
Numerical methods for multiscale kinetic equations:
asymptotic-preserving and hybrid methods

Lecture 3: Asymptotic-preserving schemes (Part II)

Lorenzo Pareschi

Department of Mathematics and Computer Science
University of Ferrara, Italy

http://www.lorenzopareschi.com

Beijing Computational Science Research Center, June 7-10, 2017

Lorenzo Pareschi (University of Ferrara) Numerics for multiscale kinetic equations #3 CSRC, June 7-10, 2017 1 / 39



Lecture 3 Outline

1 AP schemes for Boltzmann equations
Penalized IMEX-RK schemes
Penalized IMEX-LM schemes

2 Exponential schemes
Exponential schemes for homogeneous equations
Extension to non homogeneous problems

3 The Navier-Stokes regime
Navier-Stokes asymptotics of IMEX-LM
Navier-Stokes asymptotics of IMEX-RK

4 Multiple scalings
The unified IMEX approach
A numerical example

5 Final considerations

Lorenzo Pareschi (University of Ferrara) Numerics for multiscale kinetic equations #3 CSRC, June 7-10, 2017 2 / 39



AP schemes for Boltzmann equations

Kinetic equations in the fluid-dynamic scaling
The density f = f(x, v, t) ≥ 0 of particles follows

Kinetic model

∂tf + v · ∇xf =
1

ε
Q(f), x ∈ Ω ⊂ Rdx , v ∈ R3,

where ε > 0 (Knudsen number) is proportional to the mean free path.
The collision operator satisfies local conservation properties∫

Rdv
Q(f)φ(v) dv =: 〈Q(f)φ〉 = 0,

where φ(v) = (1, v, |v|2/2)T are the collision invariants and the entropy inequality

〈Q(f) log(f)〉 ≤ 0.

From this we get Q(f) = 0⇔ f = M [f ] where

M [f ](v) =
ρ

(2πT )3/2
exp

(
−|u− v|

2

2T

)
,

(ρ, ρu,E)T = 〈fφ〉, T =
1

3ρ
(E − ρ|u|2).
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AP schemes for Boltzmann equations

Hydrodynamic equations
Integrating the kinetic equation against the collision invariants we get

∂t〈fφ〉+ 〈v · ∇xfφ〉 = 0,

corresponding to conservation of mass, momentum and energy. The differential
system is not closed since it involves higher order moments of the function f .
As ε→ 0 formally Q(f) = 0 implies f = M [f ] and we get the closed system 1

Compressible Euler equations

∂tU + divxF(U) = 0

U = 〈M [f ]φ〉 = (ρ, ρu,E)T

F(U) = 〈v ⊗ φM [f ]〉 =

 ρu
ρu⊗ u+ pI
Eu+ pu

 , p = ρT, T =
1

3

(
2E

ρ
− |u|2

)
.

. The result is independent on the particular choice of Q(f) provided it admits
Maxwellian as local equilibrium functions.

1R. Caflisch ’80
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AP schemes for Boltzmann equations

Hydrodynamic equations II

For small but non zero values of the Knudsen number, the evolution equation for
the moments can be derived by the so-called Chapman-Enskog expansion. This
originates the compressible Navier-Stokes equations as a second order
approximation with respect to ε to the solution of the Boltzmann equation2

Compressible Navier-Stokes equations

∂tU + divxF(U) = εdivxD(∇xU)

D(∇xU) =

 0
νσ(u)

κ∇xT + νσ(u) · u

 , σ(u) =
1

2

(
∇xu+ (∇xu)T − 2

3
divxuI

)
,

and the viscosity ν and the thermal conductivity κ are defined according to the
linearized Boltzmann operator. The Prandtl number is the ratio Pr = 5ν/(2κ).
. The choice of the collision operator Q(f) influences the structure of the
Navier-Stokes system in terms of the Prandtl number.

2F. Golse ’05
Lorenzo Pareschi (University of Ferrara) Numerics for multiscale kinetic equations #3 CSRC, June 7-10, 2017 5 / 39



AP schemes for Boltzmann equations

Penalized IMEX methods in the Boltzmann case

The goal is to construct AP schemes avoiding the implicit solution of the
collision term of the Boltzmann equation3.

