Fundamental Problems in Quantum Non-Equilibrium Dynamics I

Hui Zhai

Institute for Advanced Study Tsinghua University Beijing, China

CSRC Workshop on Quantum Non-Equilibrium Phenomena June 2019

Synthetic Quantum Matter

Schematic NMR Spectrometer

Cold Atoms Trapped Ion NMR NV Center

Synthetic Quantum Matter

Cold Atoms Trapped Ion NMR NV Center

v.s. Solid State Quantum Materials

Quantum Dynamics

Non-Equilibrium Dynamics

• Fundmental

• Universal

• Directly Relevant to Experiments

Mathematically Solid/Rigorous

Harmonic length: $a = \sqrt{\frac{\hbar}{m\omega}}$

By dimension analysis: $\mathcal{R} \sim \sqrt{t}$

Scale Invariance

No other energy scale except for the kinetic energy

Zoo of Scale Invariant Quantum Gases

Non-interacting bosons/	No other length scale
fermions at any dimension	except for density
Unitary Fermi gas at three dimension	Density and a_s $a_s = \infty$
Tonks gas of bosons/	Density and g_{1D}
fermions at one dimension	$g_{1D} = \infty$

Universal behavior:

$$\langle V \rangle = \alpha \langle T \rangle$$

Universal Discrete Scaling Symmetry

Universal Phenomena

□ Universal

Independent of Temperature
Independent of State of Matter
Independent Dimension

Scaling Symmetry in a Harmonic Trap

This scaling symmetry exists only if

$$i\frac{d}{dt}R^{2} = \sum_{i} \langle [r_{i}^{2}, H] \rangle = 2i \langle \hat{D} \rangle$$
$$\frac{1}{2} \sum_{i} (\mathbf{r}_{i} \cdot \mathbf{p}_{i} + \mathbf{p}_{i} \cdot \mathbf{r}_{i})$$

 $\sim \omega = \sqrt{\frac{1}{4t^2} + \frac{1}{\lambda t^2 \log^2 t/t_*}}$ Generator of spatial scaling transformation

⇒ t

t

*

 $\overline{t_*}t$

> t

k

$$\begin{split} i\frac{d}{dt}R^2 &= \sum_i \langle [r_i^2, H] \rangle = 2i \langle \hat{D} \rangle \\ i\frac{d}{dt} \langle \hat{D} \rangle &= \langle [\hat{D}, H] \rangle = 2i \left(\langle H \rangle - \omega^2 R^2 \right) \end{split}$$

$$\frac{d}{dt}\langle H\rangle = \langle \frac{\partial}{\partial t}H\rangle = \omega \dot{\omega}R^2$$

$$\begin{split} i\frac{d}{dt}R^2 &= \sum_i \langle [r_i^2, H] \rangle = 2i \langle \hat{D} \rangle \\ i\frac{d}{dt} \langle \hat{D} \rangle &= \langle [\hat{D}, H] \rangle = 2i \left(\langle H \rangle - \omega^2 R^2 \right) \\ \frac{d}{dt} \langle H \rangle &= \langle \frac{\partial}{\partial t} H \rangle = \omega \dot{\omega} R^2 \end{split}$$

$$\omega \sim \frac{1}{t} \qquad \begin{pmatrix} \frac{d^3}{dt^3}R^2 + 4\omega^2 \frac{d}{dt}R^2 + 4\omega \dot{\omega}R^2 = 0 \\ 1 & 1 \\ t^3 & 1 \\ t^3 & \frac{1}{t^3} & \frac{1}{t^3} \\ 1 & t^3 & \frac{1}{t^3} \end{pmatrix}$$

Scaling Symmetry in Time: $t \to \lambda t$

t*

*

 $\overline{t_*}t$

> t

k

Boundary Condition Breaks the Scaling Symmetry to a Discrete One:

$$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$$

Why plateaus ?

