Algorithms Short Course on High Performance Numerical Linear Algebra


Register online

 

Date:   November 16-20, 2015              

Location:   Conference Room Ⅱ,  CSRC Home Building

 

Objective: To familiarize CSRC researchers with the state of art linear algebra algorithms for high performance scientific computing

 

Lecturer:  Prof.Chao Yang, Senior Research Scientist, Computational Research Division, Lawrence Berkeley National Lab


                Date

Schedule

Nov16-Nov20,2015

Section1: Lecture  

2:00pm-3:00pm

Section2: Free Discussion

3:00pm-4:00pm

Section3: Lecture

4:00pm-5:00pm

 

Day 1 : Basics on modern computer architecture and high performance computing, performance models, profiling tools and general performance tuning techniques

1) Processing units:

  •    Vector units

  •    Parallel processing:

                     Instruction level parallelism

                     Task parallel vs. data parallel

                      Thread level of parallelism (shared memory)

                      Distributed memory parallelism

  •    Memory:

                      Latency vs bandwidth

                      Hierarchy

                      Cache coherence

  •   Interconnect:

                      Theoretical latency vs bandwidth

                      Node/core topology and effective bandwidth

2) Performance profiling and optimization

  •     Profiling tools: hardware counter, tracing, TAU, PAPI, IPM

  •     Optimization techniques

                      Loop fusion/unrolling, blocking, branch elimination

                      Cache miss reduction, overlap communication with floating point

                      Operations, hybrid OpenMP/MPI, load balance, synchronization

Day 2 : BLAS, parallelization, scalability

1) BLAS


2) Linear equation (Gauss elimination with partial pivoting)

                      

  •    Block algorithms


  •    Parallel algorithms for shared memory machines, dynamic scheduling


  •    Parallel algorithms for distributed memory systems

 

Day 3 : Dense linear algebra (linear systems, least squares and eigenvalue problems

1) Least squares (QR factorization and SVD)

2) Eigenvalue problems


3) Tools: BLAS, LAPACK, ScaLAPACK, Elemental, ELPA

 

Day 4 : Methods for solving sparse linear system of equations (both direct method and iterative method)

1) Sparse matrix and storage format

2) Sparse matrix vector multiplication

3) Sparse direct methods for solving linear systems

  •     Matrix ordering

  •     Symbolic factorization, elimination tree

  •     Left-looking, right-looking, multifrontal

  •     Shared memory parallel implementation

  •     Distributed memory parallel implementation

  •     Tool: MUMPS, PARDISOL, SuperLU, Metis

4) Iterative methods

Linear equations: Jacobi, Gauss-Siedel, Krylov subspace, conjugate gradient, GMRES etc.


Day 5 : Methods for solving sparse eigenvalue problem and Application

1) Eigenvalue problem: Lanczos, Arnoldi, optimization based approaches

2) Application

  •     Electronic structure

  •     Inverse problem

  •     Data analysis

Bio-skeptch of Lecture:


 PPT download

Lecture1.pdf

Lecture2.pdf

Lecture3.pdf

Lecture4.pdf

Lecture5.pdf



     

    


 

 

       

       

 

 


CSRC 新闻 CSRC News CSRC Events CSRC Seminars CSRC Divisions