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Numerical stability and stability region ODEs

Test equation for ODEs: y ′(t) = λy , λ ∈ C.

Stability and stability region:

S∗ = {λ ∈ C|y(t)→ 0} as t → +∞
= {λ ∈ C|Re(λ) < 0}.

Exponential stable: If λ ∈ S∗, then |y(t)| ≤ CeRe(λ)t .
Numerical stability and stability region: 1

Sh
∗ = {z = λh ∈ C|yn → 0} as tn → +∞

Exponential stable: If z = λ ∈ Sh
∗ , then |yn| ≤ CeRe(λ)tn.

A-stable: If Sh
∗ ⊇ S∗ = C−

1Numerical solutions yn approximate y(tn) at tn = nh. Linear multistep methods or
Runge-Kutta methods. Back ward Euler: yn = yn−1 + λhyn.

Dongling Wang Joint work: Lei Li, Martin Stynes, Jun Zou (Xiangtan University)Numerical stability of Grünwald-Letnikov method for fractional delay differential equationsAug. 12, 2022 4 / 42



Numerical stability and stability region F-ODEs

Outline

1 Numerical stability and stability region
ODEs
F-ODEs

Mittag-Leffler stability
Numerical methods for F-ODEs
Numerical Mittag-Leffler stability

2 Numerical stability and stability region for F-DDEs
F-DDEs
Numerical stability region
Numerical Mittag-Leffler stability

3 Numerical experiments

Dongling Wang Joint work: Lei Li, Martin Stynes, Jun Zou (Xiangtan University)Numerical stability of Grünwald-Letnikov method for fractional delay differential equationsAug. 12, 2022 5 / 42



Numerical stability and stability region F-ODEs

Mittag-Leffler stability

Definition

The trivial solution of F-ODEs Dαt y(t) = f (t , y) is said to be Mittag-
Leffler stable if there exist positive constants β, δ and M independent
of t such that

sup
t≥0

tβ‖y(t)‖ ≤ M for any ‖y0‖ ≤ δ. (1)

Remark: The inequality (1) can be replaced by

‖y(t)‖ ≤ V (y0)Eα(−Ltα), t > 0,

where L > 0 and the function V (y) is locally Lipschitz continuous and
satisfies that V (0) = 0 and V (y) ≥ 0.
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Numerical stability and stability region F-ODEs

F-ODEs with or without small perturbation

Consider the F-ODEs

Dαt y(t) = Ay + f (t , y), t > 0 (2)

for y ∈ Rd satisfying the initial value y(0) = y0, where A ∈ Rd×d ,
f : R×Rd → Rd is continuous.

Lemma (Matignon, 1996)

Consider the F-ODEs (2) with f ≡ 0. Then it holds that
(i) The solution to (2) is asymptotically stable if and only iff that

λA ∈ Λs
α :=

{
z ∈ C \ {0} : | arg(z)| > απ

2

}
. (3)

(ii) If all eigenvalues λA ∈ Λs
α, the solution to (2) is Mittag-Leffler stable,

i.e., ‖y(t)‖ = O(t−α) as t →∞.
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Numerical stability and stability region F-ODEs

F-ODEs with or without small perturbation

Lemma (Cong et.al., 2018, 2019)

Assume that λA ∈ Λs
α. (a) Assume f (t , y) satisfies that

f (t ,0) = 0, ‖f (t , x)− f (t , y)‖ ≤ L(t)‖x − y‖, (4)

where L(t) : [0,∞)→ R+ is a continuous Lipschitz function and
satisfies one of the three conditions:

(i) q1 := sup
t≥0

∫ t

0
(t − s)α−1‖Eα,α((t − s)αA)‖L(s)ds < 1,

(ii) sup
t≥0

L(t) < q2 :=
1

2
∫ t

0 tα−1‖Eα,α(tαA)‖dt
,

(iii) lim
t→∞

L(t) = 0.

(5)

Then the trivial solutions to F-ODEs (2) is asymptotical stable.
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Numerical stability and stability region F-ODEs

Nonlinear F-ODEs

Lemma (Vergara and Zacher, 2015.)

