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The nonlinear time-fractional biharmonic model

In this talk, we consider the following nonlinear time-fractional biharmonic equations (tFBEs):
§D¥u48tu—cd?u="fluy+g 0<x<L 0<t<T, (1)
enclosed with the second Dirichlet boundary conditions
u(0, t) = aO(t)v u(L, t) = al(t)v )
A2u(0,t) = bo(t), A2u(L,t) =bi(t) for0<t< T.

and initial condition
u(x,0) = up(x), 0 < x< L. 3)

° gD‘t1 — Caputo type fractional derivative with 0 < o < 1,

t
§D2u(x, t) :/ wWi—a (t—s5) Osu(x,s)ds, wg = ——
0

@ ¢ >0, and the nonlinear term f(u) is required to satisfy certain regularity.
- |fu) = fv)] < Klu — v| for some K > 0 — for nonlinear algorithm.
- flu) € C3(R), |flu) — Av)| < K|u— v| for some K > 0 — for two-grid algorithm.
- Below analysis are based upon global Lipschitz continuous assumption, but can be
extended to local assumption by employing a cutoff function technique.
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1.1 Weak regularity of the solution at t =0

@ In JMAA, 2011, for linear fractional sub-diffusion equation, Sakamoto and Yamamoto show
ue C([o, T H*(2) N HY(Q) and  §DFu e C([0, T L*(Q)),
if up € H2(Q) N H(Q);

@ In FCAA, 2016, Stynes show that u is smooth only if the initial function and the source term
satisfy some restrictive compatibility conditions;

@ For time-fractional diffusion equation, Stynes, O'Riordan and Gracia in SINUM 2017, show
|olu] < C,(1 4+t 1=0,1,2

@ For nonlinear equation SD?U = Au+ f(u), if fis Lipschitz continuous, Jin, Li and Zhou in
SINUM 2018, prove that the solution satisfies

[|0sull;2 < C,to
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1.1 Weak regularity of the solution at t = 0 (Contd.)

@ For the linear time-fractional biharmonic equation, Huang and Stynes in Numer. Algor.
2021, show
lullppe < Cuy and [|Opullppe < Cu(1+127), 1=0,1,2,

under appropriate assumptions about ug and f;

@ In J. Sci. Comput. 2020, Zhang, Yang and Xu give a similar regularity conclusion for the
nonlinear case;

@ Our regularity assumptions:
lullgs < Cuy I§D2ullps < Cuy 110 ullpa < Cu(1 4271,

[0Fullps < Cu(L+6272), (|07 ullpe < Cu(1+6772).
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Strategy of graded mesh

@ Jin et al. show the weak singularity of the solution will deteriorate the convergence rate of
the numerical solution in IMA 2016 and SISC 2016;

@ Strategy of graded mesh: Fredholm integral equation in MOC 1982 and Volterra integral
equation in MOC 1985;

@ Stynes, O'Riordan and Gracia considered the L1 scheme on a graded mesh for the linear
fractional reaction-subdiffusion problem in SINUM 2017;

@ Chen and Stynes presented second-order L2-1, scheme on fitted mesh to solve the time
fractional IBV problem in JSC 2019;

@ Liao, McLean and Zhang gave a discrete fractional Gronwall inequality, which can be used
to solve the nonlinear problem in SINUM 2019;

@ Liao et al. presented a global consistency analysis framework by introducing the
complementary discrete convolution kernels for the nonuniform L1 approximation in SINUM
2018 and Alikhanov approximation in CiCP 2021,

@ Chen and Stynes show that the error bounds of the previous numerical methods may blow
up as &« — 17 and obtain a-robust error bounds for the nonuniform L1 and Alikhanov
approximation in IMA 2021;

@ An a-robust discrete fractional Gronwall inequality was derived by Huang and Stynes in JSC
2022;
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1.2 Spatial discretization for the fourth-order problem

@ Finite difference method: Achouri et al. in AMC 2019, Ben-Artzi et al. in IMA 2020, Lu et
al. in NMPDE 2022, etc;

@ Local discontinuous Galerkin method: Dong and Shu in SINUM 2009, Wei and He in AMM
2014, Du et al. in JCP 2017, Tao et al. in MOC 2020, etc;

@ Mixed element method: Liu et al. in AMC 2018 and CMA 2015, Keita et al. in CPC, 2021,
He et al. in JSC 2021, etc;

@ Virtual element method: Antonietti et al. in M3AS 2018, Li et al. in IMA 2021, Dedner et
al. in IMA 2022, Adak et al. in JSC 2022, etc;

