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Motivation

e The aim of this paper is to study the time stepping scheme for
approximately solving the subdiffusion equation with a weakly singular
source term.

e In this case, many popular time stepping schemes, including the
correction of high-order BDF methods, may lose their high-order
accuracy.

e To fill in this gap, in this paper, we develop a novel time stepping
scheme, where the source term is regularized by using a k-fold
integral-derivative and the equation is discretized by using a modified
BDF2 convolution quadrature.

e We prove that the proposed time stepping scheme is second-order,
even if the source term is nonsmooth in time and incompatible with
the initial data.
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Subdiffusion is characterised by a long-tailed waiting time probability
density function 1(t) ~ t 1=, corresponding to the time-fractional
diffusion equation with and without an external force field *.

dru(x, t) — O “Au(x, t) = f(x,t), 0<a< 1. ()

Since the Riemann-Liouvile fractional derivative and the Caputo fractional
derivative can be written in the form

Ou(x,t) = D u(x, t) + t™“u(x,0),

MNl-—a)

which implies that the equivalent form of (#) can be rewritten as

Deu(x, £) — D Au(x, £) = F(x, £) + 240 —a-0) ()

IR. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a
fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
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Applying the fractional integration operator J1=% to both sides of (#), we
obtain the equivalent form of (#) as, see 2 3, namely,

™« f(x,t)  JUAu(x t)e=0 o

Dy u(x, 1) = Au(x, t) = rl-a) r1-a)

(%)

As another example, the fractal mobile/immobile models for solute
transport associate with power law decay PDF describing random waiting
times in the immobile zone, leads to the following models #

1

dru(x, t) + Dj u(x, t) — Au(x, t) = “Fia)

t“u(x,0). (<)

2W. McLean, K. Mustapha, R. Ali, and O. Knio, Well-posedness of time-fractional
advection-diffusion-reaction equations, Fract. Calc. Appl. Anal., 22 (2019), pp.
918-944.

3). Shen, F. Zeng, and M. Stynes, Second-order error analysis of the averaged L1
scheme L1 for time-fractional initial-value and subdiffusion problems,
http://dx.doi.org/10.13140/RG.2.2.24337.35685.

‘R, Schumer, D.A. Benson, M.M. Meerschaert, and B. Baeumer, Fractal
mobile/immobile solute transport, Water Resour. Res., 39 (2003), pp. 1-12.
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Note that the right hand side in aforementioned PDE models (#)-(<>)
might be nonsmooth in the time variable. In this paper, we consider the
subdiffusion model with weakly singular source term:

D u(x,t) — Au(x, t) = g(x, t) := t* o f(x, t) (1)

with the initial condition u(x,0) = up(x) := v, and the homogeneous
Dirichlet boundary conditions. The symbol o can be either the convolution
* or the product, and p is a parameter such that

i > —1 if o denotes convolution, and p > —a if o denotes product.

The well-posedness could be proved using the separation of variables and

Mittag—Leffler functions, see 5

5K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for
fractional diffusion-wave equations and applications to some inverse problems, J. Math.
Anal. Appl., 382 (2011), pp. 426-447.
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For fractional ODEs, one idea is to use starting quadrature weights to
correct the fractional integrals © (or fractional substantial calculus 7)

1 t o .
I-(oz)/o (t — 1) Lg(r)dr with g(t) = t'f(t), p> —1,

where the algorithms rely on expanding the solution into power series of t.
For fractional PDEs, a common practice is to split the source term into

J7g(t) =

k—1

t kg,

k=1
g(t) =g(0) + E ﬁalg(O) + k=1

e Then approximating g(0) by 9, J'g(0) may to a modified BDF2
scheme with correction in the first step 8.

5¢Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp.
704-719.

“M.H. Chen and W.H. Deng, Discretized fractional substantial calculus, ESAIM:
Math. Mod. Numer. Anal., 49 (2015), pp. 373-394.

SE. Cuesta, Ch. Lubich, and C. Palencia, Convolution quadrature time
discretization of fractional diffusion-wave equations, Math. Comput., 75 (2006), pp.
673-696.
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e The correction of high-order BDFk convolution quadrature are well
developed in 2 10 when the source term sufficiently smooth in the
time variable.

e The convolution quadrature generated by k step BDF method (with
initial correction) converges with order O(71#), provided that the
source term behaves like t*, ;1 > 0, see Lemma 3.2 in L

o Performing the integral on both sides for (1), e.g, approximate u(t)

by &, J1u(t), a second-order time-stepping schemes are given in 12,

where the singular source function is g(x, t) = t*f(x).

