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Motivation

Linear and nonlinear integro-differential equations attract great interests in
a wide range of disciplines in science and engineering. These models are
formulated in integral form, including Riemann-Liouville fractional integral

(Iβ
t w)(t) :=

∫ t

0
ωβ(t − s)w(s) ds with ωβ(t) := tβ−1/Γ(β)

and fractional Caputo derivative for 0 < α < 1

(∂α
t w)(t) := (I1−α

t w ′)(t) =
∫ t

0
ω1−α(t − s)w ′(s) ds.

They exhibit multi-scaling time behavior, which makes them suitable for
the description of different diffusive regimes and characteristic crossover
dynamics in complex systems.
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Time fractional phase field models
For example, the time-fractional phase field models

∂α
t Φ = M δE

δΦ

where M is the mobility operator (M := −I for L2 gradient flow and
M := ∆ for H−1 gradient flow) and E is the free energy functional such as
the Ginzburg-Landau energy functional

E [Φ] :=
∫

Ω

(ϵ2

2 |∇Φ|2 + F (Φ)
)

dx with F (Φ) := 1
4(Φ2 − 1)2.

Multiscale behaviors: Chen-Zhao-et al-CPC-2018, Liu-Cheng-et al-CMA-2018, ...

Theoretical analysis: Du-Yang-Zhou-JSC-2020, Al-Maskari-Karaa-IMA-2021,
Fritz-Rajendran-Wohlmuth-CMA-2022, ...
Numerical properties: Tang-Yu-Zhou-SISC-2019, Ji-Liao-et al-2019,
Ji-Liao-Zhang-2020, Quan-Tang-Yang-CSIAM-2020, Liao-Tang-Zhou-2020,
Karaa-SINUM-2021, Liao-Tang-Zhou-2021, Quan-Wang-JCP-2022, ...
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Fractional wave models

Another example, nonlinear fractional wave (integro-differential) equations

∂tU =
∫ t

0
κ(t − s) [∆U + f (U)] ds.

There are many of related references, see
Monographs: Brunner-Cambridge University Press-2004, Mainardi-Imperial College
Press-2010, ...

General kernels: McLean-Thomée-1993, Lubich-Sloan-Thomée-MC-1996,
McLean-Thomée-JCAM-1996, Cuesta-Palencia-ANM-2003, ...
Singular (fractional) kernels: Adolfsson-Enelund-Larsson-CMAME-2003,
Cuesta-Lubich-Palencia-MC-2006, McLean-Mustapha-NM-2007,
Mustapha-Mustapha-IMA-2010, Mustapha-Schötzau-IMA-2014,
Golmankhaneh-Golmankhaneh-Baleanu-SignProc-2011, ...
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Adaptive time-stepping strategy

In capturing the multi-scale behaviors in many of integro-differential
equations, adaptive time-stepping strategies are practically useful.
Especially in long-time simulations, a computationally efficient
method should admit different time steps in different periods.

The theoretical verifications of energy dissipation law, stability and
convergence on a general class of nonuniform time meshes are very
desirable, see

Graded meshes McLean-Thomée-1993, Lubich-Sloan-Thomée-MC-1996,
McLean-Thomée-JCAM-1996, McLean-Mustapha-NM-2007,
Mustapha-Mustapha-IMA-2010,Stynes-ORiordan-Gracia-SINUM-
2017, Kopteva-MC-2019, Kopteva-MC-2021,...

General meshes Liao-McLean-Zhang-2019, Liao-Yan-Zhang-2019, Ji-Liao-et
al-2019, Ji-Liao-Zhang-2020, Liao-Tang-Zhou-2020,
Quan-Tang-Yang-CSIAM-2020, Liao-Tang-Zhou-2021,
Quan-Wu-arXiv2205.06060-2022,
Quan-Wu-arXiv2208.01384-2022,...
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Integral averaged formula

Consider 0 = t0 < t1 < · · · < tk < · · · < tN = T with τk := tk − tk−1,
τ := max1≤k≤N τk , rk := τk/τk−1. Also, wk− 1

2 := (wk + wk−1)/2,
▽τ wk := wk − wk−1 and ∂τ wk := ▽τ wk/τk .

