D^{\prime}\right)=\frac{\sum_{O_{D} \subset P_{D}}\left\langle O_{D} E O_{D}^{\dagger} E^{\dagger}\right\rangle \longrightarrow \frac{d_{D}^{2}}{d_{A}^{2}-1+\sum_{O_{D} \subset P_{D}}\left\langle O_{D} E O_{D}^{\dagger} E^{\dagger}\right\rangle} \longrightarrow \frac{d^{2}}{d_{A}^{2}+d_{D}^{2}-1} \sim 1}{\hat{E}=\hat{U} \hat{U}^{\prime}}
\end{gathered}
$$

Stability of the decoding protocol

Exact Relation:

δg large; $\hat{E} \rightarrow$ random

$$
\begin{gathered}
P\left(R R^{\prime} \mid D D^{\prime}\right)=\frac{\sum_{O_{D} \subset P_{D}}\left\langle O_{D} E O_{D}^{\dagger} E^{\dagger}\right\rangle \longrightarrow}{d_{A}^{2}-1+\sum_{O_{D} \subset P_{D}}\left\langle O_{D} E O_{D}^{\dagger} E^{\dagger}\right\rangle} \longrightarrow \frac{1}{d_{A}^{2}} \\
\hat{E}=\hat{U} \hat{U}^{\prime}
\end{gathered}
$$

$\sim 1 / 4$

Summary

败也萧何
Because of information scrambling，we can not decode the initial state information for a single system

Take Home Message

败也萧何
Because of information scrambling，we can not decode the initial state information for a single system

成也萧何
Thank to information scrambling，we can decode the initial state information for a thermofield double system

Outlook: Traversable Wormhole

How to make a wormhole traversable?

To be continued ...
Gao, Jafferies and Wall, 2017; Maldacena, Stanford and Yang, 2017 Ping Gao and Hong Liu, 2018

Yanting Cheng程艳婷

Chang Liu
刘畅

Jinkang Guo
郭金康

Yu Chen 陈宇
 Thank You Very Much ！