The main idea is to use the fact that when ε is small we do not really need to
resolve the whole collision operator since we know that f ≈M [f ].

When f ≈M [f ] the collision operator is well approximated by its linear
counterpart or directly by a BGK relaxation operator.

If we denote by QP (f) the linear approximating operator we can write

Penalized setting

Q(f) = GP (f)︸ ︷︷ ︸
explicit

+QP (f)︸ ︷︷ ︸
implicit

, GP (f) = Q(f)−QP (f).

I The penalized IMEX methods are implicit in the linear part QP (f) and
explicit in the deviations from equilibrium GP (f).

3E. Gabetta, L. P., G. Toscani ’97, S. Jin, F. Filbet ’11, G. Dimarco, L. P. ’13
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AP schemes for Boltzmann equations Penalized IMEX-RK schemes

Penalized IMEX-RK schemes
We assume QP (f) = µ(M [f ]− f), µ > 0 and denote L(f) = v · ∇xf .
In vector form, the penalized IMEX-RK scheme reads

Penalized IMEX-RK for Boltzmann

F = fn e+ ∆t Ã

(
1

ε
GP (F )− L(F )

)
+

∆t

ε
AQP (F )

fn+1 = fn + ∆t w̃T
(

1

ε
GP (F )− L(F )

)
+

∆t

ε
wTQP (F ),

where F = (F (1), . . . , F (ν))T .

Clearly the scheme being implicit only in the linear part, which can be easily
inverted and computed, can be implemented explicitly.

Again, since the problem is stiff as a whole, the hope is that we can still find
conditions for the AP property.

In the penalized case, the globally stiffly accurate property, is required to
have a stable AP scheme. It corresponds to have w̃j = ãνj and wj = aνj ,
j = 1, . . . , ν which implies fn+1 = F (ν).
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AP schemes for Boltzmann equations Penalized IMEX-RK schemes

AP-property
First let us point out that we have the same associated moment scheme
characterized by (Ã, w̃) of the explicit method

〈Fφ〉 = 〈fnφ〉 e−∆t Ã〈L(F )φ〉
〈fn+1φ〉 = 〈fnφ〉 −∆t w̃T 〈L(F )φ〉.

Consider now an invertible matrix A and solve the IMEX scheme for QP (F )

QP (F ) =
ε

∆t
A−1

[
F − fn e+ ∆tÃ

(
L(F )− 1

ε
GP (F )

)]
As ε→ 0 we get

QP (F (i)) = 0 ⇒ F (i) = M [F (i)], i = 1, . . . , ν.

In fact Ã is lower triangular with ãii = 0 and we have a hierarchy of equations

GP (F (i)) = Q(F (i))−QP (F (i)) = 0, i = 1, .., ν.
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AP schemes for Boltzmann equations Penalized IMEX-RK schemes

Further requirements

Now the last level still depends on ε. After some manipulations it reads

fn+1 = fn
(

1− wTA−1e
)

+ ∆t
(
wTA−1Ã− w̃T

)(
L(F )− 1

ε
GP (F )

)
+ wTA−1F.

For small values of ε the scheme turns out to be unstable since fn+1 is not bounded.
A remedy, is to consider globally stiffly accurate schemes for which fn+1 = F (ν). This is
guaranteed if

w̃T = wTA−1Ã, wTA−1 = eTν , eTν = (0, . . . , 1),

which implies w̃j = ãνj and wj = aνj , j = 1, . . . , ν.
So as ε→ 0 we get

F (ν) = M [F (ν)]⇒ fn+1 = M [fn+1].

