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Some PDEs with Logarithmic Nonlinearity1

Heat equation with a logarithmic nonlinearity (Log-Heat)

ut −∆u = λu ln ∣u∣ ∶= λf(u), λ /= 0, λ ∈ R

Logarithmic Schrödinger equation (LogSE)

iut +∆u = λu ln ∣u∣

or LogSE with a potential V (e.g., V = ∣x∣2): ∆ + V →∆.

Logarithmic Klein-Gordon equation (LogKGE)

utt −∆u + u = λu ln ∣u∣

1Applications: nonlinear wave, quantum mechanics & optics; nuclear physical;
superfluids & Bose-Einstein condensation, ... (cf. Białynicki-Birula & J. Mycielski, 1975)
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Cahn-Hilliard equation with logarithmic Flory-Huggins potential2

ut = ∆(−∆u + f(u)) with f(u) = F ′(u) = θ0

2
ln 1 + u

1 − u − θ1u,

and F (u) = θ0

2
((1 + u) ln(1 + u) + (1 − u) ln(1 − u)) − θ1

2
u2.

Wasserstein gradient flows

Poisson-Nernst-Planck (PNP) system: (c1, c2 > 0)

E[c1, c2, φ] = ∫
Ω
(c1(ln c1 − 1) + c2(ln c2 − 1) + 1

2
∣∇φ∣2)dx

Keller-Segel system with free energy: (0 < u < 1)

E[u,φ] = ∫
Ω
(u lnu+ (1−u) ln(1−u)−uφ+ 1

2
∣∇φ∣2 + 1

2
φ2)dx

2If ∥u0∥∞ < 1, then∥u∥∞ < 1, see Elliot-Garcke’94, Debussche-Detttori’95.
4



Cahn-Hilliard equation with logarithmic Flory-Huggins potential2

ut = ∆(−∆u + f(u)) with f(u) = F ′(u) = θ0

2
ln 1 + u

1 − u − θ1u,

and F (u) = θ0

2
((1 + u) ln(1 + u) + (1 − u) ln(1 − u)) − θ1

2
u2.

Wasserstein gradient flows

Poisson-Nernst-Planck (PNP) system: (c1, c2 > 0)

E[c1, c2, φ] = ∫
Ω
(c1(ln c1 − 1) + c2(ln c2 − 1) + 1

2
∣∇φ∣2)dx

Keller-Segel system with free energy: (0 < u < 1)

E[u,φ] = ∫
Ω
(u lnu+ (1−u) ln(1−u)−uφ+ 1

2
∣∇φ∣2 + 1

2
φ2)dx

2If ∥u0∥∞ < 1, then∥u∥∞ < 1, see Elliot-Garcke’94, Debussche-Detttori’95.
4



Some Observations
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Derivative of f(z)

Let f(z) = z ln ∣z∣. Then f(0) = 0 and f(−z) = −f(z).

Non-differentiable at z = 0, as

f ′(z) = 1 + ln ∣z∣, z /= 0
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Growth of f(z) for z > 1
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The function f(z) = z ln ∣z∣ grows like

f(z) = ∣z∣pz, 0 < p = p(z) < 1,

and f(z) = o(z1+ε) for z ≫ 1.
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Composition: g(x) = f(u(x)) ∶

g′(x) = f ′(u)u′(x) = (1 + ln ∣u(x)∣)u′(x), u /= 0 or u′(x) /= 0.

Maximum point-wise errors of FEM approximation (globally ≈ O(h))
occur at the locations where u changes sign. Very localised!
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Locally Holder Continuous

Lemma: Let f(z) = z ln ∣z∣ for z ∈ R.

If 0 ≤ ∣z1∣ ≤ ∣z2∣ ≤ ε for ε > 0, then for any α ∈ (0,1),

∣f(z1) − f(z2)∣ ≤ (2ε)1−α(∣ln ε∣ + 1) ∣z1 − z2∣α,

i.e., α-Holder continuous on any finite interval containing 0.
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Log-PDE: H1-Regularity or More?

