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Linear and nonlinear integro-differential equations attract great interests in
a wide range of disciplines in science and engineering. These models are
formulated in integral form, including Riemann-Liouville fractional integral

(ZPw)(t) == /ot wg(t — s)w(s)ds with ws(t) := t*71/T(B)
and fractional Caputo derivative for 0 < a < 1
(Fw)(e) = (@ w)(e) = | St a(t — s)w(s) ds.
They exhibit multi-scaling time behavior, which makes them suitable for

the description of different diffusive regimes and characteristic crossover
dynamics in complex systems.
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Time fractional phase field models

For example, the time-fractional phase field models

0E
fO=M—
% 0P
where M is the mobility operator (M := —/ for L? gradient flow and

M := A for H=! gradient flow) and E is the free energy functional such as
the Ginzburg-Landau energy functional

E[®] ::/9(622 VoL 4+ F())dx with F(®) = (¢2—1)

@ Multiscale behaviors: Chen-Zhao-et al-CPC-2018, Liu-Cheng-et al-CMA-2018, ...

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 5/51



Time fractional phase field models

For example, the time-fractional phase field models

0E
fO=M—
% 0P
where M is the mobility operator (M := —/ for L? gradient flow and

M := A for H=! gradient flow) and E is the free energy functional such as
the Ginzburg-Landau energy functional

E[®] ::/9(622 VoL 4+ F())dx with F(®) = (q>2 1)2.

@ Multiscale behaviors: Chen-Zhao-et al-CPC-2018, Liu-Cheng-et al-CMA-2018, ...

@ Theoretical analysis: Du-Yang-Zhou-JSC-2020, Al-Maskari-Karaa-IMA-2021,
Fritz-Rajendran-WohImuth-CMA-2022, ...

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 5/51



Time fractional phase field models

For example, the time-fractional phase field models

0E
fO=M—
% 0P
where M is the mobility operator (M := —/ for L? gradient flow and

M := A for H=! gradient flow) and E is the free energy functional such as
the Ginzburg-Landau energy functional

E[®] ::/9(622 VoL 4+ F())dx with F(®) = (q>2 1)2.

@ Multiscale behaviors: Chen-Zhao-et al-CPC-2018, Liu-Cheng-et al-CMA-2018, ...

@ Theoretical analysis: Du-Yang-Zhou-JSC-2020, Al-Maskari-Karaa-IMA-2021,
Fritz-Rajendran-WohImuth-CMA-2022, ...

@ Numerical properties: Tang-Yu-Zhou-SISC-2019, Ji-Liao-et al-2019,
Ji-Liao-Zhang-2020, Quan-Tang-Yang-CSIAM-2020, Liao-Tang-Zhou-2020,
Karaa-SINUM-2021, Liao-Tang-Zhou-2021, Quan-Wang-JCP-2022, ...

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 5/51



Fractional wave models

Another example, nonlinear fractional wave (integro-differential) equations
t
DU = / K(t — s) [AU + F(U)] ds.
0

There are many of related references, see

@ Monographs: Brunner-Cambridge University Press-2004, Mainardi-Imperial College
Press-2010, ...
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Adaptive time-stepping strategy

@ In capturing the multi-scale behaviors in many of integro-differential
equations, adaptive time-stepping strategies are practically useful.
Especially in long-time simulations, a computationally efficient
method should admit different time steps in different periods.
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Integral averaged formula

ConsiderO=tg<t1 < - <ty <---<ty=T with 74 1=ty — tx_1,
1

T 1= MaXi<k<N Tk, Tk := Tk/Tk—1. Also, wk—2 .= (wk + wk=1)/2,

Vowk = wk — wk 1 and 0, wk = v wk/7.

1
Let the piecewise constant approximation (Mow)(t) = wk~2 for
tk—1 < t < tx. The integral averaged (Crank-Nicolson) formula of
fractional Riemann-Liouville integral,

(Ifw)”_% ) / wg(t —s)(Mow)dsdt = Z agﬁ’k Tewk %,
n—1
where the associated discrete kernels a(ﬁ’ " are defined by
(5 min{t, tk}
a = / / 5(t —s)dsdt for1 < k <n.
TnTk Jt, ty—
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L1™ formula

Let the piecewise approximation lNyw := [y xw so that
(I'Ilw)’(t) = 8ka, for ty_1 <t <t and k > 1.

