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Preliminaries

@ Critical point z* € RY of the energy E(z) implies VE(z*) = 0.
@ A critical point of E(z) that is not a local minimum is called a saddle point.

@ Morse index of a critical point z* is the maximal dimension of a subspace
on which V2E(z*) is negative definite. Denote a saddle point of Morse
index k by k-saddle.

@ Solution landscape is a pathway map consisting of all critical points and
their connections.

(a) k-saddle (b) ﬁZ-saddle
/ \\ 1-saddle

(k—‘l) saddle
\

Ty
i, y
1-saddle . \>//
< > 2
R — .-i \\x

minimum minimum

Figure: (a) A diagram of the solution landscape; (b) The solution landscape of
E(x,y) = (2% — 1)? + (y? — 1)? [Yin-Yu-Zhang Sci. China Math. 21]

Xiangcheng Zheng, PKU Solution landscape of space-fractional PDE August 11-13, 2022 2/25



Preliminaries

@ To construct the solution landscape, we need to find the any-index saddle
points of a given system, and we will focus on a k-saddle for illustration.

@ For a k-saddle z*, V2E(z*) has exactly k negative eigenvalues
A1 < -+ < Ag with corresponding orthonormal eigenvectors vy, - -+, vg.

o Let V =span{vy, - ,vi}, * is a local maximum on z* 4+ V and a local
minimum on z* + V-, where V1 is the orthogonal complement space of V.

@ Let Py be the orthogonal projection operator on the finite-dimensional
subspace V.

@ Force F(z) = —VE(z) and negative Hessian H(z) = —V2E(z).

@ For autonomous system & = F'(z), the stationary point x* implies
F(x*) = 0. If this is a gradient system there exists an energy E(x) such
that F(z) = —VE(x), and the Jacobian J(z) = VF(z) coincides with
H(z). For non-gradient system we could not find the corresponding E(x),
while the Jacobian J(z) still exists. This motivates the high-index saddle
dynamics for both gradient and non-gradient systems using the Jacobian
J(x), though we derive the saddle dynamics for gradient systems for
illustration.
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Construction of subspace V for a k-saddle

@ Computing the ith eigenvector could be transformed into a constrained
optimization problem (Rayleigh-Ritz theorem)

vj:&,j, 1§]§’L

T2 T
min v, VZE(z)v;, wv;
K3

@ Corresponding Lagrangian function
Li(vi, €1, &) = v VPE(@)v; — &(vi v — 1) — Zfﬂ);vj-

@ Dynamics of v;

dv;  yO0L; 2 S
@ =Y~ (VE@ g5 3 ).

@ Parameters {¢;} are determined by the orthonormal condition: v,/ v; = §; ;
for 1 <i,j <k.

Xiangcheng Zheng, PKU Solution landscape of space-fractional PDE August 11-13, 2022 4/25



Construction of saddle dynamics

@ Ascent direction on V: Py (—F(z)).
@ Descent direction on V*: (I — Py)F(x).
@ Corresponding gradient dynamics:

dzx

pri B1Py(—F(x)) + B2(I — Py)F(x), pi,B2> 0.

@ (1 == >0, then

dx
=8I~ 2P F(a)
k dl’ k
o Pv =Y vl = % (1-2Y ul )P0
i=1 i=1
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High-index saddle dynamics for a k-saddle [Yin-Zhang-Zhang SISC 2019]

@ High-index saddle dynamics for gradient systems

dx
i B<I QZUJ"U;—)F(.I),
j=1
dUi - 1—1 - ‘
o =v(I— v, 72Zvjvj H(z)v;, 1<i<k.
j=1

® Relaxation parameters 3, v > 0. Initial conditions x(0) = = and
’UI(O) =0 with UZTO’U]‘,Q = 6i,j for 1 <i,j <k.

@ A linear stable steady state = A k-saddle. Orthonormal-preservation:
Ui(t)TUj(t) = (SiJ' for t Z 0.

@ High-index saddle dynamics for non-gradient systems replace the
equations of {v;} by

d i 1—1 .
(Tz; =y (I — v ) J(x)v; —VZvjva(J(a:) + T (@), 1<i<k.
=1
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Problems in numerical analysis

Two kinds of numerical analysis problems in saddle dynamics:
@ Problem 1: Accuracy of pathway.

o The trajectory z(t) of saddle dynamics provides reasonable predictions
for the transition pathway between saddle points.
o Numerical accuracy of the pathway is characterized by, e.g.

lxn — ()| <QTP, 1<n<N

for some time step size 7 and some positive integer N (i.e. for finite
terminal time).
@ Problem 2: Convergence to the target saddle point.

e One may also interest in the convergence rate of x,, to the target
saddle point z*.
e The convergence rate is characterized by

[n — 27| < Qq"

for some 0 < ¢ < 1 and for any n > 1.
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Discretization for Problem 1

T

k
Tp — Tp—
Tn T onol 5([ — 2ZUj,n1”jT,n1>F(xn1)’