 $\frac{d^n}{dt^n} \langle \hat{R}^2 \rangle |_{t=t_0} = 0$

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970

Universal Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction

1970

$$\left[-\frac{\hbar^2 \mathrm{d}^2}{2m \mathrm{d}\rho^2} - \frac{s_0^2 + 1/4}{m\rho^2}\right]\psi = E\psi$$

$$\psi = \sqrt{\rho} \cos[s_0 \log(\rho/\rho_0)]$$

$$\rho \to e^{2\pi/s_0} \rho$$
$$E_{\rm T}^{(n+1)}/E_{\rm T}^{(n)} \simeq e^{-2\pi/s_0}$$

Discrete Scaling Symmetry

The Efimov Effect

Problem: Three bosons interacting through a short-range interaction 1970 10-10 25 20 $\rho (1000 a_0)$ $\beta (cm^3 s^{-1})$ 15 + F 10 5 10-11 0 -2 -1 2 -1 0 0

a (1000 a₀)

Innsbruck 2005, and many later

Connection to the Efimov Effect

The Efimov Effect	The "Efimovian" Expansion
$-\frac{\hbar^2 d^2}{2md^2\rho}\psi - \frac{\lambda}{\rho^2}\psi = E\psi$	$\frac{d^3}{dt^3}\langle \hat{R}^2 \rangle + \frac{4}{\lambda t^2}\frac{d}{dt}\langle \hat{R}^2 \rangle - \frac{4}{\lambda t^3}\langle \hat{R}^2 \rangle = 0.$
Spatial continuous	Temporal continuous
scaling symmetry	scaling symmetry
Short-range boundary condition	Initial time
$\psi = \sqrt{\rho} \cos[s_0 \log(\rho/\rho_0)]$	$\frac{\langle \hat{R}^2 \rangle(t)}{R_0^2} = \frac{t}{t_0} \frac{1}{\sin^2 \varphi} \left[1 - \cos \varphi \cdot \cos \left(s_0 \ln \frac{t}{t_0} + \varphi \right) \right]$
Spatial discrete scaling	Temporal discrete scaling
symmetry	symmetry
$\rho \to e^{2\pi/s_0}\rho$	$t \to e^{2\pi/s_0} t$

Experimental Observation

Experimental Observation

by Haibin Wu in East China Normal University

Independent of Temperature

Independent of State of Matter

Science, 371, 353 (2016)

Eigen-Energy with Scaling Symmetry

The Equation is Invariant

Eigen-Energy with Scaling Symmetry

Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

Dynamical Fractal from Quench Dynamics

Chao Gao, Hui Zhai, Zheyu Shi, PRL, 2019

Dynamical Fractal from Quench Dynamics

Chuo Guo, H

Topological Band Theory

Topological Trivial

Topological Non-trivial

 $\Pi_2(S^2) = Z$

Optical Lattice

Cubic Lattice

Triangular Lattice

Tunable Geometry (ETH, 2012)

Dirac Point: Gapless

From Dirac Point to Haldane Model

Photo: A. Mahmoud **F. Duncan M. Haldane Prize share:** 1/4

B

B

A

VOLUME 61, NUMBER 18

¦ A

 $t_2 e^{i\phi}$

A

Α

B

B

A

A

PHYSICAL REVIEW LETTERS

31 October 1988

Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"

F. D. M. Haldane Department of Physics, University of California, San Diego, La Jolla, California 92093 (Received 16 September 1987)

While the particular model presented here is unlikely to be directly physically realizable, it indicates that, at
Haldane Model

Shaking Optical Lattice

$$\hat{F} = \hat{U}\left(T_i + T, T_i\right) = \hat{T} \exp\left\{-i \int_{T_i}^{T_i + T} dt \,\hat{H}\left(t\right)\right\}$$

For sufficiently fast modulation, if one only concerns the observation at integer period

 $\hat{F} = e^{-i\hat{H}_{\rm eff}T}$

$$\hat{H}_{\text{eff}} = \hat{H}_0 + \sum_{n=1}^{\infty} \left\{ \frac{[\hat{H}_n, \hat{H}_{-n}]}{n\omega} - \frac{[\hat{H}_n, \hat{H}_0]}{e^{-2\pi n i \alpha} n\omega} + \frac{[\hat{H}_{-n}, \hat{H}_0]}{e^{2\pi n i \alpha} n\omega} \right\}$$