The integral averaged formula (also called L1" formula) of fractional
Caputo derivative is

(@0w)3 = = /wl ot = $)(Mw)(s dsdt—z A-ang k,
th—1

where the associated discrete kernels af,l__ka’") are defined by

(1—a,n) tn min{t,t;}
a_y = / / wi—a(t —s)dsdt for1 <k <n.

TnTk Jth—1 Jte—1
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Positive-semidefinite-preserving approach

They come from the positive-semidefinite-preserving approach such that
the corresponding real quadratic form

n t; . t
Z’T Wi Z a(ﬁ’f()T wh=2 = Z/tj WJ_%/O wa(t —s)(Mow) ds dt
j=17t

_ tn(ﬂow)dt/()tw5(t—s)(l'low)ds

to

is a discrete analogue to the non-negative definiteness of kernel wg
(McLean-Thomée-1993, Lubich-Sloan-Thomée-MC-1996, McLean-Thomée-JCAM-1996)

27w T w) () =2 [ wlp) e [ sl = Jw(s) ds

t pt
for £ > 0 and w & C[0. 7]
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Positive-semidefinite-preserving approach

e But the regularity condition w € C[0, T| is always inadequate since
Mow & C[O, T].

For the L1* formula, the non-negative definiteness needs a severer
condition
(Myw)" € Clo, T].
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Mow & C[O, T].

For the L1* formula, the non-negative definiteness needs a severer
condition
(Myw)" € Clo, T].

e Tang, Yu and Zhou (SISC 2019) proved that the semipositive
definiteness holds for

2
LP(0, T ith > —— f 1
w € LP(0, T) wit pfl—i—ﬁ or0< <1,

which permits weakly singular functions like w = O(t?~1) such that
the L1T formula can naturally preserve the non-negative definitene
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Discrete gradient structure (DGS)

In general, the non-negative definiteness of the real quadratic form
n k (5.6)
2> wi ) A
k=1 j=1

is dependent on the discrete convolution kernels afﬁjr-'), but should be
independent of real sequences {wy}. That is, we want to determine the
positive definiteness of these discrete convolution kernels without using the
non-negative definiteness of continuous kernels.

Step 1 Define the modified kernels

a(()ﬁ’") = 23(()6’") and af,/ijr-') = afﬁlr-')

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 14 /51



Discrete gradient structure (DGS)

Step 2 For the modified kernels a(B’ ") define the associated discrete
(left-)complementary convolutlon (DCC) and
right-complementary convolution (RCC) kernels

anﬂ’j)f’f”’)—l Zanﬁ’j)rpjﬂj =1 forl1<k<n.
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Discrete gradient structure (DGS)

Step 2 For the modified kernels a(ﬁ’J) define the associated discrete
(left-)complementary convolution (DCC) and
right-complementary convolution (RCC) kernels

S =1 YA =1 sk

Step 3 Establish the discrete gradient structure in equality form

2w, Z al ,Bm) Z Pn Ve Z Pnﬁ’;_}) Jz
Z( ) ﬁm) )(Z Ph— kvf"">2

=1 nf pn —j—1 k=1
AR A CH)
where the sequence vj 1= > a; ) wp.
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Continuous counterpart of DGS

Recall the Riemann-Liouville fractional derivative Raﬁ : RLDB defined by
Rafv = 8tI}7’8v for0 < g < 1.

We build up a continuous counterpart of DGS as follows,

For 8 € (0,1) and an absolutely continuous function w, it holds that

2w(t)(Z¢w)(t) = (F0/v?) (1)

i [0 [ e e

where v = I{_LBW, such that

2T (WP w)(t) > (Tt PV3)(t) >0 forv #0. i

e
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Proof of continuous DGS

By the semigroup property, we have w = Rﬁtﬁv = 8tIt1_ﬂv and
w(t)(Z{ w)(£) = v(£)(07 v)(0)-

Since v(0) =0, Rf)tﬂv = 8tﬁv and Rf)tﬁ 2 = 8tﬂv2. Then

JIv] =2v(8) (R v)(2) — (R0 vP)(2)
—2u(t) g [en-s(e—ul)ds — o [ wr st - )A(s)ds
=2 [Cr st — WSV - v(s)] ds
=2 [Cn st —)/(s) [ Vi€ deas
_2/ df/(fwl_g(t—s)v/(s) ds.