@ Orthogonal spline collocation method: Yang et al. in CMA 2018, Zhang et al. in JSC 2020
and CMA 2022, etc;

@ Compact difference scheme: Hu et al. in CPC, 2011, Fishelov et al. in JSC 2012, Ji et al. in
JSC 2015, Liao et al. preprint, 2019, Haghi et al. in Eng. Comput. 2022, etc;
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1.3 Some researches on two-grid algorithms

@ First proposed by Xu, and was used to solve nonsymmetric indefinite problem in SINUM,
1992 and nonlinear problems in SINUM, 1994, 1996;

@ Basic idea: on the coarse space Vy, solving a SMALL-SCALE nonlinear implicit problem to
obtain a rough approximation uy € Vjy, and then solve a LARGE-SCALE linear implicit
problem based on uy to find a corrected solution u, on the fine space V;

@ Works about FEMs: Chen et al. in JSC, 2011 and CiCP, 2016, Weng et al. in AMM, 2015,
etc;

@ Works about FVEMs: Bi et al. in NM, 2007 and AMC, 2010, Chen et al. in ANM, 2010
and CMA, 2018, 2022, etc;

@ Works about FDMs: Dawson et al. in SINUM, 1998, Rui et al. in SINUM, 2015, etc;

@ Recently, the method is also widely studied and applied in fractional problems: Liu et al. in
CMA, 2015, Chen et al. CMA, 2020, Li et al. in JSC, 2017 and JCM, 2022, etc;
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1.4 Difficulties for high-order two-grid difference algorithm

@ The FEMs generate pointwise solutions in space, which implies one can directly get the
rough solution at the fine space V}, in two-grid algorithm;

@ However, the FDMs lead to discrete solutions only on grids, thus an appropriate mapping
from the coarse space Vy to the fine space V), is required to perform the two-grid algorithm
and to preserve the spatial accuracy;

@ For the second-order two-grid difference algorithm, a very simple and widely used mapping is
the piecewise linear/bilinear interpolation.

@ High-order two-grid difference algorithms are rarely studied, due to the lack of the
corresponding analysis on the appropriate mapping operator, for instance, linearity and
boundedness.

What shall we do?

@ By using a model order reduction technique, we first propose a nonlinear compact difference
algorithm for the nonlinear tFBEs; We prove the unconditionally and a-robust optimal-order
error estimates in the discrete L°°(L?) and L°°(H?) norms via discrete energy method;

@ Discuss the linearity and boundedness of the cubic spline interpolation operator used in the
high-order two-grid finite difference method;

@ Propose an efficient two-grid compact difference algorithms for the nonlinear tFBEs by using
the cubic spline interpolation operator, and optimal-order error estimates can be retained.
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9 A combined [2-1, compact difference nonlinear algorithm
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Some preliminaries

@ Graded mesh in time direction

ny\"v
ty = T<7> . forn=0,1,2,.., N,
N
where v > 1 presents the mesh grading parameter. Define
T := max Tk := tp — ty_ th— = th— OTn.
ISkSNk k k—1> n—1+o n—1+ n

For function v(t) defined on [0, T], denote
W= w(ty), W' i=ow"+ (1 —o)w" L

@ Two sets of grids in space direction
Coarse grids: xj:=iH with H=L/Ny, for0<i< Ny,
Fine grids: X;:=ih with h= H/M, for 0 <i< N,
for N := MNy and M > 2;
@ Discrete spaces of grid functions
Vi = {wlw = (wo,wi,...,wpn, )}, Vg ={w € Vk|wy = wy,, =0},
for k = H, h.
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L2-1, formula on graded mesh

@ L[2-1, formula [Alikhanov, JCP, 2015] at t = th—14¢

n
§DEW(tn140) = > APDV Wk = D2,
k=1

where Vowk := wk — wk—1;
@ The discrete convolution kernels AE]TZ) are monotone and positive, i.e.,

A > AmT) S0 2 < k< n< N

@ Discrete complementary convolution (DCC) kernels: [ Liao, et al., SINUM 2018, 2019 and
CiCP 2021

n
STAMDACD 1, 1<k<n<N,
j=k
which satisfies Pf,'f;) >0 and

n
11
> P wrimaa(t) < Twipma(t), 1<n<Nand m=0,1;
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a-robust error bound and Gronwall inequality

Lemma 2.1. a-robust error bound [Chen-Stynes, IMA 2021]

If w(t) satisfies |9lw| < C(l + to‘_') for 1 < /< 3and 0 =1 — «/2, then the following estimate holds for

N > 3, ¢y = 1/(In N) and some a-robust positive constant C,

ZP(" D 1w]| < Cy 11e"T(1 + (v — @) o (tn N N-min{yas—a} 4 oy
AT (L + Cn) T CoETER

where T7[w] := D w(ty—1405) — DEW".

