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@ Examples and Motivations



Some PDEs with Logarithmic Nonlinearity'

@ Heat equation with a logarithmic nonlinearity (Log-Heat)

ug — Au = uln|u| = Af(u), A#0, AeR

@ Logarithmic Schrédinger equation (LogSE)
iug + Au = Auln |y

or LogSE with a potential V' (e.g., V = |z[*): A+ V - A.

1Applications: nonlinear wave, quantum mechanics & optics; nuclear physical,
superfluids & Bose-Einstein condensation, ... (cf. Biatynicki-Birula & J. Mycielski, 1975)



Some PDEs with Logarithmic Nonlinearity'

@ Heat equation with a logarithmic nonlinearity (Log-Heat)

ug — Au = uln|u| = Af(u), A#0, AeR

@ Logarithmic Schrédinger equation (LogSE)
ity + Au = Auln |y
or LogSE with a potential V' (e.g., V = |z[*): A+ V - A.
@ Logarithmic Klein-Gordon equation (LogKGE)

g — Au+u = Auln |y

1Applications: nonlinear wave, quantum mechanics & optics; nuclear physical,
superfluids & Bose-Einstein condensation, ... (cf. Biatynicki-Birula & J. Mycielski, 1975)



@ Cahn-Hilliard equation with logarithmic Flory-Huggins potential?

ur = A(-Au+ f(u)) with f(u) = F'(u) = —1

-0yu,
-u

and F(u) = %((1 +u)In(1+u)+(1-u)ln(l —u)) _ %uQ.

2 [uolleo < 1, then|u|e < 1, see Elliot-Garcke’94, Debussche-Detttori’95.



@ Cahn-Hilliard equation with logarithmic Flory-Huggins potential?

ur = A(-Au+ f(u)) with f(u) = F'(u) = —1 — - 6qu,

and F(u) = 02—0((1 +u)ln(l+u)+(1-u)ln(l- u)) - %UQ.
@ Wasserstein gradient flows
@ Poisson-Nernst-Planck (PNP) system: (c1,c0 >0)
1
Elec1,¢2,0] = fQ (cl(lncl 1) +co(lneg —1) + §|V¢|2)dx
o Keller-Segel system with free energy: (0O<u<1)

Elu,¢] = fQ (ulnu+ (1-uw)In(l-u)-up+ %|V¢|2 + %¢2)dﬂc

2 [uolles < 1, then|u|e < 1, see Elliot-Garcke’94, Debussche-Detttori’95.



Some Observations

Plot of f(z)=z In|z| for z€ [-1,1]

Derivative of f(z)
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@ Let f(2) = zIn|z|. Then f(0) =0 and f(-z) = -f(2).

@ Non-differentiable at z = 0, as

f(z)=1+In|z|,
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Growth of f(z) for 2z > 1
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@ The function f(z) = z1In|z| grows like

f(z)=z In|z| vs 2%
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f(2) =2z,

and f(z) = o(z'*¢) for z > 1.

4 f(z)=z In|z| vs 25*
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@ Composition: g(z) = f(u(x)) :

g'(z) = f'(u)u'(x) = (1 + Inju(z))u'(x), u#0 or u'(x)#0.



@ Composition: g(z) = f(u(x)) :

g'(z) = f'(u)u'(x) = (1 + Inju(z))u'(x), u#0 or u'(x)#0.

@ Maximum point-wise errors of FEM approximation (globally ~ O(h))

occur at the locations where u changes sign.

4 f(u)=u In |u|] with u(x) = smoothed function

Very localised!
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Locally Holder Continuous

Lemma: Let f(z) = zIn|z| for z € R.
@ If0<|21| < |20 <€ fore>0, then for any a € (0,1),
(1) = f(22)] < (2€) 7 (In €| + 1) |21 - 20|,

i.e., a-Holder continuous on any finite interval containing 0.
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© Existing Results: Theory & Numerics



Log-PDE: H'-Regularity or More?

@ Consider, for example, the Log-Heat equation:

w—Au=ulnu| in Q, t>0,
u(z,t)=0 at 9Q, t>0; wu(z,0)=wup(z) on Q,

where Q c R? is a bounded domain with a smooth boundary.