How to deal with a more general source term g(x, t) = t# o f(x, t)?

9B. Jin, B.Y. Li, and Z. Zhou, Correction of high-order BDF convolution
quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), pp.
A3129-A3152.

10J.K. Shi and M.H. Chen, Correction of high-order BDF convolution quadrature for
fractional Feynman-Kac equation with Lévy flight, J. Sci. Comput., 85 (2020), No. 28.

Hg. Wang and Z. Zhou, High-order time stepping schemes for semilinear
subdiffusion equations, SIAM J. Numer. Anal., 58 (2020), pp. 3226—-3250.

124, Zhou and W.Y. Tian, Two time-stepping schemes for sub-diffusion equations
with singular source terms, J. Sci. Comput., 92 (2022), No. 70.
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Let V/(t) = u(t) — v. Then the model (1) can be rewritten as
ofV(t)— AV(t) =Av+g(t), 0<t<T. (2)

Let G(t) = J'g(t) and G(t) = J?g(t). We may rewrite (2) as
ID1 Method : 97 V(t) — AV(t) = 0:(tAv + G(t)), 0<t<T, (3)

t2
ID2 Method : 9% V/(t)— AV(t) = &2 <2Av+ g(t)> , 0<t<T. (4
Then IDk-BDF2 method for (3) and (4) are, respectively, designed by
ID1 — BDF2 Method :  9%V" — AV" = 0. (t,Av + G").  (5)
£2

ID2 — BDF2 Method :  92V" — AV = &2 <2”Av + g") . (6)

Here 02¢" = T% Z}’:o chp"*f, and the weights w; are given by

02(&) = Tia ijgf with  0,(&) := % <2 — 26+ ;€2> _ (7)
=0
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Taking the Laplace transform in both sides of (3), it leads to
V(z) = (2% — A)L (z’lAv + z@(z)) .

By the inverse Laplace transform, there exists
1 =~
V(t) = / e*(z* — A)71 (z_lAv + ZG(Z)) dz (8)
2mi rG,n
with
Mo ={z€C:|z| =k, |argz| <O U{z€C:z=re* r>k} (9)
and 0 € (7/2,7), kK > 0.
Similarly, applying the Laplace transform in both sides of (4), it yields
V(z) = (2% — A)! (z’lAv + z2§(z)) .

By the inverse Laplace transform, we obtain
1 ~
V(t) = / e*(z* — A)71 (z_lAv + zQQ(z)) dz. (10)

2’/Ti To..
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Take k(¢) =

Lemma 1l

Let 6 be given in (7) and y1(§) =
discrete solution of (5) is represented by

VT = L

withTh ={z€Tq,: |3z <m/7}

2ni

> o knC" to be its generating power series.

= 5)2 G(t) = J'g(t). Then the

e (§%(e=2T)— A) 15, (e 27) 7 (»Vl(e*ZT)TAv n E(e’”))dz
T

Lemma 2

Let 6. be given in (7) and v2(§) = AL G(t) = J%g(t). Then the
discrete solution of (6) is represented by

v _T_
2i

]_ 5)3:

 (o3(e=n)-A) o2 =) 2 v 4 e )

v

-
r9,n
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From G(t) = J'g(t), the Taylor expansion of source function with the
remainder term in integral form:

1% g(t) = G(t) = G(0) + tG'(0) + G”(O) 5
2 2
= Jg(0) + t2(0) + 5£(0) + 5 *

Then we obtain the following results with g(-1(0) = Jg(0).

Lemma 3

Let V(t,) and V" be the solutions of (3) and (5), respectively. Let v =0

and G(t) := 5gU=1(0) with | = 0,1,2. Then

IV(ta) = VoIl < (er*ies72 4 cr2est=2) [l D(0)
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Lemma 4

Let V(t,,) and V" be the solutions of (3) and (5), respectively. Let v =0,
G(t) =L« g"(t) and [{(t — s)*7|g"(s)||ds < co. Then

IV(tn) = V7 < c7? /0 "t —5)* 1 [|g"(s)]| .