Let the piecewise constant approximation (Π0w)(t) = wk− 1
2 for

tk−1 < t ≤ tk . The integral averaged (Crank-Nicolson) formula of
fractional Riemann-Liouville integral,

(Iβ
τ w)n− 1

2 := 1
τn

∫ tn

tn−1

∫ t

0
ωβ(t − s)(Π0w) ds dt ≜

n∑
k=1

a(β,n)
n−k τkwk− 1

2 ,

where the associated discrete kernels a(β,n)
n−k are defined by

a(β,n)
n−k := 1

τnτk

∫ tn

tn−1

∫ min{t,tk}

tk−1
ωβ(t − s) ds dt for 1 ≤ k ≤ n.
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L1+ formula

Let the piecewise approximation Π1w := Π1,kw so that

(Π1w)′(t) = ∂τ wk , for tk−1 < t ≤ tk and k ≥ 1.

The integral averaged formula (also called L1+ formula) of fractional
Caputo derivative is

(∂α
τ w)n− 1

2 := 1
τn

∫ tn

tn−1

∫ t

0
ω1−α(t − s)(Π1w)′(s) ds dt ≜

n∑
k=1

a(1−α,n)
n−k ▽τ wk ,

where the associated discrete kernels a(1−α,n)
n−k are defined by

a(1−α,n)
n−k = 1

τnτk

∫ tn

tn−1

∫ min{t,tk}

tk−1
ω1−α(t − s) ds dt for 1 ≤ k ≤ n.
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Positive-semidefinite-preserving approach
They come from the positive-semidefinite-preserving approach such that
the corresponding real quadratic form

n∑
j=1

τjw j− 1
2

j∑
k=1

a(β,j)
j−k τkwk− 1

2 =
n∑

j=1

∫ tj

tj−1
w j− 1

2

∫ t

0
ωβ(t − s)(Π0w) ds dt

=
∫ tn

t0
(Π0w) dt

∫ t

0
ωβ(t − s)(Π0w) ds

is a discrete analogue to the non-negative definiteness of kernel ωβ

(McLean-Thomée-1993, Lubich-Sloan-Thomée-MC-1996, McLean-Thomée-JCAM-1996)

2 I1
t
(
w Iβ

t w
)
(t) =2

∫ t

0
w(µ) dµ

∫ µ

0
ωβ(µ − s)w(s) ds

=
∫ t

0

∫ t

0
w(s)w(µ)ωβ(|µ − s|) dµ ds ≥ 0

for t > 0 and w ∈ C [0, T ].
Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 11 / 51
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Positive-semidefinite-preserving approach

But the regularity condition w ∈ C [0, T ] is always inadequate since

Π0w ̸∈ C [0, T ].

For the L1+ formula, the non-negative definiteness needs a severer
condition

(Π1w)′ ∈ C [0, T ].

Tang, Yu and Zhou (SISC 2019) proved that the semipositive
definiteness holds for

w ∈ Lp(0, T ) with p ≥ 2
1 + β

for 0 < β < 1,

which permits weakly singular functions like w = O(tβ−1) such that
the L1+ formula can naturally preserve the non-negative definiteness.
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Discrete gradient structure (DGS)

In general, the non-negative definiteness of the real quadratic form

2
n∑

k=1
wk

k∑
j=1

a(β,k)
k−j wj

is dependent on the discrete convolution kernels a(β,n)
n−j , but should be

independent of real sequences {wk}. That is, we want to determine the
positive definiteness of these discrete convolution kernels without using the
non-negative definiteness of continuous kernels.

Step 1 Define the modified kernels

a(β,n)
0 := 2a(β,n)

0 and a(β,n)
n−j := a(β,n)

n−j for 1 ≤ j ≤ n − 1.
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Discrete gradient structure (DGS)

Step 2 For the modified kernels a(β,n)
n−j , define the associated discrete

(left-)complementary convolution (DCC) and
right-complementary convolution (RCC) kernels

n∑
j=k

p(β,n)
n−j a(β,j)

j−k ≡ 1
n∑

j=k
a(β,n)

n−j
rp(β,j)

j−k ≡ 1 for 1 ≤ k ≤ n.