Log-PDE: H'-Regularity or More?

@ Consider, for example, the Log-Heat equation:

up—Au=ulnlul in Q, t>0,
u(z,t)=0 at 9Q, t>0; wu(x,0)=ug(x) on Q,
where Q c R? is a bounded domain with a smooth boundary.
@ Global H'-solution (cf. Chen-Luo-Liu'15): u € L*(0, 00; Hi(2))

and u; € L2(0, 00; L2(Q)), if ug € H (Q), J[uo] < (2m)¥?e?/4, and
I[up] > 0, where (“Energy” has no definite sign @)

1 1
1[u)i= Vel - [ P e de, Jfu) = ST+ 3 Jul®



Log-PDE: H'-Regularity or More?

@ Consider, for example, the Log-Heat equation:

up—Au=ulnlul in Q, t>0,
u(z,t)=0 at 9Q, t>0; wu(x,0)=ug(x) on Q,
where Q c R? is a bounded domain with a smooth boundary.
@ Global H'-solution (cf. Chen-Luo-Liu'15): u € L*(0, 00; Hi(2))

and u; € L2(0, 00; L2(Q)), if ug € H (Q), J[uo] < (2m)¥?e?/4, and
I[up] > 0, where (“Energy” has no definite sign @)

1 1
1[u)i= Vel - [ P e de, Jfu) = ST+ 3 Jul®

@ Blowup (cf. Han'19): If ug € HJ (Q) and I[ug] <0, |u(-, )| = oo
ast — oo.



@ Super-exponential decay/growth (cf. Alfaro-Carles’17): There
exists uo € Hj with some 7 > 0, such that the unique solution
decays super-exponentially

[, t) oo < e
Moreover, there exist ug € Hi and 3¢ > 0, s.t.

Ju(t) oo = Ce€.

@ Remark: Some recent results on LogSE, e.g., H!-regularity (cf.

Carles-Gallagher'18)3, but no much on numerical methods.

SR. Carles and . Gallagher, Universal dynamics for the defocusing logarithmic
Schrédinger equation, Duke Math. J., 2018.



Regularized Numerical Methods

@ Bao-Carles-Su-Tang (SINUM’19): Regularized LogSE:

iu§ (x,t) + Auf(z,t) = s (x,t) In(e+us (z,t)]) in Q, ¢>0,
uf(z,t) =0 at 9Q, t>0; u(x,0)=ug(xr) on €.



Regularized Numerical Methods

@ Bao-Carles-Su-Tang (SINUM’19): Regularized LogSE:

iu§ (x,t) + Auf(z,t) = s (x,t) In(e+us (z,t)]) in Q, ¢>0,
uf(z,t) =0 at 9Q, t>0; u(x,0)=ug(xr) on €.

@ Regularization error: If uy € H2(Q), then
lu =l 0,722y < Cr8s I = ull oo i1 () € C2VE

where Cy,Cs > 0 are independent of .



@ Crank-Nicolson-Leap-Frog in time with FD in space:

THEOREM 3.1 (main result). Assume that the solution u® is smooth enough over

Qr = Q% [0,7T], ie.,
(A) ut € C([0.7]; H*()) n 2 ([0, T]: H* (1)) n € ([0, T]: H*(Q)) ,
and there exist g > 0 and Cy > 0 independent of = such that

e | e o250y + 10705 | e 0,75 008 02)) + 1OF05 || e 0,502y < Clas

uniformly in 0 525 < gg. Then there 6.1:27;9?, ho > 0 and 79 = 0 sufficiently small with
hﬁ ~ e~ CTIME® gpd 'rg ~ ee” CTIMEN gueh that, when 0 < h < hg and 0 < 7 < 79
satisfying the stability condition (3.7), we have the following error estimates

. 5 s T
=,k 2 2
es|| < Cale, T)(h" + E 0< k<=,
(3.9) [le=*Il = Ca(e, T)( ™) =
e mr < Calz, TR +72), |5 F]lae < A+1,
where A = [[uf|| poe 2y, Cale, T) ~ CTIEE Oy, T) ~ LeCTIMEE | gnd © de-

pends on Cy.