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 19 /51




Proof of continuous DGS

By taking

o{(E) — /nglg(t—s)v'(s)ds

with u(0) = 0 and
u'(€) = wi-p(t — EV'(€),

it is not difficult to derive that

J[v]:20w15t_ de = /r ) du?(€)
=T - )N+ ) [ walt - €)uR(e) de
= [ante - e2e) ae
It leads to the claimed equality. DJ
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Discrete convolution tools-DOC

To seek the discrete counterpart of Lemma 1, we introduce some discrete
tools for any kernels {af,'i)j}le. The associated discrete orthogonality
convolution (DOC) kernels 95,"_),( are defined by

n 1 n
9() ﬁ and 9( :_720511 Ve for1<k<n-1
0 a() j=k+1

It is easy to check the following mutual orthogonality identities
Ze_JJ)kiénk and Zan JHJ(J)k:(S for 1 < k <n,

where d, is the Kronecker delta symbol with d,, = 0 if k # n.
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Discrete convolution tools-DCC&RCC

We define the discrete (left-)complementary convolution (DCC) kernels
n
pf,'l)k = Zﬁﬂ)k for1 < k <n,
=k
and the right-complementary convolution (RCC) kernels

rpf,rl)k = ZHE,”,)J- for1 < k<n.
j=k

The DCC kernels p,(,"_)j are complementary with respect to af,"_)j,

Zp,(,'l)jajg_)k =1 forl<k<n;
j=k

and af,"_)j are complementary with respect to the RCC kernels ’p,(,”_)j,

n
(n) r U) —
Zan—jpj—k =1 forl1<k<n.
j=k
Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 22 /51



DOC, DCC and RCC kernels

DCC kernels Left-complementary identity:
) _ ® .
Pk = Zii ik ik pfqri)iai(i)k =1

Summing n

Definition: Y™ ,0a® =5 .
DOC kernels 4.____________Z_L___k__'l__l__l___k____ff____ original kernels

o™ : S
nok Orthogonal: ¥, a™.6® =6, nk

n—i’i-k —

Subtracting k

RCC kernels Right-complementary identity:
) r () —
rP,(:i)k =Xty 9,(:3 ik ar(ln—i P =1

Figure: The relationship diagram of DOC, DCC and RCC kernels.
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Discrete convolution tools-DCC&RCC

If the positive kernels aJ(-") are monotonically decreasing with respect to the

subscript index j, that is, aj@l > aJ(-") for1 <j < n-—1, then the DCC

kernels pf,"_)k > 0.
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Discrete convolution tools-DCC&RCC

If the positive kernels aJ(-") are monotonically decreasing with respect to the
(n )1 > a( " for 1 <j < n-—1, then the DCC

subscript index j, that is, a;
kernels pf,"_)k > 0.

Lemma 3 (RCC)

(n)

If the positive kernels a;

(n—-1)

superscript index n, a;_;™" > aj(") for1 < j < n—1, and satisfy a class of

are monotonically decreasing with respect to the

logarithmic convexity, a ( 1) (") > a(" b (") for1 < j < n-—2, then the

RCC kernels " J( " are pos:tlve and monotonlcally decreasing with respect
to J.
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BIEN

Theorem 4

For any fixed index n > 2 and any discrete convolution kernels {XS,"_) =1
consider the following auxiliary kernels for a constant omin € [0,2),
(n) ._ (n) (n)

ay = (2—omin)Xxy and a,’;:= Xg"_)j for1 <j<n-1.

Assume that the auxiliary kernels a,(1"_) ; satisfy the following assumptions:

Liao Hong-lin (NUAA)
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BIEN

Theorem 5 (continue)

Let p( ) and pf,"_ ; be the associated DCC and RCC kernels, respectively,
with respect to a( ) . Then the following DGS holds,

2W”ZX”—J an kV ann 1) Vk+UmInX() >

+8 (=) [ £ Ak -

Jj=1 pn—j pn—j 1

where v == Y5, aE( )ZWg so that X( ") are positive definite,

22 WkZXk Jiwj > Zp(") 2+am.n2x(k)

|
™7 mid =

=
Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 26 /51
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Skeleton proof of DGS

For any real sequence {wy}_,, let vo := 0 and v; :== 3% _, J(J)kwk for

1 < j < n. With the help of orthogonality identity, wy = j:1 G,EJJ\/J.