Jj=1
Vin — Vin—1

-
=71~ vin-1v
p

t,n—1

i—1
T .
—2 Zvj’nwj,nl)H(xnl)vi’nh 1<i<k.
Jj=1

Note: UiTnvj,n # 0; 5 due to the error of discretization. Modified schemes of

{Ui}lei

-2 Zvj,nlv;nl)H(xnl)vi,nh 1 S i S ka
=1

{vi)n}le = GramSchmidt{f)i,n}?:l'
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Error estimate

Numerical scheme; 22— in=l _ | <<k
T
(tn) — Vi (tn_
Reference equation: viltn) = viltn-1) = 4+0(1), 1<i<k.
T

Define the error €¥i = v;(t,) — v; n. If we subtract the numerical scheme from
the reference equation, we will encounter

(en #viltn) = Vi = €py + -+ +O(7?),
which is not an error equation. A straightforward idea is to split v;(¢,,) — 0;,, as
(Vi(tn) = Vi) + (Vi — Vi) = €37 + (Visn — Vi),

which leads to the error equation

et = epy+ o O(T?) + (Vi — Diyn).

Therefore, the main task is to show v; , — ¥, = O(72).
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Error estimate

Relation between v; ,, and ¥; ,, lies in the Gram-Schmidt orthonormalization

i—1
f)i,n - Z(f)i—,rnvjvn)vjvn
— J=1 )
Vim = i—1 172’ 1<i<k,
(lﬁi,n”Q - Z(f};l,—nv],n)2>
j=1

which requires several auxiliary estimates for the quantities involving v; , and v; .

Lemma

The following estimates hold for 1 <n < N
|(Bmn) TOim| S M7?, 1<m<i<k;
i nll = 1] < |1550l> — 1] < M72, 1<i<k.

Here the positive constant M is independent from n, N and 7.
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Error estimate

The following estimate holds for T small enough

|0 pUmn| < G2, 1<m<i<k, 1<n<N

for some positive constant G > M independent from n, N and 7.

v
Lemma

The following estimate holds for T small enough

Vi — Dinll < Q7% 1<i<k, 1<n<N.

Here the positive constant @ is independent from n, N and 7.

W
Theorem

The following estimate holds for T sufficiently small

k
[2(tn) — zall + Z [vi(tn) —vinl| £ @7, 1<n < N.
i=1

v
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Numerical experiments

Let 3=~ =T = 1. Numerical solutions computed under 7 = 2713 serve as the
reference solutions. We compute the index-1 saddle point of the Eckhardt surface

E(x1,15) = exp(—x? — (x5 + 1)?)

2, .2 2
texp(—a? — (3 — 1)) + 4exp< - 31;1—;%) + %
with the initial conditions
1
z(0)=(=2,1)", v(0)=—=(-1,1)".
(0) = (=2,1) ", v(0) ﬁ( )
T maxy, ||x(t,) — x,| conv. rate max, ||vi(t,) —v1,,] conv. rate
1/32 1.41E-02 2.16E-03
1/64 6.98E-03 1.01 1.09E-03 0.98
1/128 3.45E-03 1.01 5.46E-04 1.00
1/256 1.70E-03 1.02 2.70E-04 1.02
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Numerical experiments

To observe the pathway convergence of saddle dynamics, we plot the trajectories
of x with £ = 1 and the initial conditions

T 1
z(0) = (1.5,1.2) 7, v(0) = —=(-1,2)7.
5
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Figure: (Left) Numerical solution of x(t) with 7 = 27% and different terminal
time T'; (Right) Numerical solution of x(t) with T'= 5 and different 7. The
symbols on the curves indicate the time steps.
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Analysis for Problem 2

@ Scheme of x for some step size 3,

k
Tn41 = Tn + /Bn (I -2 Z Ui,nviTn> F(xn)a (1)

i=1
where the computed vectors {v; ,, }¥_, form the approximated unstable
subspace V,, at the n-th step.
@ Assumption on the approximation V;, of the unstable subspace V (¢,,) at ¢,:

HV(tn)V(tn)T — VnVnTH < o for some 0 < a < 1.

Lemma
The scheme (1) could be reformulated as

Tnt1 —2* = (I + Bp(I — 2V, Vi) H (%)) (xn — %) + By (zn — 2*)

where .
1Ball < 5B8aMIT = 2V, Vil — o7

Here M is the Lipschitz constant of H (x).

v
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Analysis for Problem 2

Let {r,}n>0 be a non-negative series satisfying
Top1 < (1= q)rp +er2, n>0, g€(0,1), ¢>0.

