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Fractional ODEs

• Consider
C
0 Dα

t u(t) = F (t ,u(t)), t ∈ [0,T ], u(0) = u0, (1)

where C
0 Dα

t is the Caputo fractional derivative of order α ∈ (0,1] defined

by
C
0 Dα

t u(t) =
1

Γ(1 − α)

∫ t

0

u′(s)
(t − s)α

ds.

• Here u(t),u0 ∈ RN and F : R× RN −→ RN .

• Assume that F is continuous, bounded and fulfills a Lipschitz condition

with respect to the second variable such that the problem (1) is

well-posed, i.e., for the problem (1) there exists a unique solution

u(t) : [0,T ] → RN for T > 0. [Diethelm and Ford, 2002]
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Existing works

• Analytic solutions of some FDEs are typically obtained by using special

functions (e.g., Wright functions) for simple linear problems.

• Finite difference methods: [Sun and Wu, 2006; Lin, Li and Xu, 2011; Cao

and Xu, 2013; Gao, Sun and Zhang, 2014; ......]

• Two essential issues:

• Nonlocality

• Low regularity

• Spectral methods: [Li and Xu, 2011; Zayernouri and Karniadakis, 2013;

Chen, Wang and Shen, 2016]

• Multi-domain methods: Nonuniform mesh [Zheng and Wang et al; Zhang

and Sun, 2014; Stynes, Oriordan and Gracia, 2017; ......]

• Long time simulation

• Finite difference methods [Zeng et al, 2018, 2019; Lubich et al, 1986, 1996]
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SDC for fractional ODEs

• SDC for fractional ODEs [Lv, Azaiez and Xu, 2018] with convergence rate

O(∆T (2−α)(k+1)) (or O(∆T (2−α)+k )) for the uniform mesh (or the

Gauss-Lobatto mesh);

• Kernel compression method [Baffet, 2019] with convergence rate

O(∆Tmin(p+1+α,α(k+1)+δ)), δ = 1 or 2.
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SDC

• Applying the fractional integral to (1) yields the analytic solution

u(t) = u0 +
1

Γ(α)

∫ t

0

F (τ,u(τ))
(t − τ)1−α

dτ, t ∈ [0,T ]. (2)

• By considering the generic interval [a,b], the above equation reduces to

u(t) = ua(t) +
1

Γ(α)

∫ t

a

F (τ,u(τ))
(t − τ)1−α

dτ, (3)

where ua(t) = u0 +
1

Γ(α)

∫ a
0

F (τ,u(τ))
(t−τ)1−α dτ represents the history term.

• Assume we have an approximation u0(t) to (3), we then define the error

δ(t) := u(t)− u0(t), we have

δ(t) =
1

Γ(α)

∫ t

a
(t − τ)α−1[F (τ,u0(τ) + δ(τ))− F (τ,u0(τ))]dτ + ϵ(t ,u0(t)),

where the residual function is given as follows:

ϵ(t ,u0(t)) = ua(t) +
1

Γ(α)

∫ t

a
(t − τ)α−1F (τ,u0(τ))dτ − u0(t).
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Approximation of the residual function

• Let F (t ,uk (t)) be approximated by Gauss-Legendre-Lobotto interpolation

Fp(t ,uk (t)) = IpF (t ,uk (t)) =
p∑

m=0

F k
mĥm(t),

where ĥj(t) is the Lagrange interpolation polynomial based on the p + 1

Legendre-Gauss-Lobatto points in the interval [a,b].

• Then the residual function ϵ(s,uk (s)) is approximated as follows:

ϵ⃗k = u⃗a +∆TαAF⃗ k − u⃗k , (4)

where ϵ⃗k = [ϵk
0, ϵ

k
1, · · · , ϵk

p]
T , u⃗a = [ua(s0),ua(s1), · · · ,ua(sp)]

T , F⃗ k =

[F k
0 ,F

k
1 , · · · ,F k

p ]
T , u⃗k = [uk

0 ,u
k
1 , · · · ,uk

p ]
T , A = IN ⊗ A is a

N(p + 1)× N(p + 1) block diagonal matrix, A is the fractional spectral

integration matrix given by

Aij =
1

2αΓ(α)

∫ ri

−1
(ri − r)α−1hj(r)dr .
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Linear Problem

• For simplicity, we consider the linear problem, i.e.,

F (t ,u(t)) = Lu(t) + f (t). Then the correction equation becomes

δ(t) =
1

Γ(α)

∫ t

a
(t − τ)α−1Lδ(τ)dτ + ϵ(t).