Step 3 Establish the discrete gradient structure in equality form

2wn

n∑
j=1

a(β,n)
n−j wj =

n∑
j=1

p(β,n)
n−j v2

j −
n−1∑
j=1

p(β,n−1)
n−1−j v2

j

+
n−1∑
j=1

( 1
rp(β,n)

n−j
− 1

rp(β,n)
n−j−1

)( j∑
k=1

rp(β,n)
n−k ▽τ vk

)2

where the sequence vj :=
∑j

ℓ=1 a(β,j)
j−ℓ wℓ.
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Continuous counterpart of DGS

Recall the Riemann-Liouville fractional derivative R∂β
t := RL

0Dβ
t defined by

R∂β
t v := ∂tI1−β

t v for 0 < β < 1.

We build up a continuous counterpart of DGS as follows,

Lemma 1
For β ∈ (0, 1) and an absolutely continuous function w, it holds that

2w(t)(Iβ
t w)(t) =

(R∂β
t v2)

(t)

+ βπ

sin βπ

∫ t

0
ωβ(t − ξ)

( ∫ ξ

0
ω1−β(t − s)v ′(s) ds

)2
dξ,

where v = Iβ
t w, such that

2 It
(
wIβ

t w
)
(t) ≥

(
I1−β

t v2)
(t) > 0 for v ̸≡ 0.
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Proof of continuous DGS

Proof.
By the semigroup property, we have w = R∂β

t v = ∂tI1−β
t v and

w(t)(Iβ
t w)(t) = v(t)(R∂β

t v)(t).

Since v(0) = 0, R∂β
t v = ∂β

t v and R∂β
t v2 = ∂β

t v2. Then

J [v ] := 2v(t)(R∂β
t v)(t) −

(R∂β
t v2)

(t)

= 2v(t) ∂

∂t

∫ t

0
ω1−β(t − s)v(s) ds − ∂

∂t

∫ t

0
ω1−β(t − s)v2(s) ds

= 2
∫ t

0
ω1−β(t − s)v ′(s)

[
v(t) − v(s)

]
ds

= 2
∫ t

0
ω1−β(t − s)v ′(s)

∫ t

s
v ′(ξ) dξ ds

= 2
∫ t

0
v ′(ξ) dξ

∫ ξ

0
ω1−β(t − s)v ′(s) ds.
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Proof of continuous DGS

Continue.
By taking

u(ξ) :=
∫ ξ

0
ω1−β(t − s)v ′(s) ds

with u(0) = 0 and
u′(ξ) = ω1−β(t − ξ)v ′(ξ),

it is not difficult to derive that

J [v ] = 2
∫ t

0

u′(ξ)u(ξ)
ω1−β(t − ξ) dξ =

∫ t

0
Γ(1 − β)(t − ξ)β du2(ξ)

= Γ(1 − β)Γ(1 + β)
∫ t

0
ωβ(t − ξ)u2(ξ) dξ

= βπ

sin βπ

∫ t

0
ωβ(t − ξ)u2(ξ) dξ.

It leads to the claimed equality.
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Discrete convolution tools-DOC

To seek the discrete counterpart of Lemma 1, we introduce some discrete
tools for any kernels {a(n)

n−j}n
j=1. The associated discrete orthogonality

convolution (DOC) kernels θ
(n)
n−k are defined by

θ
(n)
0 := 1

a(n)
0

and θ
(n)
n−k := − 1

a(k)
0

n∑
j=k+1

θ
(n)
n−ja

(j)
j−k for 1 ≤ k ≤ n − 1.

It is easy to check the following mutual orthogonality identities
n∑

j=k
θ

(n)
n−ja

(j)
j−k ≡ δnk and

n∑
j=k

a(n)
n−jθ

(j)
j−k ≡ δnk for 1 ≤ k ≤ n,

where δnk is the Kronecker delta symbol with δnk = 0 if k ̸= n.
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Discrete convolution tools-DCC&RCC
We define the discrete (left-)complementary convolution (DCC) kernels

p(n)
n−k :=

n∑
j=k

θ
(j)
j−k for 1 ≤ k ≤ n,

and the right-complementary convolution (RCC) kernels

rp(n)
n−k :=

n∑
j=k

θ
(n)
n−j for 1 ≤ k ≤ n.