Let y(t) ∈ H1
1,loc(R+) be the solution of F-ODE:

Dαt y(t) = −λy(t)γ for t > 0, with y(0) = y0 > 0,

where λ and γ are positive parameters. Then there exist positive
constants C1,C2, which are independent of t, such that

C1

1 + tα/γ
≤ y(t) ≤ C2

1 + tα/γ
for t ≥ 0.
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Numerical stability and stability region F-ODEs

Convolution quadrature (CQ): C. Lubich, 1980s.

Numerical approximating of RL fractional integral

J αt y(t) =

∫ t

0
kα(s)y(t − s)ds =

∫ t

0

(
1

2πi

∫
C

esλKα(λ)

)
y(t − s)dλds

=
1

2πi

∫
C

(∫ t

0
esλy(t − s)

)
Kα(λ)dsdλ,

where Kα(λ) = λ−α is the Laplace transform of kernel kα(t).

Key Observation:

u(t) :=
∫ t

0 esλy(t − s)ds solves the ODE

u′(t) = λu(t) + y(t), t > 0

with the initial value u(0) = 0.
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Numerical stability and stability region F-ODEs

Convolution quadrature (CQ): C. Lubich, 1980s.

Applying k -step LMMs ρ(z) =
∑k

j=0 αjz j and σ(z) =
∑k

j=0 βjz j and
putting Fu(z) =

∑∞
j=0 ujz j and Fy (z) =

∑∞
j=0 yjz j ,

un =

[(
δ(z)

h
− λ
)−1

Fy (z)

]
n

,

δ(z) =
zkρ(z−1)

zkσ(z−1)
=
α0zk + · · ·+ αk−1z + αk

β0zk + · · ·+ βk−1z + βk
.
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Numerical stability and stability region F-ODEs

Convolution quadrature (CQ): C. Lubich, 1980s.

Applying the Cauchy integral formula, we arrive at

J αtn y(tn) =
1

2πi

∫
C

(∫ tn

0
etnλy(tn − s)ds

)
Kα(λ)dλ

≈ 1
2πi

∫
C

[(
δ(z)

h
− λ
)−1

Fy (z)

]
n

Kα(λ)dλ

=

[
Kα

(
δ(z)

h

)
Fy (z)

]
n

=

[(
δ(z)

h

)−α
Fy (z)

]
n

:= hα
n∑

j=0

ωn−jyj

for n ≥ 1, where we have written

Fω(z) := (δ(z))−α =
∞∑

j=0

ωjz j . (6)
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Numerical stability and stability region F-ODEs

Convolution quadrature (CQ): C. Lubich, 1980s.

Through a small correction, we obtain the F-LMMs for F-ODEs:

yn = y0 + hα
n∑

j=1

ωn−j
(
Ayj + f (tj , yj)

)
, n ≥ 1 , (7)

where ωj are still given by (6).

Remark:

The numerical method is now also consistent at n = 0 by noting the
sum is zero when the upper index is smaller than the lower index, and
also fully consistent with the scheme derived by the convolution
inverse.
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Numerical stability and stability region F-ODEs

Linear stability analysis, C.Lubich, 1985.

Definition
Strong A(β)-stability of a LMM defined by a generating polynomial
Fω(z) = Fω(ρ,σ)(z) = δ(z)−1 for the classical ODE, with order p ≥ 1:

δ(z) is analytic, with no zeros in a neighborhood of the unit disk
|z| ≤ 1 except z = 1;
| arg δ(z)| ≤ π − β for |z| < 1;

1
hδ
(
e−h) = 1 + O (hp) , with p ≥ 1.
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Numerical stability and stability region F-ODEs

Linear stability analysis and stability region, C.Lubich,
1985.