• For the k -th correction step, by discretizing the above equation with the

backward Euler scheme and noting that δk
0 = ϵk

0 = 0, we obtain

δk
i =

1
Γ(α+ 1)

i∑
l=1

Ls̃α
i,l δ

k
l + ϵk

i , i = 1, . . . ,p, (5)

where s̃α
i,l = (si − sl−1)

α − (si − sl)
α, i ≥ l ≥ 1.

• Writing the above equation into the matrix form yields

(I −∆TαÃL)δ⃗k = ϵ⃗k , (6)

where δ⃗k = [δk
0 , δ

k
1 , · · · , δk

p ]
T , L = diag(L)⊗ Ip+1, Ã = IN ⊗ Ã.
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Matrix ∆T αÃ
• The matrix ∆TαÃ is given by

∆TαÃ =
1

Γ(α+ 1)



0 0 0 · · · 0 0

0 s̃α
1,1 0 · · · 0 0

0 s̃α
2,1 s̃α

2,2 · · · 0 0
...

...
...

. . .
...

...

0 s̃α
p−1,1 s̃α

p−1,2 · · · s̃α
p−1,p−1 0

0 s̃α
p,1 s̃α

p,2 · · · s̃α
p,p−1 s̃α

p,p


.

• Similarly, for the explicit Euler scheme, the matrix ∆TαÃ takes the form

∆TαÃ =
1

Γ(α+ 1)



0 0 · · · 0 0 0

s̃α
1,1 0 · · · 0 0 0

s̃α
2,1 s̃α

2,2 · · · 0 0 0
...

...
. . .

...
...

...

s̃α
p−1,1 s̃α

p−1,2 · · · s̃α
p−1,p−1 0 0

s̃α
p,1 s̃α

p,2 · · · s̃α
p,p−1 s̃α

p,p 0


.
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Neumann series expansion for δ⃗

• Assuming we have the provisional solution u⃗k , we have

u⃗k+1 = u⃗k + δ⃗k = u⃗k + (I −∆TαÃL)−1ϵ⃗k .

• By the above equation and (4), i.e., eqn for ϵ⃗k , we derive

u⃗k+1 = u⃗k + (I −∆TαÃL)−1
(

u⃗a +∆TαA(Lu⃗k + f⃗ )− u⃗k
)

= · · · · · ·

= (I −∆TαÃL)−1u⃗a + Cu⃗k + (I −∆TαÃL)−1∆TαA⃗f ,

where C is the so called “correction matrix” given by

C = (I −∆TαÃL)−1∆Tα(A − Ã)L. (7)

• Consequently, by replacing k + 1 by k , we have

u⃗k = (I −∆TαÃL)−1u⃗a + Cu⃗k−1 + (I −∆TαÃL)−1∆TαA⃗f .
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Neumann series expansion for δ⃗

• Subtracting the above equation from (11) yields the recursive relationship

δ⃗k = C δ⃗k−1 = Ck δ⃗0.

• Consequently, we have the solution after k corrections given by the

Neumann series expansion:

u⃗k = u⃗0 +
k−1∑
i=0

C i δ⃗0. (8)

This means

δ⃗ =
k−1∑
i=0

C i δ⃗0.
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Neumann series expansion for δ⃗

• Discretizing error equation (5) at the Gauss-type collocation points

(I −∆TαAL)δ⃗ = ϵ⃗,

• The SDC procedure is to iteratively approximate the above system with

the low order approximations δ⃗k for k = 1,2, . . .. Applying the low-order

preconditioner (I −∆TαÃL)−1 to the above system, we obtain

(I −∆TαÃL)−1(I −∆TαAL)δ⃗ = (I −∆TαÃL)−1ϵ⃗ = δ⃗0. (9)

Let C be given by (7), then, we have

(I − C)δ⃗ = δ⃗0. (10)

• The solution to the above is given by the Neumann series expansion

δ⃗ = δ⃗0 + C δ⃗ = δ⃗0 + C(δ⃗0 + C δ⃗) = δ⃗0 + C δ⃗0 + C2δ⃗ = δ⃗0 + C δ⃗0 + C2δ⃗0 + · · · ,

which is equivalent to equation (8).
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Error estimate for the viewpoint of spectrum of C

• We have the following convergence result:

Theorem
For linear fractional ODEs, the SDC iteration is convergent if and only if the

spectral radius of the correction matrix C given in (7) is less than 1, i.e.,

ρ(C) < 1.