Theorem 5 (ID1-BDF2)
Let V(t,) and V" be the solutions of (3) and (5), respectively. Let

v e L%(Q), g € CH[0, T]; L2(Q)) and fot(t —s5)*1g"(s)| ds < oo.
Then the following error estimate holds for any t, > 0:

V7 = V()]

<cr? (5211 + 672 le @I+ € @)1+ [ (o= ) (5] ).

v
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Theorem 6 (ID2-BDF2)

Let V(t,) and V" be the solutions of (4) and (6), respectively. Let
v e L3(Q), g € CY([0, T]; L3(Q)) and [, (t —s)*7g"(s)] ds < oo.
Then the following error estimate holds for any t, > 0:

V7 = V()]

<cr? (t;2\|v|| + 1572 g(0)|+t57 [1g'(0) |+ /0 (tn— )" ") ds) :

v

Form Theorem 5 and Theorem 6, it seems that there are no difference
between ID1-BDF2 and ID2-BDF2 for general source function. However,
both of them are very different for the singular source function with the
form t*q(x).
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In the section, we first consider low regularity source term
g(x, t) = t'q(x) with p > 0 for subdiffusion (3). We introduce the
polylogarithm function or Bose-Einstein integral

8
€)= D25 p#N.
j=1

Lemma 7

? Let |zr| < ;&5 and 6 > m/2 be close to w/2, and p # 1,2,.... The
series

(zry

J!

Liy(e727) = T(1 — p)(zr)P~ + Z ==

converges absolutely. Here ( denotes the Riemann zeta function, namely,
¢(p) = Lip(1).

?B. Jin, R. Lazarov, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion
equation with nonsmooth data, IMA J. Numer. Anal., 36 (2016), pp. 197-221.
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Let G(t) = Jig(t) = %q. Using G(z) = r(z‘,ﬁizl)q and (8), we have

1 r 1
V(t) = 2/r e*(z% — A)71 (zlAv + (ZM;:l)q> dz.
0,k

T

From Lemma 1, the discrete solution for the subdiffusion (5) is

Vo= ob [ sz ) -A) Mo (e ) (vale)rAv + Gle ™)) oz
27 rgn

with y1(e™*7) = (117—”)2 and Iy ={z€Tg,:[3z] <m/7}. Here

7—#+ ©° 7_;L-|-1 .
Zn = +1LI_M_1(§), 0<pu<l.

G(&) =) G¢"=
n=1
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Lemma 8

Let G(z) = LT+ g opg Ge?7) = gTom Li_y—1(e™%7). Then

Al zrT2 51

[rée) - C()|| < cr*all, wg N,

Proof.

Using the definitions of G(z) and G(e™=7) and Lemma 7 with
p=—pu—1, we have

~(_—zT a Th+2 . —zT Mp+2
HTG(e ) — G(Z)H :' e <L/_M_1(e ) — W
T2 | & - ~(zT
Sm jz_;(_l)jg(_li —-1—)) !
<cr*2|q]] .

IDk-BDF2 for subdiffusion with a singular source term

)

lal

.



Theorem 9 (ID1-BDF2)

Let V(t,) and V" be the solutions of (3) and (5), respectively. Let
v € L2(Q) and g(x, t) = ttq(x), u > 0, q(x) € L2(Q). Then

V" = V(t)ll < et 2|Iv] + e 728572l q]| + cr?t 7472 | gl .

Lemma 10

Let G\(Z) = qr(zﬁii:}) and g(efZT) = q#z’/j_’_].)LI_“_2(eizT) Then

|rée) - G@)|| < cr*lall, ng .

Theorem 11 (ID2-BDF2)

Let V/(t,) and V" be the solutions of (4) and (6), respectively. Let
v € L?(Q) and g(x, t) = tFq(x), u > —a, q(x) € L2(Q). Then

V" = V(ta)ll < c7?t; 2|Vl + c7# 26573 ||gl| + er® ey 72 | g -
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Convergence analysis: Convolution source function t* x f(t), u > —1.
Let f(t) = f(0) + tf’(0) + t = f”’(t). Then we obtain

tFt1£(0) th+2£7(0)

A T S TSV (R R)

+ th ot x f(t).

Let G(t) = J'g(t) = ;iqt""! * f(t) with G(0) = 0. It yields

() pe361(0) | ,
CO= G Du+d T GrDEr e Tartt O
() pe361(0) o
S D+ DGy Tz ),

where we use

t 1 [t 1
tH g = / (t — s)"Tlsds = M;/ (t — s)*s°ds = %ﬂ * th,
0 0
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Lemma 12
Let V(t,) and V" be the solutions of (3) and (5), respectively. Let v =0,
G(t) := & « (¢t * £"(t)) with > —1 and
fot(t — 5)% Lst x ||f"(s)|| ds < co. Then
tn
V() = V2l < 7 [t = 5) st ¢ (5) s
0

tn
< c7'2/0 (t,,—s)“J“"Hf”(s)Hds.