Ju = ™| < % T (e 4 72 4 12).



@ Crank-Nicolson-Leap-Frog in time with FD in space:

THEOREM 3.1 (main result). Assuwme that the solution u® is siooth enough over
Qr =0 = [0,T], ie.,

(A) ut € C([0.7]; H*()) n 2 ([0, T]: H* (1)) n € ([0, T]: H*(Q)) ,
and there exist 55 > 0 and Cy > 0 independent of = such that
N | 2o co,memrm () + 10705 | oot s () + 1705 || Lo (0,702 2y < Clas

uniformly in 0 525 < gg. Then there earsz, ho > 0 and 79 = 0 sufficiently small with
hﬁ ~ ge=OTI gpg 'rg ~ 2o OTIMEN gueh that, when 0 < h < ho and 0 < 7 < 7
satisfying the stability condition (3.7), we have the following error estimates

. . T
=,k 2 2
eS| < Ca(e, T) (R +77), 0<hk<=—,
(3.9) [le=*]l = Ca(e, T)( ™) p
[l€ %l sr < Cale, TYR? +72), ¥ |lae < A4 1,
where A = [[uf|| poe 2y, Cale, T) ~ CTIEE Oy, T) ~ LeCTIMEE | gnd © de-

pends on Cy.

Ju = ™| < % T (e 4 72 4 12).

Bao-Carles-Su-Tang (Numer. Math.19): Re;gularized Lie-Trotter
time splitting method: L?-error bound: O(72 Ine™1).
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Our Approach & Error Analysis

@ Time discretization: Find U™+ ¢ H}(Q) for 0<n < N; - 1, s.t.

Urt-un A(U"+1 + U”)
2

T

=AU In|U™ in Q,

with U° = uy. FD, FEM or spectral method can be used in space.

@ Remarks

o ltis first-order discretized at ¢ = t,,. If ug = 0, then U™ = 0.



Our Approach & Error Analysis

@ Time discretization: Find U™+ ¢ H}(Q) for 0<n < N; - 1, s.t.

n+l _rrn n+1 n
v —A(U ;U ) =AU |U"| in 9,

T

with U° = uy. FD, FEM or spectral method can be used in space.

@ Remarks

o ltis first-order discretized at ¢ = t,,. If ug = 0, then U™ = 0.

e The non-differentiability of the log-term is not in favour of
extrapolation or Newton iteration (for an implicit scheme).



Our Approach & Error Analysis

@ Time discretization: Find U™+ ¢ H}(Q) for 0<n < N; - 1, s.t.

=AU In|U™ in Q,

Urt-un A(U"+1 + U”)
2

T

with U° = uq. FD, FEM or spectral method can be used in space.

@ Remarks

o ltis first-order discretized at ¢ = t,,. If ug = 0, then U™ = 0.

e The non-differentiability of the log-term is not in favour of
extrapolation or Newton iteration (for an implicit scheme).

e Higher-order schemes can be used for e.g., positive,
regular solutions.



Essential Tools for Error Analysis

@ Theorem (Locally Holder Continuity, W.-Yan’'22)

Let f(2) = zIn|z|. Ifu,v e L*(Q), then for any ¢ > 0 and any
ae(0,1),

[f(w) = f(0)] < (26)" 7 (fne] + 1) Ju -]

+ (egnax {|Inz|+1}) ||u—-o|

where | - | is the L*-norm and

Ao = max{|ufeo, 0] oo }-



@ Lemma (Nonlinear Gronwall’s inequality, W.-Yan’22)

Let ¢y, co, c3 be positive constants, and let {y(n)} satisfy
n—1 n-1
y(n) <ci+co Z y*(m) +cs Z y(m), n>1, ae(0,1].
m=0 m=0

Then for any a € (0,1],

a-1 2 1.