The DCC kernels p(n)
n−j are complementary with respect to a(n)

n−j ,
n∑

j=k
p(n)

n−ja
(j)
j−k ≡ 1 for 1 ≤ k ≤ n;

and a(n)
n−j are complementary with respect to the RCC kernels rp(n)

n−j ,
n∑

j=k
a(n)

n−j
rp(j)

j−k ≡ 1 for 1 ≤ k ≤ n.
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DOC, DCC and RCC kernels

Figure: The relationship diagram of DOC, DCC and RCC kernels.
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Discrete convolution tools-DCC&RCC

Lemma 2 (DCC)

If the positive kernels a(n)
j are monotonically decreasing with respect to the

subscript index j, that is, a(n)
j−1 > a(n)

j for 1 ≤ j ≤ n − 1, then the DCC
kernels p(n)

n−k ≥ 0.

Lemma 3 (RCC)

If the positive kernels a(n)
j are monotonically decreasing with respect to the

superscript index n, a(n−1)
j−1 > a(n)

j for 1 ≤ j ≤ n − 1, and satisfy a class of
logarithmic convexity, a(n−1)

j−1 a(n)
j+1 ≥ a(n−1)

j a(n)
j for 1 ≤ j ≤ n − 2, then the

RCC kernels rp(n)
j are positive and monotonically decreasing with respect

to j.
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DGS

Theorem 4
For any fixed index n ≥ 2 and any discrete convolution kernels {χ

(n)
n−j}n

j=1,
consider the following auxiliary kernels for a constant σmin ∈ [0, 2),

a(n)
0 := (2 − σmin)χ(n)

0 and a(n)
n−j := χ

(n)
n−j for 1 ≤ j ≤ n − 1.

Assume that the auxiliary kernels a(n)
n−j satisfy the following assumptions:

(Row decrease) a(n)
j−1 ≥ a(n)

j > 0 for 1 ≤ j ≤ n − 1;

(Column decrease) a(n−1)
j−1 > a(n)

j for 1 ≤ j ≤ n − 1;

(Logarithmic convexity) a(n−1)
j−1 a(n)

j+1 ≥ a(n−1)
j a(n)

j for 1 ≤ j ≤ n − 2.
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DGS

Theorem 5 (continue)

Let p(n)
n−j and rp(n)

n−j be the associated DCC and RCC kernels, respectively,
with respect to a(n)

n−j . Then the following DGS holds,

2wn

n∑
j=1

χ
(n)
n−jwj =

n∑
k=1

p(n)
n−kv2

k −
n−1∑
k=1

p(n−1)
n−k−1v2

k + σminχ
(n)
0 w2

n

+
n−1∑
j=1

( 1
rp(n)

n−j
− 1

rp(n)
n−j−1

)  j∑
k=1

rp(n)
n−k(vk − vk−1)

2

,

where vk :=
∑k

ℓ=1 a(k)
k−ℓwℓ so that χ

(n)
n−k are positive definite,

2
n∑

k=1
wk

k∑
j=1

χ
(k)
k−jwj ≥

n∑
j=1

p(n)
n−jv

2
j + σmin

n∑
k=1

χ
(k)
0 w2

k .

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 26 / 51



Skeleton proof of DGS

Proof.
For any real sequence {wk}n

k=1, let v0 := 0 and vj :=
∑j

k=1 a(j)
j−kwk for

1 ≤ j ≤ n. With the help of orthogonality identity, wk =
∑k

j=1 θ
(k)
k−jvj .

Then one applies the definition of RCC kernels to find

wn =
n∑

k=1
θ

(n)
n−kvk = rp(n)

0 vn +
n−1∑
k=1

(rp(n)
n−k − rp(n)

n−k−1)vk =
n∑

k=1

rp(n)
n−k▽τ vk .