Theorem 13 (ID1-BDF2)
Let V(tn) and V" be the solutions of (3) and (5), respectively. Let
v e L%(Q), g(t) =t f(t) with u > —1 and f € CL([0, T]; L2(Q)),
fot(t —5)%Lst x ||f"(s)|| ds < co. Then
[V? = V()|

o
<er?{ 2Vl IO+ 5 PO+ (o = 517352 775 )

<2+ IO+ PO+ (e = 9 [6)] o).

Proof.

According to Theorem 9, Lemma 12, and similar treatment of the initial
data v in Theorem 5, the desired result is obtained. O]

v
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Convergence analysis: product source function t#f(t), u > 0. Let
G(t) = J*g(t) and f(t) = £(0) + tf'(0) + t » f"(t). Then we have

_trtE(0)  e#T2F7(0)
p+1 w2
Let h(t) = t* (t = f”(t)) with h(0) = 0. It leads to
H(t) = pt' (% £7(t)) + t* (L% F7(2))
with #'(0) = 0, since

ptht /Ot(t —s)f"(s)ds

t
t“/ f"(s)ds
0
Moreover, there exists

H'(t) = p(p — 1) 472 (£ £7(t)) + 2ut" 1 (L F7(t)) + t'f"(2).

Thus one has

G(t) = 1« (t"f(t))

+ 1 [t* (tx"(1))] .

|H'(£)| < + , 1> 0.

t2 2

1 h(t) = th(0) + t;h’(o) o () = % £ H'(£).
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Lemma 14

Let V(t,) and V" be the solutions of (3) and (5), respectively. Let v =0,
G( ) = 1% [t" (¢« f”( ))] with u > 0 and f € C*([0, T]; L*(R2)),
TS IE7(s) |l ds < oo, [o(t—s)*EsH||f"(s)| ds < co. Then

th tn
V- valzer® (002 [o)oos [ o o2-1sn 7)) o)

v

Theorem 15 (ID1-BDF2)

Let V(t,) and V" be the solutions of (3) and (5), respectively. Let
v e L?Q ) g(t) = t“f( ) with u > 0 and f € C([0, T]; L3()),
TS IEF7(s)|l ds < oo, [o(t—s)*EsH||f"(s)| ds < co. Then

V" = V(ta)ll < e7? (£52]Iv]| + 272 F ()] + 7™ {|F(0)]])

th tn
ber? (tgw—l / 17(s)]] ds + / (t,,—s)o‘_ls“Hf”(s)Hds>.
0 0
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Convergence analysis: product source function t#f(t), u > —1. Let
G(t) = JS2g(t) and f(t) = £(0) + tf'(0) + t * f"'(t). Then we have
th+2£(0) t1+3£7(0)
G(t) = tx(t"f(t)) = - +ex [t (£ F(2))] .
(=00 = G v ey O

Let h(t) = t* (t * f"(t)) with h(0) = 0. It leads to
W(t) = pt=2 (£ (1)) + ¢ (15 F(2)),

which implies .
WO < u+1) [ ]F()] s
0

since
t t

I (8)] g(;H—l)t“/ yfﬁ(s)\dsg(uﬂ)/ S [£(s)] ds, —1<p <0,
0 0

Thus we get

t2 t3 / t3 1 t3 / t3 /"
txh(t) = Eh(0)+€h(0)+§*h (t):€h(0)+€*h (t).
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Lemma 16

Let V(t,) and V" be the solutions of (4) and (6), respectively. Let v =0,
G(t) = t*[t* (t * f"(t))] with —a < < 0 and f € CL([0, T]; L3(Q)),
fotsuT_1 If"(s)|| ds < oo, [ (t —s)*"Ls* ||f"(s)|| ds < co. Then

—1pth tn
IV (ta)— V7| Scf2(t2"+ / 5“2 [|F(s)]| ds+ / (tn — s)* 71" || F(s)]] ds) :
0 0

Theorem 17 (ID2-BDF2)