T+ac®leg+e3)" =1
y(n) < 01(1 + (0(117102 + 03)( 12t cs) ), n
acy "2t C3



@ Lemma (Nonlinear Gronwall’s inequality, W.-Yan’22)

Let ¢y, co, c3 be positive constants, and let {y(n)} satisfy

n—1 n-1
y(n) <ci+co Z y*(m) +cs3 Z y(m), n>1, ae(0,1].
m=0 m=0

Then for any a € (0,1],

a-1
OéCl

1+ a—1 + n_1
y(n) < 01(1 + (5 ey + 03)( aci e+ cs) ), n>1.

Co + C3

Remarks

(i) If a =1, it reduces to the linear Gronwall’s inequality.

(ii) A similar continuous integral version also holds.



@ Lemma (Log-Sobolev inequality, Gross’76)

If ue H}(Q), then for any a > 0,

2 [ Ju(@)PIn ('“H(:””)')d +d(1+na)|ul? < 2\|wu2,

or equivalently,

2
/ng Inu’dz + (d(1 +1na) - In Jul®)|ul? < a—”Vu||2.
7T



Main Result: FEM in Space

Theorem [Log-Heat] (W.-Yan’22) : Under the condition of global
existence as in Chen et al’15, we further assume that the solution of
the Log-Heat equation has the regularity:

ue C*([0, T} L*(2)) n CH([0, T H* (), (1)
and (In7)? + (In|In h|)? < ¢, then for a € (1/2,1),

ut —ul| < Cr(T+ h%Y), C,~ eeTnm)*
h



Main Result: FEM in Space

Theorem [Log-Heat] (W.-Yan’22) : Under the condition of global
existence as in Chen et al’15, we further assume that the solution of
the Log-Heat equation has the regularity:

we C*([0,T]; L2(Q2)) n CH ([0, T]; H* (), (1)
and (In7)? + (In|In h|)? < ¢, then for a € (1/2,1),
Ju™ ~up| < Cr(7 +h2%),  Cp o~ TR,

Remarks:

@ Used the argument for parabolic problems by introducing an auxiliary
semi-discretised elliptic problem of U™ as in B. Li-W. Sun’13.

@ The extra log-factor appears inevitable, but seems insignificant.



Theorem (LogSE) : Assume the regularity condition (1) holds, and
C1h** <7< Coh? (In7)? + (In]Inh|)? < Cs.
Then we have that for « € (1/2,1),

u —ul| < Cr(T+h*), Cr~ eT(n7)*
h

(2)

20



Theorem (LogSE) : Assume the regularity condition (1) holds, and
C1h** <7< Coh? (In7)? + (In]Inh|)? < Cs. 2)
Then we have that for « € (1/2,1),

ut —ul| < Cr(T+ h%Y), C,~ eT(n7)*
h

Remark:

@ The argument of Li-Sun’13 and J. Wang’14 cannot be applied due to
the non-differentiability of the logarithmic nonlinear term.

@ This led to the conditions in (2) largely from the use of inverse inequality.

@ Compared with regularized approach, the conditions are on the original
PDEs (at least positive solutions having such regularity).

20
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O Positive and Ground-State Solutions

21



Motivations

@ The LogSE for N particles (Bialynicki et al’ 1979):

N 1 ;
ihOwp(re,..., TN, t) = [—h2 Ay —bln(|¢\2a5N)]w(r1...,rN,t),
6ol 2my

@ Dimensionless LogSE in d = 3N dimensions
0,0 (r,t) = [-A-In[UP]U(r,t), reR*™, (3)
where ¥ = ¢*V/2y and

1\/_('!'1\/_ ’I“N\/_)

@ Time-harmonic problem: if U (r,t) = e3>ty (r) is a solution of
(3), then

— Au(r) + Mu(r)Inju(r)]* =0, reR% (4)

22



@ The problem of finding a positive ground state solution u > 0,
Au+ulnjul=0 in RY, w0, r=|z| > +00
is of fundamental importance.

@ It has a unique solution u(r) = exp(d/2 - r?/4)>0if d € [1,9] (cf.
Troy’16): Ground-state solution:

E(v) = |vo)? - fR P nfuPdz > E[u] = d(1 + In7/2).