Lemma 2.2. a-robust fractional Gronwall inequality [Huang-Stynes, JSC 2022]

Suppose {£", 1 } _, and (A/), 01 are nonnegative sequences and there exists a constant A such that
,:01 A < A. If the nonnegative grid function (v‘/‘)k:0 satisfies

n
STArTV, (W < an KW+ €W+ ()2, for 1< n< N, (4)
the following relation holds for 7 < ((11/2)T(2 — a)A) "% and 1 < n< N
w" < 2E, 1—1Ata w® + max Z P(k ) (€ + ) + max {n*} (5)
=TT\ g 1<k<n el
4
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Spatial discretizations

@ For any grid function w € V,; (k = H, h), denote

[an],-,% = %(W,'* Wi—1), [dﬁw}f = % ([an]H% — [dNW]F%) ,

and a compact difference operator

— [d?w], < i< Ny —
[Aw]; = wit I3 S W 1SS N1
Wi, ’*OaNKJ

)

@ The discrete inner products and discrete norms (k = H, h)

Ny —1
<W,g>k=K z; Wiqi, HW”H =V W, W >, ||W||.‘i co = Oinax |Wl‘
=
1 Ny —1
(wa)w = Srwoan 5 3 wiai + Lrwn qn,, il = /(ww
i=1
Ny N,—1
(W, @)1 = ”Z [dNW],;% [d'@q],;% ;o W gk2=r Z [diw]i [diq}i’
i=1 i

i=1
HW”NJ = \ (W7 W)"%I’v for i = 1727 HUHA,;{ = <ANW7 W>;<,§

@ The discrete inner products of binary vector: ((w1,q1), (w2, g2))

o = (w1, we), +(q1,92) -
H. Fu (OUC)
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Some important lemmas

Lemma 2.3. [Sun, Science Press, 2021]

For any w € Vg. we have

1 2 2 2 2 2 2 2
3wl < [MAewllc < lIwllic and gl <l . < llulli -

\

Lemma 2.4. [Sun, Science Press, 2021]

For any w € Vg, we have

Wl oo < YElIWl,; and W], < e Il -

For any w € V,;, we have

A

lAswll, < lllw s -
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A nonlinear compact difference algorithm

@ Introduce an auxiliary variable v = 92u (model order reduction)

§DYu+02v—cdlu=fu)+g v=0du (6)

@ Applying L2-1, formula on graded mesh and compact difference technique to (6), we see
DY [ApU} + [V — e [ U7 = ApLUPT) + Angl 7 + (RUT,
[ApVI7 = [diU]] + (R2)7, 1<i< Np—1.

where the local truncation errors (R1)7 := Z 1(R1,5)7, and
(Ri1)7 = Ap§ DR u(%i, t—140) — DG [ARU)] = A X" (],
(R12)" = Apd?v(Xi, tr—140) — [d2\/}7’°
(R13)] = cApdZu(Xi ta—140) — c[dr U],
(R1,4)7 = Apflu(Xi, t—140)) — ApfU7),
(Ro)! = Apd2u(i, ta) — [di U] .
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Error estimates for the local truncation errors

@ Define operator [L,.w]; = Ax0Zw(x;) — d?2w(x;). By the well-known Bramble-Hilbert
Lemma, we can prove

ILxwln < Cu®llWlips(0,0), wE H(0,L), 1<s<6; ™

Under our regularity assumptions, the following estimates hold for 1 < n < N

4
@ IR In < Chts (b) DOIIRY olln < € (N minlve2h 4t 5
(e) ZP“") (IREln + 1RSIA) < € (N~ mintre2h 4 pt)

(d) ZP(n U)”Tk[u]”hg < C(N—mln{'ya ,3—a} + h4)

where C is some a-robust positive constant.

Sketch of Proof.

@ One can easily derive conclusions (a), (b), (¢) using the error bounds yielded by different
difference operators and the properties of complementary discrete convolution kernels P"nfk;
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Error estimates for the local truncation errors (Contd.)