I In the penalized case, the stiffly accurate property is required to have a stable AP

scheme.
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AP schemes for Boltzmann equations Penalized IMEX-RK schemes

Mixing regimes problem
Collision term approximated by the Fast Fourier-Galerkin method 4. Second and
third order WENO is used in space 5
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4L.P., B.Perthame ’96, C.Mouhot, L.P. ’06
5C-W. Shu ’97
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AP schemes for Boltzmann equations Penalized IMEX-RK schemes

Mixing regimes: third order scheme
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AP schemes for Boltzmann equations Penalized IMEX-RK schemes

Mixing regimes: second vs third order
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AP schemes for Boltzmann equations Penalized IMEX-LM schemes

Penalized IMEX-LM schemes

In the penalized setting, using vector notations, an IMEX-LM scheme reads

Penalized IMEX-LM for Boltzmann

fn+1 = −aT· F + ∆tbT·
(

1

ε
GP (F )− L(F )

)
+

∆t

ε
cT·QP (F ) +

∆t

ε
c−1QP (fn+1),

where F = (fn, . . . , fn−ν+1)T .

The scheme is implicit only in the penalization term QP (f), therefore it can
be implemented explicitly.

To avoid a fully implicit solver we are integrating explicitly the stiff term
Gp(f)/ε, a particular care is then needed to avoid instabilities.

To satisfy the AP property, at variance with the non penalized case, also
IMEX-BDF schemes require the initial vector to be well-prepared.
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AP schemes for Boltzmann equations Penalized IMEX-LM schemes

AP property
Taking the moment system of the penalized IMEX-LM scheme we obtain the
explicit multistep method

〈φfn+1〉 = −aT 〈φF 〉 −∆t bT 〈φL(F )〉.

Now we can write the penalized IMEX-LM scheme in the form

εfn+1 = −εaT ·F+∆t bT ·(GP (F )− εL(F ))+∆t cT ·QP (F )+∆t c−1QP (fn+1),

which as ε→ 0 yields

0 = bT ·GP (F ) + cT ·QP (F ) + c−1QP (fn+1).

If the initial steps are well prepared, as ε→ 0 we get F = M [F ] which implies
QP (F ) ≡ 0, GP (F ) ≡ 0 and therefore since c−1 6= 0 we have

Q(fn+1) = 0 ⇒ fn+1 = M [fn+1].

Thus we have the explicit multistep method for the Euler equations.
. Note that, at variance with the non penalized case, also IMEX-BDF schemes
require the initial vector to be well-prepared.
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AP schemes for Boltzmann equations Penalized IMEX-LM schemes

Accuracy test
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Figure: L1 error for the density ρ. Left IMEX-BDF3 and IMEX-TVB3, Right

IMEX-BDF4 and IMEX-TVB4.
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AP schemes for Boltzmann equations Penalized IMEX-LM schemes

Stability

High order IMEX-LM methods are very sensitive to the choice of the
penalization factor and may lead to instabilities unless the eigenvalues of the
stiff part are estimated with enough accuracy.
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Figure: Stability regions in the BGK model for various relative errors in the penalization

parameter. Left IMEX-BDF3, Right IMEX-BDF4.
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Exponential schemes Exponential schemes for homogeneous equations

Exponential schemes for homogeneous equations
For positivity a more robust approach is based on the exact integration of the
penalization term which permits to write the homogeneous equation as

∂

∂t

[
(f −M [f ])e

µt
ε

]
=

1

ε
G(f)e

µt
ε =

1

ε
(P (f, f)− µM [f ])e

µt
ε .

Taking a truncated Taylor expansion along τ = 1− e−
µt
ε and using the bilinearity

of P (f, f) we derive a class of unconditionally positive schemes of order m as6

Time relaxed methods

fn+1 = e−µ
∆t
ε fn + e−µ

∆t
ε

m∑
k=0

(1− e−µ∆t
ε )kfnk + (1− e−µ∆t

ε )m+1M [fn],

where the functions fk are given by the recurrence formula

fk+1(v) =
1

k + 1

k∑
h=0

1

µ
P (fh, fk−h)(v), k = 0, 1, . . . .