@ Related to the steady state problem of nonlinear Klein-Gordon
and parabolic equations as p - 0* :

uge = Au+uful’ —u, ur=Au+uful’ —u

Remark: The existence of positive solutions for the above was studied
e.g., by Berestycki-Lions’83, Coffman’96, etc..



@ Our Goal: Find analytically or compute numerically positive
solutions in more general setting, e.g., with a potential V.

@ For example, we consider the steady-state problem:

-Au+Vu=X ulnlul, u>0 (5)

@ We also consider time-dependent problems, e.g.,

up — Au+Vu= ulnlu|, u>0 (6)

@ Ideally to design positivity-preserving schemes, but non-trivial
for some schemes.

24



Our Approach: Exponential Substitution

@ Introduce the exponential substitution: u = e¥ > 0.4

@ It favours the log-term:
wlnlu| = wv, = uvy, Au=u(Av+|Vo|?)
@ The steady-state equation (5) reads
Av+ Vo2 + o=V (7)
@ The time-dependent problem (6) becomes

v — (Av+ Vo) = v =-V (8)

4Huang—Shen (SISC’21) introduced the exponential substitution for constructing

positivity preserving schemes for Poisson-Nernst-Planck (PNP) equations.
25



Selected Analytic Solutions

@ If V =V (r), we seek the axis-symmetric solution of

v+ d 1v'+ W2+ =V(r), r>0
r

@ For example, if V = kr~! (Coulomb’s potential), then

Ao K K? d

u() =ep(= 3 gy e ta) 12200

@ We can also find Gaussian solutions for polynomial V' = x|z|™
when m =0, 1,2, or more general

V(1) = k1r? + kor + kg + kg™t V(1) = Maglogr + az(ag +d - 2)r 2.

@ We can show some solutions are ground-state, but some are
excited state solutions for respective V (r).

26



@ Time-dependent problem (8) with V' = x|z|™ has the analytic
positive solution u(r,t) = e*(") with

v(r,t) = A(t)ekt +B()P(r), P(r)=r*+a, 9)

where A, B can be solved out from some solvable ODEs.

@ The same techniques can be applied to study the LogSE with
V = k|z|™ that can enrich the studies by Carles-Ferriere’21.

@ Computing positive solutions for initial-valued BVPs in more
general setting (Ongoing)!

27
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© Numerical Results
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Numerical Results: Accuracy Test

@ Scheme: Find uj*' e V2 for0<n < N; -1, s.t.

n+1 n n+1 n
Up — —Up Up + Up
T 2

with 'LL?L = ITpug.

,Vvh) = (/\u;f In|uy|,vn), Yon eV,

@ Test the positive (smooth) exact solution given in (9), and expect to get
the optimal order: O(7 + h?)!

Table 1: Piecewise Linear FEM (h =27 7 =h2 T =1)

M lell2 Order le] oo Order
4 4.43e-3 - 5.91e-3 -
8 1.02e-3 212 1.41e-3 2.07
16 247e-4 2.05 347e4 202
32 6.08¢-5 2.02 8.65e-5 2.00
64 1.51e-5 2.01 2.16e-5 2.00
128 3.77e-6  2.00 5.40e-6  2.00




Table 2: Piecewise Quadratic FEM (h=2"M 7 =13, T = 1)

M Je[z _ Order  Je|w  Order
2 8.05c3 - 9.93¢-3 -

4 865e-4 322 121e3  3.03
8 1.00e-4 311 1524 299
16 1.21e-5 3.06 1.9le-5  3.00
32 148e-6 3.03 237e6  3.00
64 1.83¢-7 3.01  296e-7  3.00

30



Spectral Methods in Space

Table 3: Convergence order in space (1 =1x 10,7 = 1)

N le]2 Order [e] oo Order
20 8.16e-3 - 8.16e3 -

24  3.91e-3 4.04 3.91e-3  4.21
28 1.66e-3 5.57 1.66e-3 5.80
32 6.2le-4 7.34 6.21e-4 7.58
36 2.07e4 9.32 2.07e-4 9.56
40 6.19e-5 11.48 6.19e-5 11.71
44  1.66e-5 13.82 1.66e-5 13.98
48 4.00e-6 16.33 4.00e-6 16.09