Consider, for example, the Log-Heat equation:

⎧⎪⎪⎨⎪⎪⎩

ut −∆u = u ln ∣u∣ in Ω, t > 0,

u(x, t) = 0 at ∂Ω, t ≥ 0; u(x,0) = u0(x) on Ω̄,

where Ω ⊂ Rd is a bounded domain with a smooth boundary.

Global H1-solution (cf. Chen-Luo-Liu’15): u ∈ L∞(0,∞;H1
0(Ω))

and ut ∈ L2(0,∞;L2(Ω)), if u0 ∈H1
0(Ω), J[u0] < (2π)d/2ed/4, and

I[u0] ≥ 0, where (“Energy” has no definite sign /)

I[u] ∶= ∥∇u∥2 − ∫
Ω
∣u∣2 ln ∣u∣2 dx, J[u] = 1

2
I[u] + 1

4
∥u∥2.

Blowup (cf. Han’19): If u0 ∈H1
0(Ω) and I[u0] < 0, ∥u(⋅, t)∥→∞

as t→∞.
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Super-exponential decay/growth (cf. Alfaro-Carles’17): There
exists u0 ∈H1

0 with some η > 0, such that the unique solution
decays super-exponentially

∥u(⋅, t)∥∞ ≤ Ce−ηe
t

.

Moreover, there exist u0 ∈H1
0 and ∃ξ > 0, s.t.

∥u(⋅, t)∥∞ ≥ Ceξe
t

.

Remark: Some recent results on LogSE, e.g., H1-regularity (cf.
Carles-Gallagher’18)3, but no much on numerical methods.

3R. Carles and I. Gallagher, Universal dynamics for the defocusing logarithmic
Schrödinger equation, Duke Math. J., 2018.
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Regularized Numerical Methods

Bao-Carles-Su-Tang (SINUM’19): Regularized LogSE:

⎧⎪⎪⎨⎪⎪⎩

iuεt(x, t) +∆uε(x, t) = λuε(x, t) ln(ε+∣uε(x, t)∣) in Ω, t > 0,

uε(x, t) = 0 at ∂Ω, t ≥ 0; uε(x,0) = u0(x) on Ω̄.

Regularization error: If u0 ∈H2(Ω), then

∥uε − u∥L∞(0,T ;L2(Ω)) ≤ C1ε, ∥uε − u∥L∞(0,T ;H1(Ω)) ≤ C2
√
ε,

where C1,C2 > 0 are independent of ε.
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Crank-Nicolson-Leap-Frog in time with FD in space:

∥un − uε,nh ∥ ≤ eCεT (ln ε)
2
(ε + τ2 + h2).

Bao-Carles-Su-Tang (Numer. Math.’19): Regularized Lie-Trotter
time splitting method: L2-error bound: O(τ 1

2 ln ε−1).
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Our Approach & Error Analysis

Time discretization: Find Un+1 ∈H1
0(Ω) for 0 ≤ n ≤ Nt − 1, s.t.

Un+1 −Un
τ

−∆(U
n+1 +Un

2
) = λUn ln ∣Un∣ in Ω,

with U0 = u0. FD, FEM or spectral method can be used in space.

Remarks

It is first-order discretized at t = tn. If u0 ≡ 0, then Un+1 ≡ 0.

The non-differentiability of the log-term is not in favour of
extrapolation or Newton iteration (for an implicit scheme).

Higher-order schemes can be used for e.g., positive,
regular solutions.
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Essential Tools for Error Analysis

Theorem (Locally Holder Continuity, W.-Yan’22)

Let f(z) = z ln ∣z∣. If u, v ∈ L∞(Ω), then for any ε > 0 and any
α ∈ (0,1),

∥f(u) − f(v)∥ ≤ (2ε)1−α(∣ln ε∣ + 1) ∥u − v∥α

+ ( max
ε≤z≤Λ∞

{∣ ln z∣ + 1}) ∥u − v∥

where ∥ ⋅ ∥ is the L2-norm and

Λ∞ ∶= max{∥u∥∞, ∥v∥∞}.
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Lemma (Nonlinear Gronwall’s inequality, W.-Yan’22)

Let c1, c2, c3 be positive constants, and let {y(n)} satisfy

y(n) ≤ c1 + c2
n−1
∑
m=0

yα(m) + c3
n−1
∑
m=0

y(m), n ≥ 1, α ∈ (0,1].