6E.Gabetta, L.P., G.Toscani ’97
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Exponential schemes Exponential schemes for homogeneous equations

AP Exponential Runge-Kutta methods
A different approach consist in taking an explicit Runge-Kutta discretization with
ν ≥ m stages of the transformed problem and then reverting back to the original
variables 7

Exponential Runge-Kutta

F (i) = e−ciµ
∆t
ε fn + (1− e−ciµ∆t

ε )M [fn] + ∆t

i−1∑
j=1

Aij

(
µ

∆t

ε

)
G(F (j)),

fn+1 = e−µ
∆t
ε fn + (1− e−µ∆t

ε )M [fn] + ∆t

ν∑
i=1

Wi

(
µ

∆t

ε

)
G(F (i)),

where ci ≥ 0, and the coefficients Aij and the weights Wi are

Aij

(
µ

∆t

ε

)
= aije

−(ci−cj)µ∆t
ε , i, j = 1, . . . , ν, j > i

Wi

(
µ

∆t

ε

)
= wie

−(1−ci)µ∆t
ε , i = 1, . . . , ν.

I Unconditionally positive schemes can be constructed up to fourth order.

7G.Dimarco, L.P. ’11, S.Maset, M.Zennaro ’09
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Exponential schemes Extension to non homogeneous problems

Extension to non homogeneous problems

Let us now consider the non homogeneous case and compute

∂t

[
(f −M)eµt/ε

]
= ∂t(f −M)eµt/ε + (f −M)

µ

ε
eµt/ε

=

[
1

ε
(Q+ µf − µM)− ∂tM − v · ∇xf

]
eµt/ε

=

1

ε
(P − µM)−∂tM−v · ∇x f︸ ︷︷ ︸

new terms

 eµt/ε.
Note that the equation above is equivalent to the original Boltzmann equation
even when M is not the local Maxwellian.
In the simplified case of the BGK collision operator Q = µ(M − f), where M is
the local Maxwellian, the problem reformulation just described applies with
P = µM and the first term on the RHS vanishes.
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Exponential schemes Extension to non homogeneous problems

AP exponential Runge-Kutta

Thus we have the following scheme8

Exponential Runge-Kutta non homogeneous case

Step i:
(F (i) −M (i))eciµ

∆t
ε

= (fn −Mn) +

i−1∑
j=1

aij
∆t

ε

[
P (j) − µM (j) − εv · ∇xF (j) − ε∂tM (j)

]
ecjµ

∆t
ε ,

Final Step:
(fn+1 −Mn+1)eµ

∆t
ε

= (fn −Mn) +

ν∑
i=1

wi
∆t

ε

[
P (i) − µM (i) − εv · ∇xF (i) − ε∂tM (i)

]
eciµ

∆t
ε .

I How to compute M (j) and ∂tM
(j), j = 1, . . . , ν ?

8Q.Li, L.P. ’13
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Exponential schemes Extension to non homogeneous problems

Computation of M (j) and ∂tM
(j)

The computation of M (j) follows from the associated moment scheme which
gives an explicit Runge-Kutta method applied to the moment equations.

To compute ∂tM
(j) in d-dimension use relations

∂tM
(j) = ∂ρM

(j)∂tρ
(j) +∇uM (j) · ∂tu(j) + ∂TM

(j)∂tT
(j),

with

∂ρM
(j) =

M(j)

ρ(j)
, ∇uM(j) = M(j) v − u(j)

T (j)
, ∂TM

(j) = M(j)

[
(v − u(j))2

2(T (j))2
−

d

2T (j)

]
.

Then substitute

∂tρ
(j) = −

∫
v · ∇xF (j)dv,

∂tu
(j) =

1

ρ(j)

(
u(j)

∫
v · ∇xF (j)dv −

∫
v ⊗ v · ∇xF (j)dv

)
,

∂tT
(j) =

1

dρ(j)

(
−2E(j)

ρ(j)
∂tρ

(j) − 2ρ(j)u(j)∂tu
(j) −

∫
v2v · ∇xF (j)dv

)
.
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Exponential schemes Extension to non homogeneous problems

Properties

At variance with IMEX RK thanks to the positivity of the coefficients using the
Shu-Osher 9 representation of Runge-Kutta methods it is possible to prove

Theorem

There exist h∗ > 0 and µ∗ > 0 such that fn+1 ≥ 0 provided that fn ≥ 0, µ ≥ µ∗
and 0 < h ≤ h∗.