By following the proof of (Liao-McLean-Zhang-2019, Lemma A.1),

2vn

n∑
k=1

rp(n)
n−k▽τ vk =

n∑
k=1

rp(n)
n−k▽τ v2

k + 1
rp(n)

0

( n∑
k=1

rp(n)
n−k▽τ vk

)2

+
n−1∑
j=1

( 1
rp(n)

n−j
− 1

rp(n)
n−j−1

)( j∑
k=1

rp(n)
n−k▽τ vk

)2
.
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Integral averaged kernels

The discrete kernels of integral averaged formula,

a(β,n)
n−k := 1

τnτk

∫ tn

tn−1

∫ min{t,tk}

tk−1
ωβ(t − s) ds dt for 1 ≤ k ≤ n.

The integral mean-value theorem yields

a(β,n)
0 = τβ−1

n
Γ(2 + β) and a(β,n)

1 > a(β,n)
2 > · · · > a(β,n)

n−1 for n ≥ 2.

A direct calculation gives

a(β,n)
0 − a(β,n)

1 = rn

Γ(2 + β)τ1−β
n

[
1 + 1/rn + 1/r1+β

n − (1 + 1/rn)1+β
]

.

It is seen that a(β,n)
0 > a(β,n)

1 as β → 0, while a(β,n)
0 < a(β,n)

1 as β → 1.
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Integral averaged kernels

Lemma 6
The kernels a(β,n)

n−k fulfill 2a(β,n)
0 > a(β,n)

1 > a(β,n)
2 > · · · > a(β,n)

n−1 > 0.

Lemma 7
Let the adjacent step-ratios satisfy the following condition

rk+1 ≥ r∗(rk) := 1−β

√
(2β − 1)ρ(rk)
ρ(2rk) − ρ(rk) for k ≥ 2,

where the function ρ(z) := (z + 1)1+β − z1+β − 1 and r∗(z) < 1 for any
z > 0. Then the discrete convolution kernels a(β,n)

n−k fulfill

a(β,n)
1

2a(β,n−1)
0

<
a(β,n)

2

a(β,n−1)
1

< · · · <
a(β,n)

n−1

a(β,n−1)
n−2

< 1 for n ≥ 2.
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DGS for integral averaged kernels

Corollary 8
Let the adjacent step-ratios satisfy the following condition

rk+1 ≥ r∗(rk) := 1−β

√
(2β − 1)ρ(rk)
ρ(2rk) − ρ(rk) for k ≥ 2,

where r∗(z) < 1 for any z > 0. It holds that

2wn

n∑
j=1

a(β,n)
n−j wj =

n∑
j=1

p(β,n)
n−j v2

j −
n−1∑
j=1

p(β,n−1)
n−1−j v2

j

+
n−1∑
j=1

( 1
rp(β,n)

n−j
− 1

rp(β,n)
n−j−1

)( j∑
k=1

rp(β,n)
n−k ▽τ vk

)2

where the sequence vj :=
∑j

ℓ=1 a(β,j)
j−ℓ wℓ. Thus the discrete kernels a(β,n)

n−k
are positive definite.

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 31 / 51



Outline

1 Intergal averaged formula and our results
Motivation
Integral averaged formula
The problem and our results

2 Derivation of discrete gradient structure
General kernels
Kernels of integral averaged formula

3 Application to time-fractional Allen-Cahn model

4 Application to time-fractional Klein-Gordon model

5 Further issues to be studied

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 32 / 51



Continuous energy dissipation law

Consider the time-fractional Allen-Cahn model

∂α
t Φ = −κµ with µ := δE

δΦ = f (Φ) − ϵ2∆Φ,

where κ is the mobility coefficient and E is the Ginzburg-Landau functional

E [Φ] :=
∫

Ω

(ϵ2

2 |∇Φ|2 + F (Φ)
)

dx with F (Φ) := 1
4

(
Φ2 − 1

)2
.

Tang, Yu and Zhou (Tang-Yu-Zhou-SISC-2019) derived an energy law

E (t) ≤ E (0).