Then for any α ∈ (0,1],

y(n) ≤ c1(1 + (cα−1
1 c2 + c3)

(1 + αcα−1
1 c2 + c3)n − 1

αcα−1
1 c2 + c3

), n ≥ 1.

Remarks

(i) If α = 1, it reduces to the linear Gronwall’s inequality.

(ii) A similar continuous integral version also holds.
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Lemma (Log-Sobolev inequality, Gross’76)

If u ∈H1
0(Ω), then for any a > 0,

2∫Ω
∣u(x)∣2 ln(∣u(x)∣

∥u∥ )dx + d(1 + lna)∥u∥2 ≤ a
2

π
∥∇u∥2,

or equivalently,

∫Ω
u2 lnu2dx + (d(1 + lna) − ln ∥u∥2)∥u∥2 ≤ a

2

π
∥∇u∥2.
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Main Result: FEM in Space

Theorem [Log-Heat] (W.-Yan’22) : Under the condition of global
existence as in Chen et al.’15, we further assume that the solution of
the Log-Heat equation has the regularity:

u ∈ C2([0, T ];L2(Ω)) ∩C1([0, T ];H2(Ω)), (1)

and (ln τ)2 + (ln ∣ lnh∣)2 ≤ c, then for α ∈ (1/2,1),

∥un − unh∥ ≤ Cτ(τ + h2α), Cτ ∼ ecT (ln τ)
2
.

Remarks:

Used the argument for parabolic problems by introducing an auxiliary
semi-discretised elliptic problem of Un as in B. Li-W. Sun’13.

The extra log-factor appears inevitable, but seems insignificant.
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Theorem (LogSE) : Assume the regularity condition (1) holds, and

C1h
2α ≤ τ ≤ C2h

d/2, (ln τ)2 + (ln ∣ lnh∣)2 ≤ C3. (2)

Then we have that for α ∈ (1/2,1),

∥un − unh∥ ≤ Cτ(τ + h2α), Cτ ∼ ecT (ln τ)
2
.

Remark:

The argument of Li-Sun’13 and J. Wang’14 cannot be applied due to
the non-differentiability of the logarithmic nonlinear term.

This led to the conditions in (2) largely from the use of inverse inequality.

Compared with regularized approach, the conditions are on the original
PDEs (at least positive solutions having such regularity).
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Motivations
The LogSE for N particles (Bialynicki et al’ 1979):

ih̵ ∂tψ(r1, . . . ,rN , t) = [− h̵2
N

∑
k=1

1
2mk

∆k − b ln (∣ψ∣2a3N) ]ψ(r1 . . . ,rN , t),

Dimensionless LogSE in d = 3N dimensions

i∂tΨ(r, t) = [−∆ − ln ∣Ψ∣2]Ψ(r, t), r ∈ R3N , (3)

where Ψ = a3N/2ψ and

r = h̵−1√2b (r1
√
m1 . . . ,rN

√
mN).

Time-harmonic problem: if Ψ(r, t) = e ω2λ−iωtu(r) is a solution of
(3), then

−∆u(r) + λu(r) ln ∣u(r)∣2 = 0, r ∈ Rd. (4)
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The problem of finding a positive ground state solution u > 0,

∆u + u ln ∣u∣ = 0 in Rd, u→ 0, r = ∣x∣→ +∞

is of fundamental importance.

It has a unique solution u(r) = exp(d/2 − r2/4)>0 if d ∈ [1,9] (cf.
Troy’16): Ground-state solution:

E(v) = ∥∇v∥2 − ∫
Rd

∣v∣2 ln ∣v∣2dx ≥ E[u] = d(1 + lnπ/2).

Related to the steady state problem of nonlinear Klein-Gordon
and parabolic equations as p→ 0+ ∶

utt = ∆u + u∣u∣p − u, ut = ∆u + u∣u∣p − u

Remark: The existence of positive solutions for the above was studied
e.g., by Berestycki-Lions’83, Coffman’96, etc..
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Our Goal: Find analytically or compute numerically positive
solutions in more general setting, e.g., with a potential V .