• The convergence rate for the SDC iteration is

• (ρ(C))k =
(
ρ
(
(I −∆TαÃL)−1∆Tα(A − Ã)L

))k
.

• Recall that the convergence rates is

• O(∆T (2−α)(k+1)) (or O(∆T (2−α)+k )) [Lv, Azaiez and Xu, 2018] or

• O(∆Tmin(p+1+α,α(k+1)+δ)), δ = 1 or 2 [Baffet, 2019].
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Convergence region

• Consider the following scalar problem:

C
0 Dα

t u(t) = λu(t), t ∈ [0,T ].

• Let T = 2 and use implicit scheme
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Spectral radius

• The spectral radius ρ(C(λ)) for different values of p and α; λ = −10000.

p

α
1.0 0.9 0.8 0.7 0.6 0.5 0.3

7 0.8595 0.8007 0.7398 0.6758 0.6076 0.5338 0.3621

11 0.9677 0.8971 0.8255 0.7516 0.6738 0.5906 0.3992

15 1.0221 0.9454 0.8684 0.7894 0.7069 0.6189 0.4178

19 1.0544 0.9741 0.8938 0.8120 0.7266 0.6360 0.4290

25 1.0838 1.0003 0.9172 0.8327 0.7449 0.6517 0.4395
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Computation of the history term ua

• Assume the current interval is [tj , tj+1], i.e., a = tj , b = tj+1, we can

approximate ua(t) by the following:

ua(t) ≈ u0 +
1

Γ(α)

∫ tj

0

Fp(τ,u(τ))
(t − τ)1−α

dτ = u0 +
1

Γ(α)

j−1∑
l=0

∫ tl+1

tl

Fp(τ,u(τ))
(t − τ)1−α

dτ

= u0 +
1

Γ(α)

j−1∑
l=0

∫ tl+1

tl
(t − τ)α−1

p∑
m=0

F k
mĥm(τ)dτ

= u0 +
∆T

2Γ(α)

j−1∑
l=0

∫ 1

−1
(t − tl −

∆T
2

(1 + r))α−1
p∑

m=0

F k
mhm(r)dr ,

(11)

• We expand Fp in terms of Jacobi polynomials
p∑

m=0

F k
mhm(τ(r)) =

p∑
n=0

F̂ k
n J ã,b̃

n (r),

and obtain {F̂ k
n }

p
n=0 by using the forward discrete transform.
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Computation of the history term ua

• Then (11) becomes to

ua(t) = u0 +
∆T

2Γ(α)

j−1∑
l=0

p∑
n=0

[∫ 1

−1
(t − tl −

∆T
2

(1 + r))α−1J ã,b̃
n (r)dr

]
F̂ k

n .

• The integrals in the above equations can be computed by a high accurate

hybrid approach originally developed in [Chen, Xu and Heshthaven,

2015]. In particular, we use the three-term-recurrence relation when j − l

is small while use the Gauss quadrature when j − l is large.
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Error estimate

• Now we show the error estimate with respect to the degree of polynomial

p for the solution of the SDC method at each subinterval.

• Let up(t) be the limit approximation solution of the SDC procedure. Then,

up(t) satisfies:

up(t) = u0(t) +
1

Γ(α)

∫ t

0
(t − τ)α−1IpF (τ)dτ, t ∈ [a,b]. (12)

• Using the above equation and equation (3), we obtain

|u − up| =
1

Γ(α)

∣∣∣∣∣
∫ t

0
(t − τ)α−1(F − IpF )(τ)dτ

∣∣∣∣∣ ≤
≤ 1

Γ(α)

∫ t

0
(t − τ)α−1dτ · ∥F − IpF∥∞ ≤ ∆Tα

Γ(1 + α)
∥F − IpF∥∞ .
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Error estimate

• Then, we have the following estimate:

Theorem

Suppose F (t) ∈ Hm([a,b]), let u(t) and up(t) be the solutions of (3) and (12),

respectively, it holds that

∥u(t)− up(t)∥∞ ≤ C∆Tαp1/2−m∥F (t)∥m.