@ To derive (d), we define a time-dependent grid function o (t) with component
[p()]i := [AnV]; — [d2U],, 1 < i< Np— 1. Let " := (ta). By (7), it is easy to verify
10k (8) 15 < CHY (1 + t5) for 1= 0,1;

o Note that YK[u]? = §Dg u(Xj, th—140) — D2 U?. We write
M) = —§DF p(tn—145) + D" + T[ApV].
= 1T4ullln2 < 11§02 @(tn—1+40)lln + DT lln + 1T [An VIl o= K + 15+ 13

o It is obvious that

n n

STPTIK < cht oand > P < onmintyad—al;

=1 k=1
o Pay special attention to /]

n n k
> = Zpi"f;)(\ ZAifTWHh = Z P ZA“ Pl =&,
k=1 j=1 k=

k=1

—Z

ds

< Z/ 0t e(s)|, ds < Cu (tn + t /) H*
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A nonlinear compact difference algorithm (Contd.)

A nonlinear HOC difference algorithm

D [Andl] + [dfv] 7 — c[dfu] 7 = Apflu]7) + Angl =17,
1<i<N,—1,1<n<N,
=[diu]?, 1<i<N,—1,1<n<N,
W =up(x), 1<i<Ny—1,
Ug = ao(tn)7 u?\lh = al(tn)7 VS = bo(tn)7 V’I(Ih = bl(tn)v 1 S n S N

[Anv}

v
- Eliminating the intermediate variable v from the above algorithm, one obtain a nonlinear
system only about u" (decoupled):
DY [AZu)” + [dpu] 7 — c [Apdiu] ™7 = AZRUPT) + A2l 10, ®)

1<i<N,—1,1<n<N,
where [d2u]? := by (tn), [dzhu]’,(lh = by (tn).

- The nonlinear compact difference algorithm is reduced to a real symmetric five-point
nonlinear algebraic system.
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Existence and uniqueness

Theorem 2.1. Existence Result

The nonlinear compact difference method is solvable if the maximum temporal stepsize satisfies

T< ¢ 74 s
- 33I1'(2 — a)Ko

where K > 0 is the Lipschitz continuous constant.

Sketch of Proof.

@ Denote w; = oul + (1 — o)u! ™%, gi= V] + (1 — o)v/ ! and
-1
l-0¢ 1N k
G o= —ZA [ART T+ 3T (AL, - AR [ARu] + A .
k=1

@ Define a binary mapping T(w, q) : V,? X V,? — Vﬁ X VE by T(w, q) := (T (w, q), T?>(w, q)):
A("v")

[T (w, q)], = OU [Apw];, — G + [d%q]l. —c [d%w][ — Apflw;) — Apgd=1Te

[T*(w, @)],; == [Ang]; — [dFw],.
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Existence and uniqueness ( Contd.)

@ We prove that for 7 < §/4/(33T'(2 — o) Ko),

(n,o)

(T(w, 9), (w, 9)),, = < - Q) Iwll o+ llallZ, > 0,

for ||wl| 4 = %Q and any g, where

NG e 1—0 (no) || n
Qi= 2 (KNl + 1R + & 47 1a) + =2 AT [0

n—1
(n,o) (n o) (n,o) 0
+;(An D= AD) [k, AT
@ Then, Browder's Lemma shows there exists some (w*, g*) € VY x VY such that

T(w*,¢*) =0 and
. V6 230
v, < o5 Il 4,5 < WQ
0

@ The nonlinear compact difference scheme is solvable and we have

1 1-— 1
70“”717 \/I":;q,_ UW?I

1
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Existence and uniqueness ( Contd.)

Theorem 2.2. Uniqueness Result

Assume the conditions in Theorem 2.1 hold. Furthermore, if the maximum temporal stepsize

satisfies .
7<————— and h<4/12/c,
= /11212 — a)K s v/

the solution of the nonlinear compact difference method is unique.

Sketch of Proof.

o Let {X7, X7}, {Y7, Y7} € V? x VP be two group solutions and denote the difference by
Z =Xy -V, Zp =X — Y,

D [AnZu)} + [dh 2] — c[dhZu] 77 = AnfIXD7) = ApfY7),
A2 = [ 2] 77

@ Taking inner product with A,Z;7 and A,Z)° respectively, summing them and utilizing
Cauch-Schwarz inequality and Lipschitz continuous of f{-)

ZA("”)VT JARZEI? < KARZE7 |2

@ Application of Lemma 2.2, i.e., the discrete fractional Gronwall inequality yields

lAZIlh=0=Z=0=Z1=0, for 7<1/%/11/2T'(2 - a)K.
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L%-norm estimate of the nonlinear algorithm