In addition the same AP-property as for the homogeneous schemes is obtained

Theorem
The non homogeneous ExpRK-F method is AP and asymptotically accurate for
general explicit Runge-Kutta method with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cν < 1.

Runge-Kutta methods that satisfy the above condition can be constructed up to
fourth order.

9C-W.Shu, S.Osher ’89
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Exponential schemes Extension to non homogeneous problems

Convergence test

Initial data sum of two Maxwellians in space solved using WENO3-510 in space
and the fast Fourier-Galerkin method11 in velocity.

Maxwellian Initial Non-Maxwellian Initial

ε = 1 ExpRK2 2.416 2.023 2.677 2.054
ExpRK3 5.025 4.403 5.135 4.790

ε = 0.1 ExpRK2 2.414 2.022 2.566 2.058
ExpRK3 5.022 4.396 5.138 4.792

ε = 10−3 ExpRK2 2.023 1.859 1.474 1.754
ExpRK3 3.868 3.032 2.591 2.803

ε = 10−6 ExpRK2 2.561 2.045 2.563 2.048
ExpRK3 5.088 4.567 4.919 3.806

Convergence rates for ExpRK methods with different initial data, in different regimes.

10C-W.Shu ’97
11C.Mouhot, L.P. ’06
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The Navier-Stokes regime

The Navier-Stokes regime

P ε

P ε
∆t

∆t→ 0 ∆t→ 0

ε→ 0

ε→ 0

O(ε)

6

-

P 0

P 0
∆t

6

-

Most of the results in the literature refer to low order methods and the AP
property. Here we will focus on high order methods and their behavior in the more
difficult case of the O(ε) term, corresponding to a consistency condition with the
compressible Navier-Stokes limit.
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-LM

Navier-Stokes asymptotics of IMEX-LM

In order to do this we consider the simplified case of the BGK model,
Q(f) = (M [f ]− f), and IMEX-BDF schemes. We rewrite the IMEX-BDF scheme
as

fn+1 + aT · F
∆t

+ bT · L(F ) =
1

ε
c−1(M [fn+1]− fn+1).

Next, we consider the Chapman-Enskog expansion taking

fn+1 = M [fn+1] + εgn+1, F = M [F ] + εG,

where 〈φgn+1〉 = 0 and 〈φG〉 ≡ 0 with G = (gn, . . . , gn−s+1)T .
Inserting the above expansions in the numerical method yields

M [fn+1] + aT ·M [F ]

∆t
+ bT · L(M [F ])

+ ε

(
gn+1 + aT ·G

∆t
+ bT · L(G)

)
= −c−1g

n+1.
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-LM

Navier-Stokes asymptotics

Consistency with the Navier-Stokes equations is obtained if the vector of initial
steps satisfies 12 for j = 0, . . . , s− 1

〈φL(gn−j)〉 = −
〈
φL

((
∂M [f ]

∂t
+ L(M [f ])

)) ∣∣∣
t=tn−j

〉
+O(ε+ ∆tq), q ≥ 1.

In order for the scheme to be consistent with the Navier-Stokes limit in time it is
crucial that at the next time step gn+1 satisfies a consistency relation as we
assumed on gn. From the scheme we have

gn+1 = − 1

c−1

(
M [fn+1] + aT ·M [F ]

∆t
+ bT · L(M [F ])

)
+O

(
ε

ε+ µn+1c−1∆t

)
.

Since by construction the IMEX-BDF coefficients are such that

1

c−1

(
M [fn+1] + aT ·M [F ]

∆t
+ bT · L(M [F ])

)
=

(
∂M [f ]

∂t
+ L(M [f ])

) ∣∣∣
t=tn+1

+O(∆tp),

we get the desired result.

12F. Bouchut, B. Perthame ’93; F. Golse ’05
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-LM

Navier-Stokes asymptotics

More in general we can prove the following 13

Theorem
If the vector of initial steps is well-prepared with respect to the Navier-Stokes
limit, then, for small values of ε and with ε∆tq + ∆tp = o(ε), the IMEX multistep
scheme becomes the explicit multistep scheme for the Navier-Stokes system, with
q = p for the IMEX-BDF methods and q = 1 for the other IMEX multistep
methods.