Then one applies the definition of RCC kernels to find

W—ZH()v—p V—I-Z _Pn—f er,(,)kVTvk

By following the proof of (Liao-McLean-Zhang-2019, Lemma A.1),

n 2
2v, Z rpf,rl)kvak Z rpgn)kvf Vi + (n) ( Z P,, kv‘rvk)
k=1 =

n—1 1 1

i ((n> ®) )(Z’p,‘,)kv Vk)Q' ;

pn—J pn—J 1 k=1

L]
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Integral averaged kernels

The discrete kernels of integral averaged formula,

n 1 tn min{t,tx}
afﬁk) = / / wg(t —s)dsdt for 1 < k < n.

TnTk Jta_1 Jtx_1

The integral mean-value theorem yields

B—1
(Bn) _ _Tn d g (Bn) o ... (B:n) ¢ )
ag F(2+B) an ay > a > >a,4 orn=> 2.
A direct calculation gives
(Bn) _ (Bn) _ In 145 148
a —a =——— |1+1/r+1/r,7°" —(1+1/n, .
0 = e T 141/ m+1/0 7 = (14 1/,

It is seen that a(()ﬁ’n) > agﬂ’”) as 8 — 0, while a(()ﬁ’”) < agﬁ’") as § — L.
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Integral averaged kernels

The kernels 27" fulfill 227" > 2P > P ... 5 JB0 < g,
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Integral averaged kernels

The kernels afﬁz) fulfill 23(()'3’") > agﬁ’") > ag’g’") > > af,_’;) > 0.

Let the adjacent step-ratios satisfy the following condition

1 (25 - 1)p(rk)
p(2rk) — p(r«)

where the function p(z) := (z + 1)}*# — z1¥8 — 1 and r.(z) < 1 for any
z > 0. Then the discrete convolution kernels a\” ’Z) fulfill

n—

rev1 > re(rg) = for k > 2,

A e A5
< < o< —2—=_ <1 forn>2. \
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DGS for integral averaged kernels

Corollary 8
Let the adjacent step-ratios satisfy the following condition
26 —1
ree1 > r(re) = w for k > 2,
p(2ri) — p(rk)
where r,(z) < 1 for any z > 0. It holds that

2W,,Za W —an n) 2 Zp(ﬁ’n 1)

n—1—j j

n—1 1 2
+Z(p(n n pﬁn) )(ankv‘/k>

—J n—j—1

where the sequence vj := JZ 1 J(B %)W[ Thus the discrete kernels a('B on)
are positive definite.

X
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© Application to time-fractional Allen-Cahn model
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Continuous energy dissipation law

Consider the time-fractional Allen-Cahn model

Of® = —kp  with p:= % = f(®) — AP,

where & is the mobility coefficient and E is the Ginzburg-Landau functional
E[®] := / (f VO]” + F(®)) dx  with F(®) = E (02~ 1)2.
Q\2 4
Tang, Yu and Zhou (Tang-Yu-Zhou-SISC-2019) derived an energy law
E(t) < E(0).

This energy dissipation law is globally in time and not asymptotically
compatible in the a — 1 limit.
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Continuous energy dissipation law

Quan et al (Quan-Tang-Yang-CSIAM-2020, Quan-Tang-Yang-2020) derived a
time-fractional energy dissipation law

(O9E)(t) <0 for t >0,

and a weighted energy dissipation law,

dEs

w

dt

1
gom»om%@m:/mmww,
0

where E(0t) = E[® (-, 0t)] is a weighted Ginzburg—Landau energy.
Some other nonlocal energy forms were also proposed in

(Li-Salgado-arXiv:2101.00541v1, Fritz-Khristenko-Wohlmuth-arXiv 2106.10985,

Li-Quan-Xu-arXiv 2106.11163) for the desired local energy law like

d

7€nonoca t SO
qg Erontocal(t)
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Continuous energy dissipation law

Recently, we obtain a local energy law (Liao-Tang-Zhou-2021,Liao-Zhu-Wang-2022)

d K 112 K 2
4 (L1 + 5T 1)) + Swa(t) <0,

Ea|®P] : a global energy may not be physical

It is asymptotically compatible (but not exactly) with the classical energy
dissipation law (equality). As the fractional order a — 1,

d 2
—E[® <0
& o] + <o,
but £,[®] is not asymptotically compatible with the free energy

t
Ea[®] — E[d)]—i-;/ |e]®ds, asa— 1.
0
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Continuous energy dissipation law

Applying Lemma 1, one gets an improved energy dissipation law

B sy gy ets = [ ente = oy aeo

where v = 08® = —kp and the nonlocal (variational) energy
Ea[0] := E[0] + 577 |l = E[0] + 527 55"

As o — 1, f05 wa(t — s)V/(s)ds — v(§), and the above law degrades into

dE

d B 1) 112 Ky _
S (EL0]+ ST ul®) + Sl = S+ wllulP=o0,

which is just the energy dissipation law of Allen-Cahn model. The new
energy law is asymptotically compatible (exactly) as aw — 1.
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Crank-Nicolson (L17") scheme

By applying the L1" formula, we have the Crank-Nicolson scheme

= —/-;,u”_% with ,u”_% = f(gb)”_% - 62A¢”_% for n > 1.