@ Denote

Theorem 2.3. Error estimate under discrete L2 norm

Let o = 1 — /2. Under the conditions

1
7<——n—— and h</3/c
§/11/30(2 — a)K

the following estimate holds for some a-robust positive constant C

ety < C(N~™in{res2} L gty 1< p< N,

y
Sketch of Proof.
@ Error equation
DS [Ape)] + [dre] " — c[dhes] " = Ap (RUP7) = fu]")) + (R1)7, (9)
[Ane]” = [dred] " + (R)P7, 1<i<Np—1,1<n< N (10)
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L%-norm estimate of the nonlinear algorithm

@ The equations (9) (taking inner product with Ape;®) and (10) (taking inner product with
Apey?) are used to estimate ||e])||;:

(DX Apel, Apey?)p, + (Aney?, Apel?), — c<d%eZ’U,AheZ"’>h
= (Ap (RU™7) = fu™?)) , Apey?)p, + (R, Anel?), + (R 7, Apel ), -

@ Standard estimates based upon Cauchy-Schwartz inequality and previous lemmas yield
ZA“”) = (I4neklI?) +2¢l1e37 113,
< 2V3KIAnel 7 |17+ 2IRE I, I1Anel” I, + 2| RE7 17

@ Note that the above inequality has the form of (4) in Lemma 2.2 of the a-robust fractional
Gronwall inequality. Thus

1€l < IAnellly < € (N7 minlve2h 4 gt
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H?-norm estimate of the nonlinear algorithm

Theorem 2.4. Error estimate under discrete H? norm
Let o = 1 — a/2. Under the conditions

1 1
7 < min , and h<+/3/c,
§/11v3r@ - o)k VT2 - )&

the following error estimates hold for some a-robust positive constant Cand 1 < n< N

llefllp < C(N~mindres2} gty and  ||el||pg < CINT ™in{res2} 4 gy,

Sketch of Proof.

@ To estimate e, a new error equation needs to be established. Act the operator D& on both
side of [A,V]] = [dzhu]:’ and noting v = 02u at (-, ty—1+o), we derive a new error equation

DS [Ape)] = DY [dred]; + (Rs)f, (11)
where

(Ra)f :=D2 (1AL} - [ )—l":»ZP““’nRgnh«h‘*
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H?-norm estimate of the nonlinear algorithm (Contd.)

@ Taking inner products with Apel’” and d?e)’” for the error equation (11) and the original
error equations (9) to estimate ||e]||5:

(DX Ape], Apel?), + (drel”, dfe"}"’>h —c{drel”, 2e""’>h
= (Ap(RU™?) — Au™?)), drer?), + (RY, drel?), + (R3, Anel 7).

@ Considering the weak regularity of the solution at t = 0, we pay special attention to the Rf |
term

2
(R, dhell®), < 1T [ullp,z 1Mnel 7, + 7 1€z

SSACDY, (nebl) <2 14l + 2 (IR0, + IT50all, ) 14nel?
k=1
2
+2¢ [R5
h
The conclusion of Theorem 2.3 and the a-robust Gronwall Lemma 2.2 implies

1Anell, < € (N7 mindre2t 4t

4
D R

s=2

+ 6K || Apel |7 + 2

@ Finally, error equation (10) is used to estimate [[€]]||p 2:

l€lllns < IAnelll, + [[RE7 ], < € (N mintre2h 4 pt).
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© An efficient two-grid HOC difference algorithm
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Two-grid compact difference algorithm

Denote {u;’_,7 v’,l,}nN:

grids and fine grids respectively.

TG-HOC difference algorithm

@ Step 1. On the coarse grid, solve a small-scale nonlinear compact finite difference scheme to
find a rough solution v}, by

, and {uz7 v”h}nN:1 as difference approximations to {U", \/”}nN:1 on the coarse

D2 [Ayuy]! + [d’Q.IVH] 7"—"' —c [d’Q_luH] ;’”—"' — AHf([UH]?’U) + AHg?71+a’

[Auvi]! = [dun]], 1<i<Ny—1,1<n<N,

@ Step 2. On the fine grid, based on the obtained rough solution uf,, solve a large-scale
linearized compact difference scheme to produce a corrected solutio v} by

Dg[AhUh]F + [dgvh];ha _ C[d%uh]/’.”o _ [AhF],mo +Ahg?_1+0,
[Apve]? = [dhup]], 1<i<Npy—1,1<n<N,
where F*? represents a Newton linearization of f([up];"?) about [IIyuy];*?, defined as