For example, we consider the steady-state problem:

−∆u + V u = λu ln ∣u∣, u > 0 (5)

We also consider time-dependent problems, e.g.,

ut −∆u + V u = λu ln ∣u∣, u > 0 (6)

Ideally to design positivity-preserving schemes, but non-trivial
for some schemes.

24



Our Approach: Exponential Substitution

Introduce the exponential substitution: u = ev > 0.4

It favours the log-term:

u ln ∣u∣ = uv, ut = uvt, ∆u = u(∆v + ∣∇v∣2)

The steady-state equation (5) reads

∆v + ∣∇v∣2 + λv = V (7)

The time-dependent problem (6) becomes

vt − (∆v + ∣∇v∣2) − λv = −V (8)

4Huang-Shen (SISC’21) introduced the exponential substitution for constructing
positivity preserving schemes for Poisson-Nernst-Planck (PNP) equations.
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Selected Analytic Solutions

If V = V (r), we seek the axis-symmetric solution of

v′′ + d − 1
r

v′ + (v′)2 + λv = V (r), r > 0

For example, if V = κr−1 (Coulomb’s potential), then

u(r) = exp(− λ
4
r2 + κ

ε2(d − 1)r −
κ2

λ(d − 1)2 +
d

2
), d ≥ 2, λ > 0.

We can also find Gaussian solutions for polynomial V = κ∣x∣m
when m = 0,1,2, or more general

.V (r) = κ1r
2 + κ2r + κ3 + κ4r

−1, V (r) = λa2 log r + a2(a2 + d − 2)r−2.

We can show some solutions are ground-state, but some are
excited state solutions for respective V (r).

26



Time-dependent problem (8) with V = κ∣x∣m has the analytic
positive solution u(r, t) = ev(r,t) with

v(r, t) = A(t)eλt +B(t)P (r), P (r) = r2 + α, (9)

where A,B can be solved out from some solvable ODEs.

The same techniques can be applied to study the LogSE with
V = κ∣x∣m that can enrich the studies by Carles-Ferriere’21.

Computing positive solutions for initial-valued BVPs in more
general setting (Ongoing)!
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Numerical Results: Accuracy Test

Scheme: Find un+1
h ∈ V 0

h for 0 ≤ n ≤ Nt − 1, s.t.

(u
n+1
h − unh
τ

, vh) + (∇(
un+1
h + unh

2
),∇vh) = (λunh ln ∣unh ∣, vh), ∀vh ∈ V 0

h ,

with u0
h = Ihu0.

Test the positive (smooth) exact solution given in (9), and expect to get
the optimal order: O(τ + h2)!

Table 1: Piecewise Linear FEM (h = 2−M ,τ = h2, T = 1)

M ∥e∥2 Order ∥e∥∞ Order
4 4.43e-3 - 5.91e-3 -
8 1.02e-3 2.12 1.41e-3 2.07
16 2.47e-4 2.05 3.47e-4 2.02
32 6.08e-5 2.02 8.65e-5 2.00
64 1.51e-5 2.01 2.16e-5 2.00

128 3.77e-6 2.00 5.40e-6 2.00
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Table 2: Piecewise Quadratic FEM (h = 2−M ,τ = h3, T = 1)

M ∥e∥2 Order ∥e∥∞ Order
2 8.05e-3 - 9.93e-3 -
4 8.65e-4 3.22 1.21e-3 3.03
8 1.00e-4 3.11 1.52e-4 2.99
16 1.21e-5 3.06 1.91e-5 3.00
32 1.48e-6 3.03 2.37e-6 3.00
64 1.83e-7 3.01 2.96e-7 3.00
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Spectral Methods in Space

Table 3: Convergence order in space (τ = 1 × 10−5, T = 1)