Applying F-LMMs to the fractional test equation Dαt y(t) = λy gives

yn = y0 + λhα[ω ∗ (y − y0δd )]n, n ≥ 0,

Lemma (Lubich, 1985)

Consider a classical LMM defined by a generating polynomial
Fω(z) = δ(z)−1 satisfies the stability conditions. Let Sh and Sαh be the
stability regions of the standard LMM and its corresponding F-LMM
defined by Fω(z) = (Fω(z))α = δ(z)−α respectively. Then it holds that
(i) Sαh = C \ {1/Fω(z) : |z| ≤ 1};
(ii)
(
C \ Sαh

)
= (C \ Sh)α;

(iii) LMM is A-stable if and only if the F-LMM is A-stable;
(iv) with π − ϕ = α(π − ψ), LMM is A(ϕ)-stable if and only if the F-LMM
is A(ψ)-stable.
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Numerical stability and stability region F-ODEs

Mittag-Leffler stability without perturbation

Theorem (W and Zou, 2021)

Consider the homogenous liner F-ODE Dαt y(t) = Ay (i.e., f ≡ 0) and
assume that all the eigenvalues of A satisfy that λA ∈ Λs

α. Then the
numerical solutions obtained from the strong A-stable F-LMMs or L1
scheme are Mittag-Leffler stable, i.e.,

‖yn‖ = O(t−αn ) as n→∞.
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Numerical stability and stability region F-ODEs

Mittag-Leffler stability with perturbation

Theorem (W and Zou, 2021)

For the F-ODEs model (2), we assume λA ∈ Λs
α, and that f is

continuous, f (t ,0) = 0, and further satisfies

‖f (t , x(t))− f (t , y(t))‖ ≤ L(t)‖x(t)− y(t)‖, ∀ t ≥ 0, x , y ∈ Rd ,

where L : [0,∞)→ R+ is a continuous Lipschitz function. Letting
L0 = supt≥0 L(t) then there exists constant h0 > 0 such that for any
0 < h < h0, the trivial solutions are numerically Mittag-Leffler stable,
i.e., ‖yn‖ = O(t−αn ) as n→∞, provided that

1− ‖D0‖L0 > 0,
1

1− ‖D0‖L0

(
lim

n→∞

n−1∑
k=0

‖Dn−k‖L(tk )

)
≤ ρ0 < 1.
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Numerical stability and stability region F-ODEs

Fractional comparison principle

Lemma (Discrete fractional comparison principle, Li and W, 2019.)

Let Dαh be the CM-preserving discrete operator. Let f (·) be
nondecreasing. Suppose that the sequences {uj}∞j=0, {yj}∞j=0, {vj}∞j=0
satisfy u0 ≤ y0 ≤ v0 and

Dαh (un)+f (un) ≤ 0, Dαh (yn)+f (yn) = 0, 0 ≤ Dαh (vn)+f (vn) for n ≥ 1.

Then un ≤ yn ≤ vn for n = 0,1,2, . . . .

In this Lemma, we say that {un} is a discrete subsolution for {yn} and
{vn} is a discrete supersolution for {yn}.

Remark:

Typical examples of CM-preserving schemes: Grünwald-Letnikov
method and L1 scheme.
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Numerical stability and stability region F-ODEs

Nonlinear F-ODEs

Theorem (W and Stynes, 2022.)

For the model equation, consider the numerical scheme

Dαh (yn) =
1

hα

(
n∑

k=1

ωn−kyk + δny0

)
= −λyγn for n ≥ 1, with y0 > 0.

where λ, γ > 0 and Dαh is CM-preserving. Then there exists h0 > 0
such that 0 < h ≤ h0, the solution {yn} satisfies

C5

1 + tα/γn

≤ yn ≤
C6

1 + tα/γn

for n = 0,1,2, . . .

where the positive constants C5,C6 are independent of n and h.
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Numerical stability and stability region for F-DDEs F-DDEs

F-DDEs

Dαc y(t) = ay(t) + by(t − τ), t > 0,
y(t) = ϕ(t), −τ ≤ t ≤ 0,

(8)

where a,b ∈ R, the delay τ > 0 is a fixed constant. We first observe
that if we redefine

ã = aτα, b̃ = bτα, t̃ = t/τ, ỹ (̃t) = y(t), ϕ̃(̃t) = ϕ(t), (9)

then the form of (8) stays unchanged with τ = 1. Hence, dropping the
tildes, we will study the test model (8) with τ = 1:

Dαc y(t) = ay(t) + by(t − 1), t > 0,
y(t) = ϕ(t), −1 ≤ t ≤ 0.