F7 = f([Maunl ") + 0y Anupl ) ([un]}” — [Mpup]7) -
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The cubic spline interpolation operator Iy

@ For any grid function w € Vy, Il is defined as the cubic spline interpolation operator
satisfying the second-order derivative boundary condition, i.e.,

EY: e )3 ) 2 o
[HHM(X):MI—1(X' x) +Mi(X Xi-1) +(Wi—1_M) XX

6H 6H 6 H
MiH?\ x — xj_ .
+ (Wi_ '6 ) Tllv X € (xi-1,x1), i=1,2,...,Ny
with given conditions My = Bfwo and My, = 83WNH, and M := [My, Mo, ..., MNH,l]T is

the solution of the following linear system
1
AM=d, A:= itridiag(l,zl, 1), d:=[d,do,...,dy,-1]",

with

1 1
dy = 3[dZw1 — 5/\/707 dny—1 = 3[dFwln,—1 — EMNH

di=3[d3w];, i=2,3,---Ny—2
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Several important properties of 11y

Lemma 3.1. Interpolation error of I [Quarteroni-Sacco-Saleri, 2007]

Let ITyw be the cubic spline interpolation of function w(x) € C*[0, L] which satisfying the
second-order derivative boundary condition. Then, the following estimate holds for some positive
constant Cy

Jw—Twlioe < oM [0kwlioe |

Lemma 3.2. Linearity property of Iy

For any gird functions w, w € Vy, the linearity property [IIy (w+ w)](x) = [TIyw](x) + [II5W](x)
holds on x € (xj—1,x), i=1,2,..., Ny.

y

Lemma 3.3. Boundedness property of 11y

For any grid function w € Vy, the following estimates hold

2
1wl < 48 1wl +5 (M3 + M3, H, (12)

He He
Tl < i {2l + 5 (Mol 2l + 5 [ 6 Wl } - 13)

In particular, if My = My = 0, the operator IIy : Vi — V), is bounded in the sense that

NTawlls < 4V3 I willy  and  [[Tawlly o < 6wy o -

= =T = = = SaNe)
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Several important properties (Contd.)

Sketch of Proof.
@ By definitions of || - ||, and IIy
2 L 2 YN P e e
Mwllf < (4H+ Sh ) wg+ (4H = Sh) wy, + = (MO + MNH>

Ny—1

+8H Z w? 4+
=1

Ny—1

ZI\/I

2H5

@ As A is symmetric and diagonally dominant, by Gerschgorin theorem, we know the
eigenvalues of (A~1)?2 belong to [1/9,1];

@ By the Rayleigh-Ritz theorem, the last term of the above inequality can be estimated

Ny—1 Ny—1

Z M =dT(A"')Pd<dTd= ) o
i=1

2H°
= Mwl < 48wl + =5 (M3 + M3, ) 5
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Several important properties (Contd.)

@ To prove conclusion (13), let |[TIgw||s o0 = |[II4w];| for some j satisfying
(i—1) M < j < iM. By the definition of Il it holds
||HHW||hoo<|WI 1‘+‘Wl|+ M 1|+7|M|
H2
< 2wl oo = |Mi71| + — IMil;
’ 6 6
o Let M|l o, = [Mp| for some index p such that [Mp| > M| for i=1,2,..., Ny — 1.
S+ F (M| < [Mo] or [Mu,|

H2
= [[Tpwllp,co < 2[WllH,00 + —

< i 3 max{|Mo|, |[Mp,|};

+ If |Mp| > max{\l\/lo\, IMNHI}' as Mp_l +4Mp+ Mp+1 =6 [d%_,w}p

2 _ oo |Wp—1 = 2Wp + Wpt1 12
:>|Mp|§3‘[de]p‘_3’ 7 < plwlhco,

2
= [Hpwllh,co < 2[WllH,00 + 5 [Mp| < 6]|W]lH,00-
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Error estimate of the two-grid algorithm

@ Denote
lewn]! = Ul = [un]!, [enu]! =Vi—[vul], 0<i< Ny 1<n<N,

lewn]] = Uf = [upl!, [ewn]; =Vi—[val], 0<i< Ny 1<n<N

Theorem 3.1. Error estimate for the nonlinear scheme on coarse grid

Let o = 1 — /2. Under the conditions
1 1
Y/11V3r@ —a)k VT —a)e

and H < /3/c, the following estimates hold for some a-robust positive constant C
e lli < CONT™ImE2) 1), eyl < GV ™02 4 gt

7 < min

lleg mll2 < C(NT bl g iy
for1 <n<N. |
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Error estimate of the two-grid algorithm (Contd.)