• Remark: The above estimate indicates that the convergence depends

only on the regularity of F with respect to t .
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Order reduction phenomenon

• If ρ(C(L)) > 1, then the Neumann series expansion (8) is divergent.

• If ρ(C(L)) < 1 but close to 1, then the SDC iterations still converges but

very slowly. This is the so called order reduction phenomenon, which

usually happens for stiff problems.
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Accelerated SDC

• The numerical solution after k -th SDC iteration can be represented by the

Neumann series expansion, i.e.,

u⃗k − u⃗0 = δ⃗0 + C δ⃗0 + C2δ⃗0 + · · ·+ Ck δ⃗0.

• This encourages us to search for the optimal solution in the Krylov

subspace K (C, δ⃗0) = span{δ⃗0,C δ⃗0, · · · ,Ck δ⃗0} by using the GMRES or

other Krylov subspace based iterative methods for the linear system (9).

• We use the GMRES algorithm with restart, denoted by Re, to accelerate

the convergence of the original SDC method.

• For the nonlinear problem, we use the Newton iteration method by using

the implicit scheme based SDC method or semi-implicit scheme based

SDC method.
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Numerical test

• Example 1: We begin by considering linear fractional ODEs, namely,

F (t ,u(t)) = λu(t) + f (t).

• We first present accuracy tests for both λ = −1 (non-stiff case) and

λ = −10000 (stiff case) with a smooth F (with respect to t).

• In particular, let F (t ,u(t)) = cos(t). In this case, we have

f (t) = cos(t)− λ 0Iαt cos(t), u0 = 0 and the exact solution is

u(t) = 0Iαt cos(t).
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Numerical test: # of iteration

• Number of SDC iterations for the stiff case (λ = −10000). Here we set

the max iteration number to be 1000.

α

p
7 9 11 13 15 17 19 21

0.7 81 95 107 116 125 133 139 145

0.9 141 200 276 376 518 732 1000 1000
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SDC vs. GMRES-SDC

• Convergence of the residual of the implicit GMRES-SDC method with

p = 25 and different values of α.
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SDC vs. GMRES-SDC

• Convergence of the residual of the implicit GMRES-SDC method with

p = 25 and different values of α.
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Explicit GMRES-SDC

• The L∞-error and the relative residual of the GMRES-SDC iteration for

λ = −10 by using the explicit GMRES-SDC with different pairs of (α,p).

(α,p) Re Residual Error (α,p) Re Residual Error

0 2.3e+09 1.8e+11 0 7.2e+16 4.7e+18

1 2.6e-03 1.1e-02 1 1.1e-03 4.4e-03

(1.0,15) 3 9.8e-05 4.0e-04 (0.9,20) 5 2.7e-05 1.3e-04

5 7.2e-05 3.9e-04 10 4.0e-07 2.2e-06

15 1.4e-15 3.1e-11 20 4.6e-15 2.1e-14

0 5.7e+23 3.5e+25 0 4.5e+59 2.2e+61

1 3.8e-09 1.6e-08 1 7.2e-04 2.3e-03

(0.8,40) 4 1.3e-12 6.5e-12 (0.7,50) 5 1.6e-08 6.5e-08

10 4.1e-14 2.7e-13 10 1.5e-10 9.3e-10

40 2.3e-15 2.5e-14 50 6.0e-15 2.9e-14
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Low regularity issue

• Example 1: Consider again

C
0 Dα

t u(t) = λu(t).

• The exact solution is given by the Mittag-Leffler function

u(t) = Eα(−λtα), where Eα(t) =
∞∑
l=0

t l

Γ(αl + 1)
.

• Low regularity at the origin.

• To resolve this issue, we introduce a geometric mesh near t = 0. In

particular, we re-divide the first subdomain [0,∆T ] = [t0, t1] into a

geometric mesh given by

t1,0 = t0, t1,k = t0 +∆T · rK 1−k , k = 1,2, . . . ,K 1.
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SDC vs GMRES-SDC

• Convergence of the residual of the GMRES-SDC iteration for

λ = −10000 with different values of the restart number Re and α = 0.9.
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Error vs DOF

• Comparison of the convergence of the L∞-error by using h − p

refinement and the geometric mesh.
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L∞-error vs. CPU time
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Nonlinear equation

• Example 3: Consider
C
0 Dα

t u(t) = −u(t)3.