NI

(079)™
Here, f((b)"*% is the standard second-order approximation defined by

1

f(¢)n—% = [(¢n)2 + (¢n—1)2]¢n—% o ¢n—%

N

such that

(F(¢)"2,,:0") = (F(6"), 1) — (F(¢" 1), 1).

Theorem 9

Ifrp < ¢ m the Crank-Nicolson scheme is uniquely solvable.

VGRE
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Discrete energy dissipation law

We define the following discrete variational energy

Ea[8"] —E[¢n]+ (1 2:n) ||vf|| with v/ —Zal g ot

_/ 1

where E [¢"] is the original Ginzburg-Landau energy.

Theorem 10

Under the step-ratio constraint riy1 > r.(rx), the variable-step
Crank-Nicolson scheme is energy stable in the sense that

1 9,1
aTE“[¢n]+2;.;TnZ( (1—a,n) _r(l an)HZr(l a")
Jj=1 n—j n—j—1
Liao Hong-lin (NUAA) CSRC
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Asymptotical compatiblity

(0

Asa — 1, 3" =1/r, and 87 =0for 1 <k <n—1. ThelLl+

scheme degrades into the Crank-Nicolson scheme
0, ¢" = —/ﬁu"_% with u”_% = f((b)”_% — 62A¢>”_% for n > 1.

The DCC and RCC kernels pg();','() = 7k/2 and rpf&',? =T1,/2for1 < k <n.
The discrete variational energy degrades into

Bl — EWT+ Y 00 asa ot
j=1

and the discrete energy dissipation law in Theorem 10 degrades into

0E[07] + - [0-6"[?=0 forn>1.

Our energy law is asymptotically compatible (exactly) as v — 1.
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Example: TFAC

An adaptive step criterion based on the solution variation

- Tmax
Tada = MaxX § Tmin,

L+ n0-¢n]°

where the uniform size 7 = 0.005, Tmax = 1071 and 7min = 1073.

energy: E(t)

Figure: The energies E(t), E,(t) and adaptive steps for ug = rand(x).
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Example: TFAC

An adaptive step criterion based on the solution variation

Tada = MaX q Tmin,

where we set Tmax = 1071,

(a) energy E[4"]

Figure: Numerical

Liao Hong-lin (NUAA)

Tmax

1+ 7|0 ¢"

2
I

Tmin = 1073 and n= 103.

gy: £alt)

riational energy

(b) energy Eq [¢"] (c) steps 7,

results for different fractional orders «.
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Outline

@ Application to time-fractional Klein-Gordon model
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Continuous energy dissipation law

We consider the following Klein-Gordon-type fractional wave equation
(Adolfsson-Enelund-Larsson-2003, Golmankhaneh-Golmankhaneh-Baleanu-2011) with the
fractional order 3 € (0, 1),

€ _
sU
where f(U) = F/(U) and the associated energy E[U] is defined by

OU+TIPC=0 with ¢ := F(U) — AU,

2

._ € 2 - _Lln N2
E[U] := /Q ( 5 VU + F(U))dx with F(U):= ; (Lr-1)"
This model is intermediate between the Allen-Cahn-type diffusion equation
(8 =0) and the Klein-Gordon-type wave equation (/5 = 1), and it can be

termed as a nonlinear fractional PDE with the Caputo time derivative of
order a =1+ € (1,2).
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Continuous energy dissipation law

Typically, in the limit 5 — 1, the above model recovers the classical
Klein-Gordon equation 02U = e2AU — f(U). As well-known, it admits the
energy conservation law (Li-Vu Quoc-SINUM-1995)

d€
“ _0
dt ’

where the Hamiltonian energy & is defined by

£1U) = E1U] + 5 U]

Therefore, it is natural to ask whether the time-fractional Klein-Gordon
equation also maintains a similar energy law, and whether the
second-order time-stepping scheme based on integral averaged formula can
also maintain the corresponding energy law at the discrete time levels.