This energy dissipation law is globally in time and not asymptotically
compatible in the α → 1 limit.
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Continuous energy dissipation law

Quan et al (Quan-Tang-Yang-CSIAM-2020, Quan-Tang-Yang-2020) derived a
time-fractional energy dissipation law

(∂α
t E ) (t) ≤ 0 for t > 0,

and a weighted energy dissipation law,

dEϖ

dt ≤ 0 for t > 0 where Eϖ(t) :=
∫ 1

0
ϖ(θ)E (θt) dθ,

where E (θt) = E [Φ (·, θt)] is a weighted Ginzburg–Landau energy.
Some other nonlocal energy forms were also proposed in

(Li-Salgado-arXiv:2101.00541v1, Fritz-Khristenko-Wohlmuth-arXiv 2106.10985,
Li-Quan-Xu-arXiv 2106.11163) for the desired local energy law like

d
dt Enonlocal(t) ≤ 0.
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Continuous energy dissipation law

Recently, we obtain a local energy law (Liao-Tang-Zhou-2021,Liao-Zhu-Wang-2022)

d
dt

(
E [Φ] + κ

2 Iα
t

∥∥µ
∥∥2︸ ︷︷ ︸

)
+ κ

2 ωα(t)
∥∥µ

∥∥2≤ 0.

Eα[Φ] : a global energy may not be physical

It is asymptotically compatible (but not exactly) with the classical energy
dissipation law (equality). As the fractional order α → 1,

d
dt E [Φ] + κ

∥∥µ
∥∥2≤ 0,

but Eα[Φ] is not asymptotically compatible with the free energy

Eα[Φ] → E [Φ] + 1
2

∫ t

0

∥∥µ
∥∥2 ds, as α → 1.
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Continuous energy dissipation law

Applying Lemma 1, one gets an improved energy dissipation law

dEα

dt + (1 − α)π
2κ sin(1 − α)π

∫ t

0
ω1−α(t − ξ)

∥∥∥ ∫ ξ

0
ωα(t − s)v ′(s) ds

∥∥∥2
dξ= 0,

where v = ∂α
t Φ = −κµ and the nonlocal (variational) energy

Eα[Φ] := E [Φ] + κ

2 Iα
t

∥∥µ
∥∥2 = E [Φ] + κ

2 Iα
t

∥∥ δE
δΦ

∥∥2
.

As α → 1,
∫ ξ

0 ωα(t − s)v ′(s) ds → v(ξ), and the above law degrades into

d
dt

(
E [Φ] + κ

2 I1
t
∥∥µ

∥∥2)
+ κ

2
∥∥µ

∥∥2 = dE
dt + κ

∥∥µ
∥∥2= 0,

which is just the energy dissipation law of Allen-Cahn model. The new
energy law is asymptotically compatible (exactly) as α → 1.
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Crank-Nicolson (L1+) scheme

By applying the L1+ formula, we have the Crank-Nicolson scheme

(∂α
τ ϕ)n− 1

2 = −κµn− 1
2 with µn− 1

2 = f (ϕ)n− 1
2 − ϵ2∆ϕn− 1

2 for n ≥ 1.

Here, f (ϕ)n− 1
2 is the standard second-order approximation defined by

f (ϕ)n− 1
2 := 1

2
[
(ϕn)2 + (ϕn−1)2]

ϕn− 1
2 − ϕn− 1

2

such that 〈
f (ϕ)n− 1

2 ,▽τ ϕn〉
=

〈
F (ϕn), 1

〉
−

〈
F (ϕn−1), 1

〉
.

Theorem 9
If τn ≤ α

√
2

κΓ(3−α) , the Crank-Nicolson scheme is uniquely solvable.
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Discrete energy dissipation law

We define the following discrete variational energy

Eα[ϕn] := E [ϕn] + 1
2κ

n∑
j=1

p(1−α,n)
n−j

∥∥v j∥∥2 with v j :=
j∑

ℓ=1
a(1−α,j)

j−ℓ ▽τ ϕℓ,

where E [ϕn] is the original Ginzburg-Landau energy.

Theorem 10

Under the step-ratio constraint rk+1 ≥ r∗(rk), the variable-step
Crank-Nicolson scheme is energy stable in the sense that

∂τ Eα[ϕn] + 1
2κτn

n−1∑
j=1

( 1
rp(1−α,n)

n−j
− 1

rp(1−α,n)
n−j−1

)∥∥∥ j∑
k=1

rp(1−α,n)
n−k ▽τ vk

∥∥∥2
= 0.
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Asymptotical compatiblity

As α → 1, a(0,n)
0 = 1/τn and a(0,n)

n−k = 0 for 1 ≤ k ≤ n − 1. The L1+

scheme degrades into the Crank-Nicolson scheme

∂τ ϕn = −κµn− 1
2 with µn− 1

2 = f (ϕ)n− 1
2 − ϵ2∆ϕn− 1

2 for n ≥ 1.