• Geometric mesh is used to resolve the low regularity issue.

0 20 40 60 80 100

t

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5

E
rr

o
r 

in
 l
o
g
s
c
a
le

=0.8, T=100, p=25, h-refinement

K=25

K=50

K=75

K=100

K=125

uniform mesh

K=25

K=50

K=75

K=100

K=125

geometric mesh

Errors vs t

10
-1

10
0

10
1

cuptime in logscale

10
-12

10
-10

10
-8

10
-6

E
rr

o
r 

in
 l
o

g
s
c
a

le

=0.8, T=100

Fast method of Ref.[12]

SDC geometric mesh

Error vs CPU time

34 / 45



Nonlinear system

• Example 4: Consider the following fractional nonlinear equation

considered in [baffet, 2019]:

(C
0 Dα

t )
2x(t)− ϵ(1 − x2(t))C

0 Dα
t x(t) + x(t) = 0, t ∈ [0,T ],

x(0) = x0,
C
0 Dα

t x(0) = y0.

• We rewrite the above equation as a nonlinear fractional ODE system:

C
0 Dα

t x(t) = y(t),
C
0 Dα

t y(t) = ϵ(1 − x2(t))y(t)− x(t),

x(0) = x0, y(0) = y0.
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Nonlinear system
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Fractional Phase Field model

• Consider the following two-dimensional fractional phase field model:
C
0 Dα

t u(x , t) + (−∆)β(−ε2∆u(x , t) + f (u(x , t))) = 0, (x , t) ∈ Ω× (0,T ],

u(x ,0) = u0(x), x ∈ Ω,

with periodic boundary conditions, ε is a positive constant,

x = (x1, x2), u0 ∈ L∞(Ω) ∩ H1
per (Ω), and f (u) = u3 − u.

• Weak form: Find u ∈ H1+β
per (Ω), ∀v ∈ H1+β

per (Ω), such that

(C
0 Dα

t u(t), v) + (ε2(−∆)
(1+β)

2 u(t), (−∆)
(1+β)

2 v) + (f (u(t)), (−∆)βv) = 0.
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Fractional Phase Field model

• Let XN =span{eikx1+ilx2 ,−N ≤ k , l ≤ N}. The Fourier-Galerkin

approximation consists of finding uN ∈ XN , ∀v ∈ XN such that

(C
0 Dα

t uN(t), v) + (ε2(−∆)
(1+β)

2 uN(t), (−∆)
(1+β)

2 v) + (f (uN(t)), (−∆)βv) = 0

with initial condition uN(0) = ΠNu0.

• Let uN(x , t) =
∑N/2

k,l=−N/2 ûkl(t)eikx1+ilx2 , and take

v = eipx1+iqx2 ,p,q = −N/2, . . . ,N/2. We arrive at the following fractional

ODE system for k , l = −N/2, . . . ,N/2

C
0 Dα

t ûkl(t) + ε2(k2 + l2)1+β ûkl(t) + (k2 + l2)β f̂kl(t) = 0,

where f̂kl(t), k , l = −N/2, . . . ,N/2, are the Fourier coefficients of f (uN).
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Fractional Phase Field model

• Example 5: consider the following initial condition given in [Tang, Yu and

Zhou, 2019, Section 5.1].

u0(x1, x2) = tanh

(
1√
2ε

(
√

x2
1 + x2

2 − 1
4
+

1 − cos(4 arctan x2
x1
)

16
)

)
.
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Fractional Phase Field model
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Fractional Allen-Cahn Equation
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Fractional Cahn-Hilliard Equation
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Conclusion

• We extended the idea of [Huang, Jia and Minion, 2006] for integer case

to fractional fractional case and overcame order reduction by accelerating

the convergence of the SDC iteration with the GMRES algorithm.

• We numerically analyzed the accelerated SDC method by considering

both stiff and non-stiff linear problems showing that the accelerated SDC

method is more efficient than the original SDC method.

• We employed the present accelerated SDC method to nonlinear

fractional ODEs and fractional phase field models and demonstrated the

effectiveness of the accelerated SDC method and the use of the

geometric mesh near the origin for problems with singular solutions.

• Furthermore, the use of geometric mesh is advantageous for the long

time evolution, since we only need a slight increase in the number of

degrees of freedom.
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Thank you!

Email: zpmao@xmu.edu.cn
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