Wei Zheng and Hui Zhai, PRA 2014

Experimental Realization

ETH, Nature (2014), See also Hamburg group, USTC group

Physical Consequence of 2D Chern Insulator

Description of Quench Dynamics

A two-band Chern Insulator Initial hamiltonian hⁱ(k) $\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$

k

Description of Quench Dynamics

Description of Quench Dynamics

Theorem: Topology from Dynamics

For a two-band Chern Insulator

$$\mathcal{H}(\mathbf{k}) = \frac{1}{2}\mathbf{h}(\mathbf{k}) \cdot \boldsymbol{\sigma}$$

Considering the quench dynamics described by:

$$\zeta(\mathbf{k},t) = \exp\left\{-\frac{i}{2}\mathbf{h}^{\mathrm{f}}(\mathbf{k})\cdot\boldsymbol{\sigma}t\right\}\zeta^{\mathrm{i}}(\mathbf{k})$$

 $\mathbf{n} = \zeta^{\dagger}(\mathbf{k}, t) \boldsymbol{\sigma} \zeta(\mathbf{k}, t),$

Theorem: Topology from Dynamics

linking number = 0

linking number = 1

The linking number of $f^{-1}(\mathbf{n}_1)$ and $f^{-1}(\mathbf{n}_2)$ = The Chern number of the final Hamiltonian

$$\Pi_3(S^2) = \Pi_2(S^2) = Z$$

Ce Wang, Pengfei Zhang, Xin Chen, Jinlong Yu and Hui Zhai, PRL (2017)

Example of Theorem

Experimental Observations

Haldane Model: Hamburg group

Nat. Comm. 2019

See similar result from USTC group

We thereby map out the trivial and non-trivial Chern number areas of the phase diagram. As shown by Wang et al. (ref. [13]), the Chern number of the post quench Hamiltonian maps onto the linking number between this contour and the position of the static vortices [Fig. 1(a)]. We thus demonstrate that the direct mapping between two topological indices – a static and a dynamical one – allows for an unambiguous measurement of the Chern number.

Take-Home Message

Symmetry and Topology can be detected from non-equilibrium dynamics.

Thank You Very Much for Attention !

Fundamental Problems in Quantum Non-Equilibrium Dynamics II

Hui Zhai

Institute for Advanced Study Tsinghua University

CSRC Workshop on Quantum Non-Equilibrium Phenomena June 2019

What this is all about ?

Hayden and Preskill ask:

Can one retrieval information from a black hole ?

What this is all about ?

Hayden and Preskill ask:

Can one retrieval information from a black hole ?

Why you talk about this HERE?

Introduction

• Quantum Thermalization

Out-of-Time-Ordered Correlation

• Thermofield Double State

Quantum Thermalization

 T, μ, \ldots

Quantum wave function

Unitary evolution

Thermal equilibrium

Eigenstate Thermalization Hypothesis

 $|\Psi\rangle$

 T, μ, \ldots

Unitary evolution

Thermal equilibrium

Eigenstate Thermalization Hypothesis

 $\langle \hat{\mathcal{O}} \rangle_{\infty} = \langle \rho_{eq}(E) \hat{\mathcal{O}} \rangle$ Local observable **Equilibrium Density Matrix of the Whole System Sufficient Long Time Evolution**

Quantum Thermalization "Paradox "

Information Scrambling

 T, μ, \ldots

Quantum wave function

Unitary evolution

Thermal equilibrium

Black Hole Information Paradox

Blackhole has no hair Where is the information?