Corollary 3.1. Conclusions about interpolation solution IIyuf,

Assume the conditions in Theorem 3.1 hold, then the numerical solution v}, yielded by nonlinear
scheme on the coarse grid satisfies

|U" = T, < C(N— min{ra,2} 4 H4) , forl<n<N, (14)

and
V" — Tyl o < C(N— min{ra,2} | H4) , forl<n<N, (15)
so that the interpolation solution IIyu}, is bounded that

ITInuflly o0 < K*, for 1<n <N, (16)

where C and K* are all a-robust positive constants dependent on v and T.

Sketch of Proof.

@ For conclusion (14), utilize the linearity and boundedness of Iy
0" = Tui ||, < [[U" = T[], + [ TU" — Tnuh]],

< cH* + HHHeZ,HHh < C<N7 min{ra,2} + H4);

@ Conclusion (15) can be similarly proved, which implies conclusion (16).
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Error estimate of the two-grid algorithm (Contd.)

Theorem 3.2. Error estimate under the discrete L2 norm

Assume the conditions in Theorem 3.1 hold, then the following estimates hold for some a-robust
positive constant C
Sketch of Proof.

@ Compared with the proof in Theorem 2.3, the difference lies in the treatment of the
nonlinear difference term between AU;*”) and F;"°.

eZ,hHh < (N mindren2t 4 pd 4 8Y for 1< n< N,

@ A Taylor expansion about [II4uy];"? gives

i

n,o o n,o n,o n,o 1 n,o n,o n,o
AUPT) = FP7 = 0 A[TTpup) ") (UP7 — [up]? )+§33f(9;’ ) (U7 — [Mpup]?7)?,

where 67 is a constant between U7 and [IIyuy] and

1677 o0, < max { Um

n,o
i

5,00 » K*} if T satisfies the condition in Theorem 3.1.
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Error estimate of the two-grid algorithm (Contd.)

@ The estimate of the nonlinear term
<Ah(f(Un,a) — Fn’U)v‘AheZ:Z>h
= (AL ATLU7) (U7 = i) Anel] )

1 n,o n,o
+ 5 <.Ah83f(9n'a) (Un,a — HHUH7 )2 ,Aheu:h >h

< VBRI ARl Rl + €U = Tt |, oo [[An (U = i) |, IAnelz 1
: 2
< VK| AR 7117 + € (N7 mi0e2h 4 i) el T s

@ Note: the linearity, boundedness of IIy and optimal H? error estimate for nonlinear algorithm
jointly ensure the unconditional and optimal L? error estimate for the two-grid algorithm.

Theorem 3.3. Error estimates under the discrete H? norm

Assume the conditions in Theorem 3.1 hold, then the following estimates hold for some a-robust
positive constant C

leglly < CN™™ntre2d gt 4 H9), - leflly, < CN™ ™02 1t 4 H9), for 1< n< N
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Numerical example

@ The nonlinear time fractional biharmonic equation

SDCu+8%u—02=u—1® +g(x), 0<x<m 0<t<I1;

@ Exact solution
u(x, t) = wi4a(t)sinx;

@ Define

_ n_ ,n _
EO(N,h)—lrénr?%cNHU u"|l, and Ex(N,h) =

U — "
rjlggNll U2

where u" represents the numerical solution yielded by the nonlinear algorithm or by the
two-grid algorithm;

@ Choose mesh grading parameter v = 2/« and h = CH?.
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Spatial accuracy

Z%: Numerical spatial convergence for a = 0.5 and v = 4

Algorithm Ny N Eo (N, h) Order E>(N, h) Order
9 2.2185 x 1074 — 2.1961 x 10~4 —

16 2.5847 x 107° 3.7365 2.5764 x 107° 3.7244

Nonlinear 25 4.3574 x 107° 3.9891 4.3517 x 107° 3.9849

36 1.0199 x 1076 3.9826 1.0192 x 1076 3.9807

49 2.9694 x 1077 4.0022 2.9684 x 1077 4.0013

64 1.0209 x 1077 3.9979 1.0207 x 1077 3.9974
3 9 2.2185 x 1074 — 2.1961 x 104 —

4 16 2.5847 x 1075 3.7365 2.5764 x 10~° 3.7244

Two-Grid 5 25 4.3574 x 10~ 3.9891 4.3517 x 1076 3.9849

6 36 1.0199 x 1076 3.9826 1.0192 x 1078 3.9807

7 49 2.9694 x 1077 4.0022 2.9684 x 107 4.0013

8 64 1.0209 x 1077 3.9979 1.0207 x 1077 3.9974
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Temporal accuracy