(a) Ifr, < 2 for some n >0, then rpy1 <71y < g;
c c

1
1 \"" qro
14¢ q—cro

(b) Ifrg <

oI

, then rp41 < < for all n > 0.

| A\

Theorem
Suppose 1 — a > ka(a+5) where k = L/p and 0 < p < |\;| < L within Bs(z*)
for 1 < i < d, the initial point x satisfies ro := ||z — *|| < min{d,r} where

r=2un/M,n=1-a—ka(a+5) >0, and M is the Lipschitz constant of

H(x). Then for 8, = 2/(L(1 — a?) + u(1 — «)), ™) converges to x* with
2n " rrg

k(l—a?)+1—a+2n) r—ry

len — 2] < (1 .
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Variable-order fractional Laplacian

@ 1D fractional Laplacian on [0, 1]
(— A)a(z)/Z (z) = Z(4W2k2)a(z)/2uk62ﬂ'ikz
kez

where the Fourier coefficients {uy} and their discretizations {4y} are given

by
1
Uk:/ u(x)ef%nkzdx’ ﬁ E 727r1k:zi.
0

@ Approximation scheme
(~A)3mPu(z;) = 3 (4n2k2) T Pk 0 < i < N
keN

where N:={z€Z: -N/2<z<N/2-1}.
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Variable-order fractional Laplacian

We treat (417r2."c2)a(m)/2 as a power function g (z) := (47r2k2)z/2 for k # 0 and
0 < z < 2 such that gx(a(z)) = (471’2/{2)&(9:)/2, and expand gj, at z = 1

S (s) (s+1)
gk(2) = > I‘g(]; 4(_11)>( —1)*+ (S (5)) (z—1)+1
- (4n%) P e (4nR?) (2— 1"

I'(s+1) 28
(472k2)*/% 5+ (4n2k2)
I'(S+2) 25+1

Here & lies in between 1 and z. We could substitute g (a(z)) by Gi(a(x)) for

k € N/{0} in (fA)i,%i)/Qu(mi) and notice that go(a(z)) = 0 to reach a further
approximation for 0 <i < N

s=0

+ (z — 1) = Gi(2) + Ri(2).

(AN Pu(@) = > Grlalay))age?m ke
keN/{0}
i _ 1 Z (47T2k2)1/2 In® (47T2k2)ﬁ 627rika:i
ale:) T(s+1) 2 % '
keN/{0}
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Variable-order fractional Laplacian

For0 <m € Z, let S = [e* ™ In(xN) — 1] with y satisfying
pertt > m 4 2.
Then the truncation error can be bounded by

|Ri(2)] < N™™, ke N/{0}, 0<z<2.

Theorem

| A

The implementation of(—A)?V(jL%%(mi) for 0 <i < N requires O(N In® N)
operations via the FFT, which is much faster than the evaluation of
(—A)?V(’fl")ﬂu(a:i) for 0 < i < N that needs O(N?1n N) operations.
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Numerical experiments

We first measure the L2 errors between the fast method and the direct method.
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Figure: Plots of L? errors under (A) a = 1.5 and N = 2'2; (B) a = 1.5 and
N =2 and (C) a = 1.5+ 0.4sin(27z) and N = 22,
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Numerical experiments

We then test the efficiency of the fast method with S = 25.
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Figure: Plots of CPU times under (A) a = 1.5 and (B) a = 1.5 + 0.4 sin(27x).
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High-dimensional extension

@ 2D fractional Laplacian on [0,1]2
(7A)a(w,y)/2u($7y) — Z [47r2(k2 + 12)}a(z’y)/2Uk7l€2ﬂ-i(kz+ly).
kJEZ
@ Approximation for 0 < 14,5 < N
(AN Py, gy = 37 [AmA(R2 4 12)] M 2y Pk,
k,lEN

@ Fast scheme for 0 <i,5 < N
S

i:Y5)/2 s
(=) Pu(s,yy) = (alwiy;) = 1)
s=0
1/2
% Z (472(k2 + 52)) In® (47%(k* + 12))11 p2mi(kzitly))
T(s+1) 25 M '

k,l€N, (k,1)#(0,0)

o S =[e't In(v2rN) — 1] with pet™! > m + 2 (recall that for the 1D case
S =

(
[ L n(aN) — D
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Solution landscape of space-fractional phase-field model

@ Variable-order constant-coefficient space-fractional phase field equation
0= Fu) = —k(=A)*®/ 2y 4y — 3, (2)
@ Variable-coefficient integer-order phase field model
o= F(u) == k(z)Au +u — u®. (3)

@ How to compare different models? A potential criteria is the solution
landscapes of these two models since all stationary points and their
connections (transition pathways) could provide a comprehensive description
for the models.

@ Parameter selection: model (2) with
a(x) =1.2 4 0.1cos(27z), 1.3 + 0.2 cos(2mx), 1.55 + 0.45 cos(27x)
and x = 0.02, and model (3) with
K(x) =3 x 1072 +2 x 1073 cos(27).
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Conclusion

@ It seems that the solution landscape of variable-order constant-coefficient
space-fractional phase field equation could be recovered by adjusting the
variable coefficient in integer-order space-fractional phase field equation.
That is, these two models exhibit similar behaviors under suitable
parameters.

@ Probably the singularity of the solutions to fractional problems may
distinguish the fractional models from the integer-order analogues with
variable coefficients as it could be difficult to recover the boundary
singularities by adjusting the variable coefficients in integer-order models,
and we are currently working on this problem.

@ The proposed method does not work for time-fractional problems
straightforwardly since the current saddle dynamics only works for the
first-order autonomous systems. How to compare the time-fractional models
with variable order and variable coefficient remains to be investigated.
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