The DCC and RCC kernels p(0,n)
n−k = τk/2 and rp(0,n)

n−k = τn/2 for 1 ≤ k ≤ n.
The discrete variational energy degrades into

Eα[ϕn] −→ E [ϕn] + 1
κ

n∑
j=1

τj
∥∥∂τ ϕj∥∥2 as α → 1;

and the discrete energy dissipation law in Theorem 10 degrades into

∂τ E [ϕn] + 1
κ

∥∥∂τ ϕn∥∥2= 0 for n ≥ 1.

Our energy law is asymptotically compatible (exactly) as α → 1.
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Example: TFAC

An adaptive step criterion based on the solution variation

τada = max
{

τmin,
τmax√

1 + η
∥∥∂τ ϕn

∥∥2

}
,

where the uniform size τ = 0.005, τmax = 10−1 and τmin = 10−3.

Figure: The energies E (t), Eα(t) and adaptive steps for u0 = rand(x).
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Example: TFAC
An adaptive step criterion based on the solution variation

τada = max
{

τmin,
τmax√

1 + η
∥∥∂τ ϕn

∥∥2

}
,

where we set τmax = 10−1, τmin = 10−3 and η = 103.

(a) energy E [ϕn] (b) energy Eα [ϕn] (c) steps τn

Figure: Numerical results for different fractional orders α.
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Continuous energy dissipation law

We consider the following Klein-Gordon-type fractional wave equation
(Adolfsson-Enelund-Larsson-2003,Golmankhaneh-Golmankhaneh-Baleanu-2011) with the
fractional order β ∈ (0, 1),

∂tU + Iβ
t ζ = 0 with ζ := δE

δU = f (U) − ϵ2∆U,

where f (U) = F ′(U) and the associated energy E [U] is defined by

E [U] :=
∫

Ω

(ϵ2

2 |∇U|2 + F (U)
)

dx with F (U) := 1
4

(
U2 − 1

)2
.

This model is intermediate between the Allen-Cahn-type diffusion equation
(β = 0) and the Klein-Gordon-type wave equation (β = 1), and it can be
termed as a nonlinear fractional PDE with the Caputo time derivative of
order α = 1 + β ∈ (1, 2).
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Continuous energy dissipation law

Typically, in the limit β → 1, the above model recovers the classical
Klein-Gordon equation ∂2

t U = ϵ2∆U − f (U). As well-known, it admits the
energy conservation law (Li-Vu Quoc-SINUM-1995)

dE
dt = 0,

where the Hamiltonian energy E is defined by

E [U] := E [U] + 1
2∥∂tU∥2.

Therefore, it is natural to ask whether the time-fractional Klein-Gordon
equation also maintains a similar energy law, and whether the
second-order time-stepping scheme based on integral averaged formula can
also maintain the corresponding energy law at the discrete time levels.
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Continuous energy dissipation law
Applying Lemma 1, we get an energy dissipation law

dEβ

dt + βπ

2 sin βπ

∫ t

0
ωβ(t − ξ)

∥∥∥ ∫ ξ

0
ω1−β(t − s)v ′(s) ds

∥∥∥2
dξ = 0,

where the nonlocal energy

Eβ[U] := E [U] + 1
2I1−β

t
∥∥∂tU

∥∥2 for t > 0.

As the fractional order β → 1, one has

Eβ[U] → E [U] = E [U] + 1
2∥∂tU∥2.

The energy dissipation law degrades into the energy conservation law of
the classical Klein-Gordon model

dE
dt = 0.

Both the nonlocal energy Eβ[U] and the energy dissipation law are
asymptotically compatible in the limit β → 1.
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Crank-Nicolson scheme

By applying the integral averaged formula Iβ
τ , we have a Crank-Nicolson

scheme for the Klein-Gordon-type fractional wave equation

∂τ un + (Iβ
τ ζ)n− 1

2 = 0 with ζn− 1
2 = f (u)n− 1

2 − ϵ2∆un− 1
2 .