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 44 /51



Continuous energy dissipation law

Applying Lemma 1, we get an energy dissipation law

T i ot 0] [t o=

where the nonlocal energy

E3lU) = EU]+ 57270 U]> for £> 0,

As the fractional order 5 — 1, one has
1
£:U) — E1U] = EU] + 5 10: U],

The energy dissipation law degrades into the energy conservation law of
the classical Klein-Gordon model

de

dt
Both the nonlocal energy £3[U] and the energy dissipation law are
asymptotically compatible in the limit 8 — 1.
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Crank-Nicolson scheme

By applying the integral averaged formula Z?, we have a Crank-Nicolson
scheme for the Klein-Gordon-type fractional wave equation

1

aTun + (IEC)n_% =0 with Cn_% = f(u)"_% _ EZAun_E,

If T, < /20 (2 + (), the Crank-Nicolson scheme is uniquely solvable. \
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Discrete energy dissipation law

With the original energy E [u"] = %HVU”HZ + H(u")? - 1“2

, we define
the following discrete analogue of Es[u],

M R pr, )7,
where v/ := Y al?Y) e

(= 1a_j

Under the step-ratio constraint ry1 > r«(rk), the variable-step
Crank-Nicolson scheme is energy stable in the sense that

n—1

1 1 2
OrEaul+ 50 ( G~ o (ﬂ : )H Z v =o.
" j=1 "Pp_j Pn—j—1 J:.
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Asymptotical compatiblity

As 8 — 1, a(()l’") =1/2 and a(l";() =1forl < k<n-—1. The above

n—

numerical scheme degrades into the Crank-Nicolson scheme

1 1

n—1
Oru" + Y T =0 with ("7 = f(u)" 2 — QAU
j=1
This numerical scheme is uniquely solvable if 7, < 2. This numerical
scheme can be formulated into
o-u" + w2 =0

1 1
by introducing w” := 27_, 7(¥~2. With the fact w” — w1 = 7,¢""2,
it is easy to establish a discrete energy conservation law

Elu") + 5w = EL 1+ S w P forn 1
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Asymptotical compatiblity

The modified kernels afll;','() =1 for 1 < k < n. The associated DOC

kernels 65" =1, 6" = —1 and 6" =0 for 1 < k < n— 2. Then the
corresponding DCC and RCC kernels read

p" =1 and p"V =0 for1<k<n-—1,
I‘p(()17n):1 and pg )_0 f0r1<k<n—]_

With v =374 Tkg"—%, the discrete energy degrades into
Eu"l —  EW"+ = Hv H as B —1;
and the discrete energy dissipation law in Theorem 12 degrades into

8T(E[u”] + %HV"H2> =0 forn>1.

Both the discrete energy and energy dissipation law are asymptotically ¢
compatible in the limit § — 1.
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Some further issues

@ For the DGS decomposition, we impose a sufficient step-ratio condition

1] (20 = 1)p(re)

r > .
= p(2ri) — p(rk)

Numerical tests support that the following weak condition is also sufficient,
g\ —1
M1 > rg(re) == (1 +5r, 6) .

Nonetheless, we are not able to present a rigorous proof.
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Some further issues

@ For the DGS decomposition, we impose a sufficient step-ratio condition

B _—
s o[ @ Do)
p(2ric) = p(ri)
Numerical tests support that the following weak condition is also sufficient,
g\ —1
M1 > rg(re) == (1 +5r, 5) .

Nonetheless, we are not able to present a rigorous proof.

@ We build the discrete gradient structure of L1 formula. How about other
discrete Caupto formulas, such as variable-step L2-1, (Alikhanov-JCP-2015,
Liao-McLean-Zhang-2021) and variable-step L1-2 (fractional BDF2-like)
formulas (Gao-Sun-Zhang-JCP-2014, Lv-Xu-SISC-2016, Liao-McLean-Zhang-2019) ?
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Thank you for your attention !

Find the materials at
https://www.researchgate.net/profile/Hong-Lin-Liao
Contact me by

liaohl@nuaa.edu.cn, (+86)13851727404

Liao Hong-lin (NUAA) CSRC Aug 11-13, 2022 51/51


https://www.researchgate.net/profile/Hong-Lin-Liao

	Intergal averaged formula and our results
	Motivation
	Integral averaged formula
	The problem and our results

	Derivation of discrete gradient structure
	General kernels
	Kernels of integral averaged formula

	Application to time-fractional Allen-Cahn model
	Application to time-fractional Klein-Gordon model
	Further issues to be studied