Table 4: Convergence order in time (N =2 7' = 1)

7=125e3 |ef2 Order le] oo Order
T 1.02e-3 - 1.02e-3 -

7/21 5.12e-4  1.00 5.04e-3  1.00
T/22 2.56e-4  1.00 2.52e-4  1.00
T/23 1.28¢-4  1.00 1.26e-4  1.00
T/24 6.41e-5 1.00 6.31e-4  1.00

7/2° 3.21e-5 1.00 3.16e-5 1.00




Non-positive Solutions: H'*-Regularity

Table 5: Convergence in space (it

is first-order in time)

N |le]l2 Order lle]l oo Order
20 2.96¢-2 - 2.16e-2 -

27 1.45¢-2 1.03 1.09e-2 0.99
28 6.93¢-3 1.07 5.19¢-3 1.06
29 3.25e-3 1.09 2.43e-3 1.09
210 1 39e-3 1.22 1.04e-3 1.22

Table 6: Convergence in space (it

is first-order in time)

N Tell2 Order Teloo Order
20 8.0le2 - 8.0le2 -

27 4.35e-2  0.94 4.35¢2  0.88
28 1.64e2 155 1.64e2  1.41
29 8.11e-3  1.10 8.11e-3  1.01
210 3483 1.22 3.48¢-3  1.22

32



Numerical Results on LogSE

We test the numerical scheme on the LogSE:
iug + Au=dulnful, ¢t>0; wu(z,0)=wuo(z),

with the exact Gaussian solution:

A 2. 2
u(x,t) _ b065(172vt) +i(vz—(po+v )t)’ t>0.

2
3
4
-5
6
7
8

B -2.8
1 115 12 125 13 135 14 -2.6 2.2 -1.8 -1.4 -1
log 10(N) log 10(7)

(a) Spatial Conv.: 7 =107" (b) Temporal Conv.: N = 256

33



Take the initial data:

ay. 2, .
U()(.IT) _ Zbke—TI‘(w—xk) +ivg @
k
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Figure 1: \/|u(z,t)|, |u(z,t)| and energies & mass at different time: (i)

X1 = —T2 =—5,’l}k =0,bk =CLk=1; (II) X1 =—$2=—3,’l}k =O,bk=ak =1.
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Figure 2: \/|u(x,t)|, |u(z,t)| and energies & mass at different time:
(III) V1 = —Vg = 2,1’1 = -T2 = —30,bk =ap = 1(k = 1,2);
(IV) V1 = 18,’02 = 718,1’1 = 730,‘%2 = 30,1)2 = b1 = 1,CL1 =ag = 1.
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Mass Preserving Scheme (ongoing)

@ IMEX Relaxed Runge-Kutta Scheme:

e Step 1: Find @"*! through BDF1:

,an+1 —um

i————— + A" = A f(u™).

T

e Step 2: Find u™*! through correction:
un+1 — un +iT’yn(A’l~Ln+l _ /\f(ﬂ"“))
@ Relaxation parameter:

{17 HAﬁnH _ )\f(,anﬂ)H =0,
Yn =

2Im Aﬂ7z+17)\ ﬁn+1 ’un -n n
T{H(Aanﬂ—,\]{((anﬂ))uz 1, |Aamtt = Xf(a™+t)| # 0.

We have
Ju™ % = u™ 2.

(10)

(11)

(12)

(13)

36
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Figure 3.1: Plots of |u(z,t)| (first column); |u(z,t)| at
evolution of mass error (third column).
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[u(z, t)

Figure 3.1: Plots of |u(z,t)| (first column); |
evolution of mass error (third column).

z,t)| at different time (second column) and
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Summary

@ The non-differentiability of logarithmic nonlinear term
needs special care in discretisation.

@ New tools were introduced for the analysis, though the
results might not be the best at this moment.

@ Exponential substitution is a feasible and simpler way to
study and compute the positive solutions.

@ Many issues are under-explored, e.g., fractional LogSE in
space, time-fractional LogSE(?), .... Stay tuned!

THANK YOU!
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