(10)
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Numerical stability and stability region for F-DDEs F-DDEs

F-DDEs

Definition
Let α ∈ (0,1) and consider parameters a,b ∈ R.

(1) The asymptotic stability region in the (a,b)-plane is defined by
S∗ = {(a,b) : |y(t)| → 0 as t → +∞} for all the initial functions φ.

(2) The solution is called Mittag-Leffler stable if |y(t)| ≤ Cαt−α as
t → +∞, where the constant Cα > 0 is independent of t .
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Numerical stability and stability region for F-DDEs F-DDEs

F-DDEs

Lemma (J. Cermak et.al., 2016, 2017.)

Let α ∈ (0,1), and a,b ∈ R. The zero solution of (10) is asymptotically
stable if and only if (a,b) is an interior point of the region S∗, bounded
by the line a + b = 0 from above and by the following parametric curve
Γ from below

Γ : a = a(θ) :=
θα sin

(
θ + απ

2

)
sin(θ)

,b = b(θ) := −
θα sin

(
απ
2

)
sin(θ)

, (11)

where θ ∈ ((1− α)π, π).

In the asymptotic stability region, the solution is also Mittag-Leffler
stable i.e., |y(t)| ≤ Cαt−α as t →∞.
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Numerical stability and stability region for F-DDEs F-DDEs

F-DDEs

The stability region S∗ has a vertex P = P(a,b), where
a = −b =

[((1−α)π]α sin(απ
2 )

sin(απ) > 0 and S∗ = R1 ∪R2, where

(1) R1 : = {(a,b) : a ≤ b < −a,a ≤ 0},
(2) R2 : = (a,b) : |a|+ b < 0

and 1 <
(1− α)π/2 + arccos[(−a/b) sin(απ/2)][
a cos(απ/2) +

√
b2 − a2 sin2(απ/2)

]1/α .
(12)
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Numerical stability and stability region for F-DDEs F-DDEs
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Figure: Position relationship between the lines a− b = (2k)α with k = 1,3,5
and stability region S∗ for τ = 1 and α = 0.6.
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Numerical stability and stability region for F-DDEs Numerical stability region

GL scheme for F-DDEs: (1− z)α =
∑∞

j=0 ωjz j

Let h = 1/k for k ∈ N+. The numerical scheme:

Dαh yn :=
1

hα

n∑
j=0

ωn−j(yj − y0) = ayn + byn−k , n ≥ 1. (13)

Definition
(1) For any k ≥ 1, the numerical stability region Sk is the set of pairs

(a,b) such that |yn| → 0 as n→∞ for all initial functions ϕ.
(2) The τ(0)-stability region for F-DDEs is defined by

Sτ(0) =
⋂
k≥1

Sk . (14)

The numerical method is called τ(0)-stable if S∗ ⊂ Sτ(0).
(3) If |yn| ≤ Cαt−αn as n→∞, it is Mittag-Leffler stable.
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Numerical stability and stability region for F-DDEs Numerical stability region

Discrete Laplace transform

Definition
Consider the sequence f = (f0, f1, f2, ...) defined on tn. Discrete
Laplace transform:

Lh{f}(s) := h
∞∑

j=0

fj(1− hs)j , s ∈ C, (15)

where the complex number s is taken such that the series is
convergent. If the series converges at some s∗ 6= h−1, then it will also
be convergent on the disk D(h−1, r) :=

{
s ∈ C : |s − h−1| < r

}
where

r = |s∗ − h−1|.
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Numerical stability and stability region for F-DDEs Numerical stability region

Discrete Laplace transform

Lemma

Define the weighted discrete convolution (· ∗ ·)h as

[(f ∗ g)h]n := h
n∑

j=0

fjgn−j .