The result shows that the schemes are capable, in principle, to capture the
Navier-Stokes asymptotics without resolving the small scale ε.

The analysis just performed can be carried on in a similar way also for the full
Boltzmann equation. The conclusions one obtains for the various IMEX
multistep schemes are exactly the same as for the BGK model.

13G. Dimarco, L. P. ’16
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-LM

Convergence rates: IMEX-LM for BGK model
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Figure: Convergence rates for the L1 error for the density ρ in the BGK model.
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-RK

The O(ε) behavior
To illustrate this we consider the Jin-Xin model in the linear case f(u) = bu{

∂tu+ ∂xv = 0

∂tv + a2∂xu = −1

ε
(v − bu),

which at O(ε) yields v = bu− ε(a2 − b2)∂xu, and then for a2 > b2

∂tu+ b∂xu = ε(a2 − b2)∂xxu.

In vector form a general IMEX scheme for the system above can be written as

u = une−∆tÃ ∂xv

v = vne−∆tÃa2∂xu−∆tA
1

ε
(v − bu)

un+1 = un −∆tw̃T∂xv,

vn+1 = vn −∆tw̃Ta2∂xu−∆twT
1

ε
(v − bu).
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-RK

The O(ε) behavior

Similarly to the continuos case we now consider the initial data well-prepared
vn = bun + εvn1 and expand

v = bu + εv1.

Using this we can compute from the IMEX-RK scheme

v1 = A−1Ã
(
b2 − a2

)
ux +O(ε).

We therefore obtain the following Runge-Kutta scheme for the O(ε) limit

u = une−∆tÃ b∂xu + ε∆tÃA−1Ã
(
a2 − b2

)
∂xxu

un+1 = un −∆tw̃T b∂xu + ε∆tw̃TA−1Ã
(
a2 − b2

)
∂xxu.

The above scheme represents an additive Runge-Kutta method for the O(ε) limit
based on the coefficient matrices Ã, ÃA−1Ã and the weights w̃T , w̃TA−1Ã.

The explicit additive Runge-Kutta method for the O(ε) limit should satisfy
suitable additional order conditions 14.

14S.Boscarino, L.P. ’16
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The Navier-Stokes regime Navier-Stokes asymptotics of IMEX-RK

Convergence rates: IMEX-RK for BGK model
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Figure: Convergence rates for the L1 error for the density ρ in the BGK model.
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Multiple scalings

Multiple scalings
Prototype hyperbolic system of balance laws with multiple scalings

Hyperbolic balance laws with multiple scalings
∂tu+ ∂xv = 0,

∂tv +
1

ε2α
∂xp(u) = − 1

ε1+α
(v − f(u)) , α ∈ [0, 1].

System has characteristics speeds ±
√
p′(u)/εα, p′(u) > 0. It corresponds to the

scaling : t→ t/ε1+α, x→ x/εα. For small values of ε we have

v = f(u)− ε1−α∂xp(u) +O(ε1+α)

and using the first equation

∂tu+ ∂xf(u) = ε1−α∂xxp(u) +O(ε1+α).

The above space-time scaling for α = 0 corresponds to the compressible Euler
limit, for α ∈ (0, 1) to the incompressible Euler limit, whereas for α = 1 to the
incompressible Navier-Stokes limit is obtained15.

15C. Cercignani, R. Illner, M. Pulvirenti ’94
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Multiple scalings

A standard IMEX approach
Using the standard IMEX Euler approach we obtain

Standard IMEX Euler
un+1 − un

∆t
+ ∂xv

n = 0,

vn+1 − vn

∆t
+

1

ε2α
∂xp(u

n) = − 1

ε1+α
(
vn+1 − f(un+1)

)
, α ∈ [0, 1].