Theorem 11
If τn ≤ 1+β

√
2Γ(2 + β), the Crank-Nicolson scheme is uniquely solvable.
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Discrete energy dissipation law

With the original energy E [un] = ϵ2

2
∥∥∇un∥∥2 + 1

4
∥∥(un)2 − 1

∥∥2, we define
the following discrete analogue of Eβ[u],

Eβ[un] := E [un] + 1
2

n∑
j=1

p(β,n)
n−j

∥∥v j∥∥2
,

where v j :=
∑j

ℓ=1 a(β,j)
j−ℓ τℓζ

ℓ− 1
2 .

Theorem 12

Under the step-ratio constraint rk+1 ≥ r∗(rk), the variable-step
Crank-Nicolson scheme is energy stable in the sense that

∂τ Eβ[un] + 1
2τn

n−1∑
j=1

( 1
rp(β,n)

n−j
− 1

rp(β,n)
n−j−1

)∥∥∥ j∑
k=1

rp(β,n)
n−k ▽τ vk

∥∥∥2
= 0.
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Asymptotical compatiblity

As β → 1, a(1,n)
0 = 1/2 and a(1,n)

n−k = 1 for 1 ≤ k ≤ n − 1. The above
numerical scheme degrades into the Crank-Nicolson scheme

∂τ un + τn
2 ζn− 1

2 +
n−1∑
j=1

τjζ
j− 1

2 = 0 with ζn− 1
2 = f (u)n− 1

2 − ϵ2∆un− 1
2

This numerical scheme is uniquely solvable if τn ≤ 2. This numerical
scheme can be formulated into

∂τ un + wn− 1
2 = 0

by introducing wn :=
∑n

k=1 τkζk− 1
2 . With the fact wn − wn−1 = τnζn− 1

2 ,
it is easy to establish a discrete energy conservation law

E [un] + 1
2

∥∥wn∥∥2 = E [un−1] + 1
2

∥∥wn−1∥∥2 for n ≥ 1.
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Asymptotical compatiblity
The modified kernels a(1,n)

n−k = 1 for 1 ≤ k ≤ n. The associated DOC
kernels θ

(1,n)
0 = 1, θ

(1,n)
1 = −1 and θ

(1,n)
n−k = 0 for 1 ≤ k ≤ n − 2. Then the

corresponding DCC and RCC kernels read

p(1,n)
0 = 1 and p(1,n)

n−k = 0 for 1 ≤ k ≤ n − 1,

rp(1,n)
0 = 1 and rp(1,n)

n−k = 0 for 1 ≤ k ≤ n − 1.

With vn :=
∑n

k=1 τkζk− 1
2 , the discrete energy degrades into

Eβ[un] −→ E [un] + 1
2

∥∥vn∥∥2 as β → 1;

and the discrete energy dissipation law in Theorem 12 degrades into

∂τ

(
E [un] + 1

2
∥∥vn∥∥2)

= 0 for n ≥ 1.

Both the discrete energy and energy dissipation law are asymptotically
compatible in the limit β → 1.
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Some further issues

For the DGS decomposition, we impose a sufficient step-ratio condition

rk+1 ≥ 1−β

√
(2β − 1)ρ(rk)
ρ(2rk) − ρ(rk) .

Numerical tests support that the following weak condition is also sufficient,

rk+1 ≥ rg (rk) :=
(
1 + 5r−β

k
)−1

.

Nonetheless, we are not able to present a rigorous proof.

We build the discrete gradient structure of L1+ formula. How about other
discrete Caupto formulas, such as variable-step L2-1σ (Alikhanov-JCP-2015,
Liao-McLean-Zhang-2021) and variable-step L1-2 (fractional BDF2-like)
formulas (Gao-Sun-Zhang-JCP-2014, Lv-Xu-SISC-2016, Liao-McLean-Zhang-2019) ?
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The end

Thank you for your attention !

Find the materials at

https://www.researchgate.net/profile/Hong-Lin-Liao

Contact me by

liaohl@nuaa.edu.cn, (+86)13851727404
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