Let the functions f and g such that Lh{f} and Lh{g} converge on
D(h−1, rf ) and D(h−1, rg), respectively. Then one has that

(i) Lh{(f ∗ g)h}(s) = Lh{f}(s) ·Lh{g}(s) on D(h−1, r), where
r = min{rf , rg}.

(ii) Lh{∇hf}(s) = sLh{f}(s)− f0 on D(h−1, r).
(iii) Lh{Dαh f}(s) = sαLh{f}(s)− sα−1f0.
(iv) Lh{fdk}(z) = (1− hs)kLh{f}(s) + h

∑k
j=1 f−j(1− hs)k−j , where

the k-step delay function given by (fdk )n = fn−k for n ≥ 0.
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Numerical stability and stability region for F-DDEs Numerical stability region

Generating function

Definition
The generating function of a sequence f = (f0, f1, . . .) defined by

Ff (z) =
∞∑

n=0

fnzn, z ∈ C. (16)

The discrete Laplace transform is related to the generating function by

Lh{f}(s) = hFf (1− hs). (17)

If f and g are two scalar sequences with fn,gn ∈ C, we define the
discrete convolution f ∗ g = w , wn =

∑n
j=0 fn−jgj . It is straightforward

to verify that Ff∗g(z) = Ff (z) ·Fg(z).
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Numerical stability and stability region for F-DDEs Numerical stability region

Expression formula of numerical solution

By discrete Laplace transform:

Lh{y}(s) =
(

sα − a− b(1− hs)k
)−1
·sα−1y0 − ahy0 + bh

k−1∑
j=1

y−j(1− hs)k−j

 .
(18)

Introduce

Q(s) := sα − a− b(1− hs)k (19)

with h > 0 and k ∈ N+, which is defined to be the characteristic
polynomial.
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Numerical stability and stability region for F-DDEs Numerical stability region

Expression formula of numerical solution

By generating function:

Fy (z)

=
(

1− hα
(

a + bzk
)

Fµ(z)
)−1 (

y0(1− z)−1 + hα (bg(z)− ay0) Fµ(z)
)

=
(

(1− z)α − hα
(

a + bzk
))−1 (

y0(1− z)α−1 + hα (bg(z)− ay0)
)
,

where Fµ(z) = (1− z)−α for the GL scheme and g(z) =
∑k−1

`=1 y`−kz`.

Introduce
P(z) = (1− z)α − hα

(
a + bzk

)
.

We easily see that
P(1− hs) = hαQ(s). (20)
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Numerical stability and stability region for F-DDEs Numerical stability region

Boundary locus of the numerical stability region

Basic idea:

We investigate the boundary locus of the numerical stability region Sk
by finding the parameters (a,b) such that Q(s) has a root on the circle
∂D(h−1,h−1).

Lemma

Let α ∈ (0,1), a,b ∈ R, τ > 0 and k ∈ N+.
(i) If a + b ≥ 0, then the equation Q(z) = 0 has at least one

nonnegetive real root on the disc D(h−1,h−1).
(ii) If z is a root of Q(z), then its complex conjugate z̄ is also a root of

Q(z), i.e., Q(z̄) = 0.
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Numerical stability and stability region for F-DDEs Numerical stability region

Boundary locus of the numerical stability region

Basic idea:

Take s ∈ ∂D(h−1,h−1), which can be parameterized as
s = 2h−1 cos(φ)eiφ = h−1(1 + ei2φ), where φ ∈ [−π/2, π/2]. Then,

Q(s) = Q̃(φ) = 2αh−α cosα(φ) (cos(αφ) + i sin(αφ))

− a− b(−1)k (cos(2kφ) + i sin(2kφ)) .