Let V/(t,) and V" be the solutions of (4) and (6), respectively. Let
v e L%(Q), g(t) = tHf(t) with —a < < 0 and f € CL([0, T]; L3(Q)),
fots;%l If"(s)|| ds < oo, [y (t —s)*"Ls# ||f”(s)|| ds < co. Then

V"= V(ta)ll < e72 (52l + T2 [IF(0)]| + e~ || F(0)]])

— th _ th
+ c7? <t,?+ﬂ21 / s |£"(s)]| ds —|—/ (tn —s)* 1™ [|F"(s)]] ds) :
0 0
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In the experiment, several algorithms including the correction BDF2
methods are carried out and compared with IDk-mehtod:

BDF2 Method :  92V" — AV" = Av + g". (11)

1
Corr—BDF2 Method :  02V" — AV" = %Av + §g0 +g". (12

Example 18
Let T =1 and Q = (—1,1). Consider subdiffusion (1) with

v(x) = sin(x)V/1 — x? and g(x,t) = (1+t“+t°‘“)o(1—t)BeX(l—i—X(o,l)(x))

Here Jkg(x,t) = t"~ 1 x g(x,t), k = 1,2 are calculated by JacobiGL
Algorithm 3, which is generating the nodes and weights of Gauss-Labatto
integral with the weighting function such as (1 — t)* or (1 + t)*.

13).S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Application, Springer, 2007.
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Table 1: The discrete L2-norm ||u" — u?N|| and convergent order of schemes
(11), (12) and (5), (6) with 3 =0, a = 0.7.

Here o denotes the dot product.

Scheme uw  N=50 N =100 N = 200 N = 400 N = 800
0.8 2.4743e-03 1.1981e-03 5.8732e-04 2.9005e-04  1.4390e-04
BDE2 1.0462 1.0286 1.0178 1.0113
-0.8 1.5948e-01 1.3256e-01 1.1109e-01 9.3707e-02  7.9450e-02
0.26679 0.25489 0.24549 0.23811
0.8 9.4381e-05 3.6107e-05 1.3189e-05 4.6888e-06 1.6386e-06
Corr-BDF2 1.3862 1.4529 1.4921 1.5168
-0.8 NaN NaN NaN NaN NaN
0.8 1.6660e-04 4.1216e-05 1.0249e-05 2.5553e-06 6.3792e-07
ID1-BDE2 2.0151 2.0077 2.0040 2.0021
-0.8 6.7744e-03  3.0380e-03 1.3367e-03  5.8281e-04  2.5299e-04
1.1570 1.1844 1.1976 1.2039
0.8 3.2389e-04 7.9995e-05 1.9879e-05 4.9539e-06 1.2374e-06
ID2-BDE2 2.0175 2.0087 2.0046 2.0013
-0.8 2.1611e-03 5.2769e-04 1.3018e-04 3.2292e¢-05 8.0280e-06
2.0340 2.0192 2.0112 2.0081
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Table 2: The discrete L2-norm ||u™ — u?N|| and convergent order of schemes (5)
and (6) with 8 = 1.9, respectively. Here o denotes the dot product.

Scheme « pr N =50 N = 100 N = 200 N = 400 N = 800

0.5 1.5025e-03 3.9778e-04 1.0433e-04 2.7198e-05 7.0660e-06

03 1.9174 1.9307 1.9396 1.9445
' -0.9  4.9903e-03 2.7664e-03  1.4020e-03  6.8259e-04  3.2574e-04

ID1-BDF?2 0.85109 0.98050 1.0384 1.0673
0.5 6.8462e-04 1.8033e-04 4.6484e-05 1.1840e-05 2.9948e-06

07 1.9247 1.9558 1.9731 1.9831
’ -0.9 2.0722e-02 1.0219e-02 4.8849e-03  2.3017e-03  1.0770e-03

1.0199 1.0648 1.0856 1.0956
0.5 3.1810e-03  8.4340e-04 2.2164e-04 5.7938e-05  1.5180e-05

03 1.9152 1.9280 1.9356 1.9323
' -0.9  4.6179e-03 1.1806e-03  3.0298e-04  7.7857e-05  2.0182e-05

ID2-BDF?2 1.9677 1.9622 1.9603 1.9478
0.5 1.9266e-03 5.0536e-04 1.3015e-04 3.3167e-05 8.4027e-06

07 1.9307 1.9571 1.9724 1.9808
’ -0.9 7.2846e-03 1.8010e-03  4.4808e-04 1.1179e-04  2.7922e-05

2.0161 2.0070 2.0030 2.0013
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Table 3: The discrete L2-norm ||u™N — u2V|| and convergent order of schemes (11)
and (5) with 8 = 1.9, respectively. Here o denotes the Laplace convolution.