For small values of ε we get for α > 0

vn+1 = f(un+1)− ε1−α∂xp(un) +O(ε1+α)

and therefore using the first equation we have the explicit three time level scheme

un+1 − un

∆t
+ ∂xf(un) = ε1−α∂xxp(u

n−1) +O(ε1+α)

Questions: Can we obtain a standard two time level method which avoids the
parabolic stiffness? How can we deal with the indefinite grow of the characteristic
speeds?
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Multiple scalings The unified IMEX approach

The unified IMEX approach
We introduce a different IMEX Euler approach 16

Unified IMEX Euler
un+1 − un

∆t
+ ∂xv

n+1 = 0,

vn+1 − vn

∆t
+

1

ε2α
∂xp(u

n+1) = − 1

ε1+α
(
vn+1 − f(un)

)
, α ∈ [0, 1].

We can rewrite the above scheme in the equivalent form

Reformulated unified IMEX Euler
un+1 − un

∆t
+

ε1+α

ε1+α + ∆t
∂xv

n+
∆t

ε1+α + ∆t
∂xf(un)=

∆tε1−α

ε1+α + ∆t
∂xxp(u

n+1),

vn+1 − vn

∆t
+

1

ε1+α + ∆t
∂xp(u

n) = − 1

ε1+α + ∆t
(vn − f(un)) .

16S. Boscarino, L.P., G. Russo ’17
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Multiple scalings The unified IMEX approach

The unified IMEX approach
Now, up to O(∆t) the left hand side corresponds to an hyperbolic system with
characteristic speeds

λα±(∆t, ε) =
ξα
2

(
c±

√
c2 +

4ε1+α

(∆t)2

)
,

with ξα = ∆t/(ε1+α + ∆t) ∈ [0, 1], c = f ′(u) and for simplicity we have set
p′(u) = 1.
We now observe that the characteristic speed do not diverge as ε→ 0 since we
have

λα±(∆t, 0) =
1

2
(c± |c|).

On the othe hand, if we fix ε and send ∆t→ 0 we obtain the usual characteristic
speeds

λα±(0, ε) = ± 1

εα
.

Remark: A similar analysis can be carried out for higher order IMEX methods.
The GSA property is essential to obtain the correct behavior for all α ∈ [0, 1].
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Multiple scalings A numerical example

A numerical example

We consider the nonlinear Ruijgrok-Wu model 17

Standard IMEX Euler
∂tρ+ ∂xj = 0 ,

∂tj +
1

ε2α
∂xρ =

1

ε1+α

{
−j +

1

2

(
ρ2 − ε2j2α

)}
.

For small values of ε and α > 1/3 the model behaviour can be derived by the
Chapman-Enskog expansion and is characterized by the viscous Burgers equation

j =
1

2
ρ2 − ε1−α∂xρ+O(ε2α)

∂tρ+ ∂x

(
ρ2

2

)
= ε1−α∂xxρ+O(ε2α).

17W.Ruijgrok, T.T.Wu ’82
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Multiple scalings A numerical example

α = 0.5

We use classical hyperbolic-type schemes, like WENO schemes, for the space
derivatives characterized the hyperbolic part while for the second order term we
used standard central differences.
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Multiple scalings A numerical example

α = 0.75

We use classical hyperbolic-type schemes, like WENO schemes, for the space
derivatives characterized the hyperbolic part while for the second order term we
used standard central differences.
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Final considerations

Final considerations

Penalization techniques represent a powerful tool for the time discretization
of the Boltzmann equation close to fluid regimes.

Penalized IMEX-LM schemes have some advantages over the corresponding
IMEX-RK methods. Easy to achieve high-order (up to order 5), greater
efficiency in terms of computational cost, better uniform accuracy.

Penalized IMEX-RK schemes on the other hand are easier to implement and
have better stability properties, in particular in the penalized setting.

Exponential methods are an interesting alternative to IMEX methods
especially when nonnegativity of the solution is mandatory.

Some recent references
I G. Dimarco, L. Pareschi, SIAM J. Num. Anal. 2017
I S. Boscarino, L. Pareschi, J. Comp. App. Math. 2017
I S. Boscarino, L. Pareschi, G. Russo, SIAM J. Num. Anal (to appear)
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