By the above Lemma (ii), Q̃(φ) is an even function. Hence, we need to
find parameters (a,b) such that for some φ ∈ [0, π2 ].{

2αh−α cosα(φ) cos(αφ) = a + b(−1)k cos(2kφ),

2αh−α cosα(φ) sin(αφ) = b(−1)k sin(2kφ).
(21)
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Numerical stability and stability region for F-DDEs Numerical stability region

Boundary locus of the numerical stability region

Basic idea:

Let’s discuss the system of equations (21) in three different cases.
Case (I): If φ = 0, then a + (−1)kb = (2/h)α.
Case (II): If φ = π/2, we get the curve a + b = 0.
Case (III): Otherwise, sin(2kφ) can never be zero. By solving the
equation (21) and setting θ = kπ − 2kφ ∈ [0, kπ], one has

a =
2αh−α sinα

(
θ

2k

)
sin(θ + α(π/2− θ/2k))

sin(θ)
,

b = −2αh−α sinα
(
θ

2k

)
sin(απ/2− αθ/(2k))

sin(θ)
.

(22)

These curves obtained are essentially the boundary locus!
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Numerical stability and stability region for F-DDEs Numerical stability region

Boundary locus of the numerical stability region

Theorem

Fix k to be a positive integer. When k = 1, the numerical stability
region Sk in the (a,b)-plane lies in the region between a + b = 0 and
a− b = 2α. When k ≥ 2, the numerical stability region Sk in the
(a,b)-plane lies between a + b = 0 and the curve Γ0:

Γ0 :


a = ak (θ) = 2αkα sinα

(
θ

2k

)
sin(θ + α(π/2− θ/2k))

sin(θ)
,

b = bk (θ) = −2αkα sinα
(
θ

2k

)
sin(απ/2− αθ/(2k))

sin(θ)
,

(23)

where θ ∈
(

1−α
1−α/k π, π

)
.
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Numerical stability and stability region for F-DDEs Numerical stability region

No τ(0)-stability

We define the lower part of the numerically stable region as Rh
2 with

lower boundary curve as Γ0, that is, the original lower boundary curve
Γ is replaced by Γ0.

Theorem

Assume that α ∈ (0,1), τ = 1 and h = 1/k. For any k ≥ 1, R1 always
stays in the numerical stability region and there is a portion of R2 that
is outside the numerical stability region Rh

2.
Consequently, the numerical method is never absolutely stable for
α ∈ (0,1).
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Numerical stability and stability region for F-DDEs Numerical stability region

No τ(0)-stability
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Figure: Comparison of numerical stability region Sh and continuous stability
region S∗ for τ = 1, h = 0.2, k = 5 and α = 0.5.
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Numerical stability and stability region for F-DDEs Numerical Mittag-Leffler stability

Outline

1 Numerical stability and stability region
ODEs
F-ODEs

Mittag-Leffler stability
Numerical methods for F-ODEs
Numerical Mittag-Leffler stability

2 Numerical stability and stability region for F-DDEs
F-DDEs
Numerical stability region
Numerical Mittag-Leffler stability

3 Numerical experiments
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Numerical stability and stability region for F-DDEs Numerical Mittag-Leffler stability

Mittag-Leffler numerical stability

Theorem

Let α ∈ (0,1), a,b ∈ R, k ∈ N+ such that h = 1/k. Then the numerical
solutions for the scheme based on the GL method is Mittag-Leffler
stable if (a,b) ∈ Sk . More specifically, when (a,b) ∈ Sk , the numerical
solution has the following polynomial decay rate asymptotically

yn ∼ −
y0

Γ(1− α) (a + b)
t−αn = O(t−αn ) as n→∞.
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Numerical experiments

Linear F-ODE

In the simulation, we take the initial functions φ1(t) = 0.4,
φ2(t) = −0.1t − 0.2 and φ3(t) = 0.3 sin(6t), respectively.

pα(tn) = − ln(‖yn‖/‖yn−1‖)
ln(tn/tn−1)

, tn > 1. (24)

Table: Observed pα with τ = 1,h = 0.1 and a = −3,b = 1 for initial function
φ1(t)

tn α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
100 0.0896 0.2918 0.5014 0.7069 0.9080
200 0.0902 0.2931 0.5007 0.7040 0.9041
300 0.0905 0.2938 0.5005 0.7029 0.9028
400 0.0907 0.2943 0.5003 0.7023 0.9022
500 0.0909 0.2946 0.5003 0.7019 0.9017
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Numerical experiments
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Thanks for your attention!
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