Quantum Information Perspective

Page 1993, Hayden, Priskill, 2007

Quantum Information Perspective

Dicke Model Realization

$$\hat{H} = \hbar \omega_0 a^{\dagger} a +$$

$$+ \omega_z \sigma_z$$

A Large System

$$\left\{ |n\rangle \right\}$$

$$|\Psi\rangle_{AR} = \frac{1}{\sqrt{2}} \left(|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle\right)$$

Dicke Model Realization

Out-of-time-ordered Correlation and Chaos

$$\langle \hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0) \rangle_{\beta} \hat{W}(t) = e^{i\hat{H}t} \hat{W} e^{-i\hat{H}t}$$

 OTOC measures the difference when exchanging orders of two operations

$$\hat{W}(t)\hat{V}(0)|\rangle \qquad \hat{V}(0)\hat{W}(t)|\rangle$$

Out-of-time-ordered Correlation

$$\langle \hat{W}^{\dagger}(t)\hat{V}^{\dagger}(0)\hat{W}(t)\hat{V}(0)\rangle_{\beta} \hat{W}(t) = e^{i\hat{H}t}\hat{W}e^{-i\hat{H}t}$$

Quench Experiment

Quench Experiment

OTOC: Information Scrambling

Thermal Phase (ETH): Bose-Hubbard Model

Single-Particle Localized and MBL: XXZ Model + Random field

Shen, Zhang, Fan, Zhai, PRB, 2017 Fan, Zhang, Shen, Zhai, Science Bulletin, 2017

OTOC: Information Scrambling

$$\exp(-S_A^{(2)}) = \sum_{M \in B} \operatorname{Tr}[\hat{M}(t)\hat{V}(0)\hat{M}(t)\hat{V}(0)]$$

Thermal	Single-Particle	Many-Body
Phase (ETH)	Localized	Localized
Linear increasing of entanglement	No spreading of entanglement	Logarithmic spreading of entanglement
OTOC exponential	OTOC remains	OTOC power-law
decay	constant	decay
Our Results		

Fan, Zhang, Shen, Zhai, Science Bulletin, 2017
Measurements of OTOC for Ising Chain

$$\hat{H} = \sum_{i} \left(-\hat{\sigma}_{i}^{z} \hat{\sigma}_{i+1}^{z} + g \hat{\sigma}_{i}^{x} + h \hat{\sigma}_{i}^{z} \right)$$

Integrable Case

Non-Integrable Cases

Jun Li et.al. PRX 2017

See also, M. Garttner, et.al. Nat. Phys. 2017

Measurements of OTOC for Ising Chain

OTOC: Holographic Duality

Quantum Side

Lyapunov exponent has a upper bound

 $\lambda_L \leqslant \frac{2\pi}{\beta}$

Gravity Side

• OTOC has also emerged, and with a black hole

$$\lambda_L = \frac{2\pi}{\beta}$$

A quantum system with holographically dual to a black hole saturates the bound == Black hole is a faster scrambler in nature

An example is the SYK model

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC: Holographic Duality

A gravity theory in D+1-dimension

A quantum many-body system in D-dimension (strongly interacting, emergent conformal field symmetry)

Kitaev, KITP, 2015; Maldacena, Shenker and Stanford, 2015

OTOC for Bose-Hubbard Model

Shen, Zhang, Fan, Zhai, PRB, 2017

OTOC for Dicke Model

$$\hat{H} = \hbar\omega_0 a^{\dagger} a + g(a^{\dagger} + a)\sigma_x + \omega_z \sigma_z$$

Thermofield Double State

Thermofield Double State: Exam

$$H = i\hbar g \sum_{|\vec{k}|=k_f} \left(a_k^{\dagger} a_{-k}^{\dagger} - a_k a_{-k}\right)$$

$$|\psi(\tau)\rangle = e^{-ih\tau/\hbar}|0\rangle = \frac{1}{\cosh(g\tau)}\sum_{n=0}^{\infty}\tanh^{n}(g\tau)|n,n\rangle$$

Long time limit TFD

J. Hu. et.al. Nat. Bhys. 2018

Temperature $T (\mu K)$

2

()

Thermofield Double State: Exam

TFD

$$H = i\hbar g \sum_{|\vec{k}|=k_f} \left(a_k^{\dagger} a_{-k}^{\dagger} - a_k a_{-k}\right)$$

$$|\psi(\tau)\rangle = e^{-ih\tau/\hbar}|0\rangle = \frac{1}{\cosh(g\tau)}\sum_{n=0}^{\infty} \tanh^n(g\tau)|n,n\rangle$$

e T (µK

B B B B C 2

J. Hu. et.al. Nat. Bhys. 2018

R

Two-Mode Squeezed State:

ER=EPR Conjecture

 $\mathbf{ER} = \mathbf{EPR}$

EinsteinRosenEinsteinPodolskyRosenEinstein-Rosen BridgeThermofield Double StateWormholeQuantum Entanglement

⁶⁶=" best understood in term of holographic duality Maldacena and Susskind, 2013

Wormhole

The movie "Interstellar" 星际穿越

Visualizing Interstellar's Wormhole

Oliver James, Eugénie von Tunzelmann, Paul Franklin, and Kip S. Thorne

Citation: American Journal of Physics 83, 486 (2015); doi: 10.1119/1.4916949

Wormhole

The movie "Interstellar" 星际穿越

The Wormhole in "Interstellar" is traversable
The Einstein-Rosen Bridge is NOT traversable

What this is all about ?

Hayden and Preskill ask:

Can one retrieval information from a black hole ? = Can one retrieval initial state information when a quantum system thermalizes

Information scrambling in quantum thermalization prevents this

The more complicated a quantum system, the faster information scrambles

Thermofield Double State can help !

Hayden-Preskill Protocol

Hayden, Priskill, 2007

Hayden-Preskill Protocol

Hayden, Priskill, 2007

Hayden-Preskill Protocol: Measurement-Based

Fully scrambled (black hole type dynamics)

Two identical copy of the Hamiltonian (up to a minus sign)

$$P(RR'|DD') = 1$$

Yoshida, Kitaev, 2017

Two identical copy of the Hamiltonian (up to a minus sign) ?

$$P(RR'|DD') = 1$$

 $H_L = \hbar \omega_0 \hat{a}^{\dagger} \hat{a} + g(\hat{a}^{\dagger} + \hat{a})\sigma_x + \hbar \omega_z \sigma_z \qquad H_R = -\hbar \omega_0 \hat{a}^{\dagger} \hat{a} - g(\hat{a}^{\dagger} + \hat{a})\sigma_x - \hbar \omega_z \sigma_z$

$$\begin{bmatrix} \mathbf{R} \\ \mathbf{R'} \\ \mathbf{R'} \\ \mathbf{A'} \end{bmatrix}$$

Initial State Preparation

Turn on coupling and let the system evolve until scrambling

Decoding Efficiency v.s. Coupling Constant

Decoding v.s. Scrambling

Stability of the decoding protocol

Exact Relation:

$$P(RR'|DD') = \frac{\sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle}{d_A^2 - 1 + \sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle}$$
$$\hat{E} = \hat{U}\hat{U'}$$

Stability of the decoding protocol

Exact Relation:

 $\delta g \to 0 \quad \hat{E} \to \hat{I}$

 $P(RR'|DD') = \frac{\sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle}{d_A^2 - 1 + \sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle} \xrightarrow{\rightarrow} \frac{d_D^2}{d_A^2 + d_D^2 - 1} \sim 1$ $\hat{E} = \hat{U}\hat{U}'$

Stability of the decoding protocol

Exact Relation:

 δg large; $\hat{E} \rightarrow$ random

$$P(RR'|DD') = \frac{\sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle \longrightarrow \mathbf{1}}{d_A^2 - 1 + \sum_{O_D \subset P_D} \langle O_D E O_D^{\dagger} E^{\dagger} \rangle} \longrightarrow \frac{1}{d_A^2}$$
$$\hat{E} = \hat{U}\hat{U'}$$

败也萧何

Because of *information scrambling*, we can not decode the initial state information for a single system

Take Home Message

败也萧何

Because of *information scrambling*, we can not decode the initial state information for a single system

成也萧何

Thank to *information scrambling*, we can decode the initial state information for a thermofield double system

Outlook: Traversable Wormhole

How to make a wormhole traversable ?

To be continued ...

Gao, Jafferies and Wall, 2017; Maldacena, Stanford and Yang, 2017 Ping Gao and Hong Liu, 2018

Yanting Cheng 程艳婷

Chang Liu 刘畅

Jinkang Guo 郭金康

Yu Chen 陈字Pengfei Zhang 张鹏飞Thank You Very Much !