Scheme « o N =50 N = 100 N = 200 N = 400 N = 800

-0.2  6.4420e-05 1.2431e-05 2.6710e-06 6.1586e-07  1.4766e-07

03 2.3735 2.2185 2.1167 2.0603
’ -0.8 1.6132e-03  4.2435e-04  1.0992e-04  2.8213e-05 7.2033e-06

ID1-BDF2 1.9266 1.9487 1.9621 1.9696
-0.2  2.8145e-04 6.7873e-05 1.6649e-05 4.1218e-06 1.0253e-06

0.7 2.0520 2.0274 2.0141 2.0072
’ -0.8 6.3566e-04 1.7068e-04 4.4407e-05 1.1358e-05 2.8782e-06

1.8969 1.9425 1.9671 1.9805
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For subdiffusion PDEs model (1), it is natural appearing the low
regularity /singular term such as

thf(x,t) or thxf(x,t), pu>-—L

In this case, many popular time stepping schemes, including the correction
of high-order BDF methods may lose their high-order accuracy, see 4.
The correction BDF2 methods recovers superlinear convergence order
O(r1te#), provided that the source term behaves like t®#, which is invalid
for u < 0, since it is required the source function g € C([0, T]; L2(Q)).

To fill in this gap, the desired second-order convergence rate can be
achieved by ID1-BDF2 with 1 > 0 but it is still likely to exhibit a order
reduction with p < 0. Furthermore, ID2-BDF2 method has filled a gap
with —1 < 4 < 0, see Tables 1 and 2. Tables 3 shows that ID1-BDF2
recovers second order convergence and this is in agreement with the order
of the convergence for t* x f(x, t), u > —1.

4k, Wang and Z. Zhou, High-order time stepping schemes for semilinear
subdiffusion equations, SIAM J. Numer. Anal., 58 (2020), pp. 3226—3250.
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For Hadamard's finite-Part integral
t
1
/ stds = 17t1+“, < —1
0 +p

of course the limit does not exist, and so Hadamard suggested simply to
ignore the unbounded contribution. In this case, we can similar provide

3
ID3 — BDF2 Method : 9%V" — AV" = 92 <t6"Av + G”> , G = Sg(x,t),

which also recovers the high-order accuracy even for the hypersingul
source term, see Table 4.

Table 4: The discrete L2-norm ||u" — u?N|| and convergent order with 3 = 0,
a = 0.7. Here o denotes the dot product.

Scheme ©n N =50 N =100 N = 200 N = 400 N = 800

ID2-BDF2  -1.8 1.7275e-02  8.1527e-03  3.6909e-03  1.6393e-03  7.2110e-04
1.0834 1.1433 1.1709 1.1848

ID3-BDF2  -1.8  7.7995e-03  1.8929e-03  4.6855e-04 9.5882e-05  2.2325e-05
2.0428 2.0143 2.2889 2.1026

5K, Diethelm, The Analysis of Fractional Differential Equations, Springer, 2010.
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It is easy to extend the higher order schemes, e.g., ID2-BDF3, ID3-BDF4,
see Table 5.

Table 5: The discrete maximum-norm ||u™N — u?"|| and convergent order of
ID2-BDF3 and ID3-BDF4 scheme for Example 18 with g(x, t) = 0.

Scheme o N =40 N =80 N = 160 N = 320 N = 640
03 2.2976e-07  2.7210e-08  3.3127e-09 4.0871e-10  5.0758e-11
ID2-BDF3 3.0779 3.0380 3.0188 3.0093
0.7 7.0505e-07  8.2623e-08  1.0008e-08 1.2317e-09  1.5278e-10
3.0930 3.0453 3.0224 3.0111
0.3 2.5000e-08  1.4195e-09 8.4663e-11  5.1885e-12  3.9823e-13
ID3-BDF4 4.1384 4.0675 4.0283 3.7036
0.7 8.5711e-08  4.8005e-09  2.8439e-10 1.7327e-11  1.14674e-12
4.1582 4.0772 4.0367 3.9174

This talk is based on 16.

o0 H. Chen, J.K. Shi, Z. Zhou, Modified BDF2 schemes for subdiffusion models
with a singular source term, arXiv:2207.08447.
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Thanks for your attention!
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