Z&: Numerical temporal convergence for « = 0.4, v =5, h= ﬁ and H= Z

20
Algorithm N Eo(N, h) Order Ex(N, h) Order
40 1.7817 x 1073 — 1.7817 x 1073 —
Nonlinear 80 5.1187 x 10~4 1.7994 5.1187 x 10~4 1.7994
160 1.4788 x 107* 1.7913 1.4788 x 10* 1.7913
320 3.9646 x 107> 1.8992 3.9646 x 1072 1.8992
40 1.7817 x 1073 — 1.7817 x 1073 —
Two-Grid 80 5.1187 x 10~4 1.7994 5.1187 x 10~4 1.7994
160 1.4788 x 1074 1.7913 1.4788 x 1074 1.7913
320 3.9646 x 107° 1.8992 3.9646 x 107° 1.8992
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Temporal accuracy (Contd.)

N umerical temporal convergence 1or @ = U.0, 7 = , = -+~ an = 51
2= Numerical t | f 0.8 5/2, h= 5 and H= X
Algorithm N Eo(N, h) Order Ex(N, h) Order
40 2.0380 x 1074 — 2.0380 x 1074 —
Nonlinear 80 5.6574 x 10~° 1.8489 5.6574 x 10~° 1.8489
160 1.4995 x 107° 1.9157 1.4995 x 107° 1.9157
320 3.8556 x 1076 1.9594 3.8556 x 1076 1.9594
40 2.0380 x 1074 — 2.0380 x 1074 —
Two-Grid 80 5.6574 x 107° 1.8489 5.6574 x 107° 1.8489
160 1.4995 x 10~° 1.9157 1.4995 x 10~° 1.9157
320 3.8556 x 107° 1.9594 3.8556 x 107° 1.9594
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CPU time comparisons

Z%: CPU times for nonlinear and two-grid compact difference algorithms

Algorithm Ny Np Eo(N, h) Ex(N, h) CPU times
361 1.3106 x 107° 1.3106 x 107° 21.03 s
400 1.0487 x 107° 1.0487 x 107° 1m53s
Nonlinear 441 8.7653 x 107° 8.7652 x 107° 6ma49s
484 7.2904 x 1076 7.2904 x 1076 29m29s
529 6.0492 x 1076 6.0492 x 1076 2h25m10s
576 5.0998 x 1076 5.0998 x 106 14h10m33s
19 361 1.3106 x 107° 1.3106 x 107° 3.22s
20 400 1.0487 x 1075 1.0487 x 1075 5.66 s
Two-Grid 21 441 8.7653 x 10~° 8.7652 x 10~° 7.13s
22 484 7.2903 x 1076 7.2903 x 1076 9.17 s
23 529 6.0492 x 1076 6.0492 x 1076 11.53 s
24 576 5.0998 x 1076 5.0998 x 1076 14.69 s
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bustness test

2%: The a-robustness for a — 1

Algorithm a=0.95 a=0.99 a = 0.999 a = 0.9999
. Eo(N, h) 2.2495 x 1077 2.2725 x 1077 2.2919 x 10~ 2.2942 x 1077
Nonlinear _7 —7 —7 -7
Ex(N, h) 2.2539 x 10 2.2768 x 10 2.2963 x 10 2.2986 x 10
) Eo(N, h) 2.3586 x 1077 2.3725 x 1077 2.3898 x 1077 2.3918 x 107
Two-Grid _7 _7 _7 _7
Ex(N, h) 2.3619 x 10 2.3758 x 10 2.3931 x 10 2.3952 x 10
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Conclusions

Conclusions:

@ A nonlinear compact difference algorithm for the nonlinear tFBEs is proposed and a-robust
error estimates under discrete L°°(L2) and L°(H?) norms are proved,;

@ An efficient and accurate two-grid compact difference algorithm for the nonlinear tFBEs is
presented by introducing a cubic spline interpolation operator;

@ The linearity and boundedness properties of the cubic spline interpolation operator are
discussed; and then Unconditional and optimal a-robust error estimates in the sense of
discrete L°°(L?) and L°°(H?) norms with the accuracy O (N~ min{re,2} 4 pt 4 H8) are
proved;

@ Numerical experiments are given to show accuracy and efficiency of the method.
Future work:
@ Variable coefficient tFBEs 7

@ Other kinds of boundary conditions?

@ Rough initial and source data?
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