N ∥e∥2 Order ∥e∥∞ Order
20 8.16e-3 - 8.16 e-3 -
24 3.91e-3 4.04 3.91e-3 4.21
28 1.66e-3 5.57 1.66e-3 5.80
32 6.21e-4 7.34 6.21e-4 7.58
36 2.07e-4 9.32 2.07e-4 9.56
40 6.19e-5 11.48 6.19e-5 11.71
44 1.66e-5 13.82 1.66e-5 13.98
48 4.00e-6 16.33 4.00e-6 16.09

Table 4: Convergence order in time (N = 210, T = 1)

τ = 1.25e-3 ∥e∥2 Order ∥e∥∞ Order
τ 1.02e-3 - 1.02e-3 -
τ/21 5.12e-4 1.00 5.04e-3 1.00
τ/22 2.56e-4 1.00 2.52e-4 1.00
τ/23 1.28e-4 1.00 1.26e-4 1.00
τ/24 6.41e-5 1.00 6.31e-4 1.00
τ/25 3.21e-5 1.00 3.16e-5 1.00
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Non-positive Solutions: H1+-Regularity

-4 -2 0 2 4
-1

-0.5

0

0.5

1 Table 5: Convergence in space (it
is first-order in time)
N ∥e∥2 Order ∥e∥∞ Order
26 2.96e-2 - 2.16e-2 -
27 1.45e-2 1.03 1.09e-2 0.99
28 6.93e-3 1.07 5.19e-3 1.06
29 3.25e-3 1.09 2.43e-3 1.09

210 1.39e-3 1.22 1.04e-3 1.22
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1 Table 6: Convergence in space (it
is first-order in time)
N ∥e∥2 Order ∥e∥∞ Order
26 8.01e-2 - 8.01e-2 -
27 4.35e-2 0.94 4.35e-2 0.88
28 1.64e-2 1.55 1.64e-2 1.41
29 8.11e-3 1.10 8.11e-3 1.01
210 3.48e-3 1.22 3.48e-3 1.22
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Numerical Results on LogSE
We test the numerical scheme on the LogSE:

iut +∆u = λu ln ∣u∣, t > 0; u(x,0) = u0(x),

with the exact Gaussian solution:

u(x, t) = b0e
λ
2 (x−2vt)2+i(vx−(φ0+v2)t), t ≥ 0.
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(a) Spatial Conv.: τ = 10−7
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(b) Temporal Conv.: N = 256
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Take the initial data:

u0(x) =∑
k

bke
− ak2 (x−xk)2+ivkx
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Figure 1:
√
∣u(x, t)∣, ∣u(x, t)∣ and energies & mass at different time: (i)

x1 = −x2 = −5, vk = 0, bk = ak = 1; (ii) x1 = −x2 = −3, vk = 0, bk = ak = 1.
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Figure 2:
√
∣u(x, t)∣, ∣u(x, t)∣ and energies & mass at different time:

(iii) v1 = −v2 = 2, x1 = −x2 = −30, bk = ak = 1(k = 1,2);
(iv) v1 = 18, v2 = −18, x1 = −30, x2 = 30, b2 = b1 = 1, a1 = a2 = 1.
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Mass Preserving Scheme (ongoing)

IMEX Relaxed Runge-Kutta Scheme:

Step 1: Find ũn+1 through BDF1:

i ũ
n+1 − un
τ

+∆ũn+1 = λf(un). (10)

Step 2: Find un+1 through correction:

un+1 = un + iτγn(∆ũn+1 − λf(ũn+1)). (11)

Relaxation parameter:

γn =
⎧⎪⎪⎨⎪⎪⎩

1, ∥∆ũn+1 − λf(ũn+1)∥ = 0,
2 Im{(∆ũn+1−λf(ũn+1),un)}

τ∥∆ũn+1−λf(ũn+1)∥2 , ∥∆ũn+1 − λf(ũn+1)∥ ≠ 0.
(12)

We have
∥un+1∥2 = ∥un∥2. (13)
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Summary

The non-differentiability of logarithmic nonlinear term
needs special care in discretisation.

New tools were introduced for the analysis, though the
results might not be the best at this moment.

Exponential substitution is a feasible and simpler way to
study and compute the positive solutions.

Many issues are under-explored, e.g., fractional LogSE in
space, time-fractional LogSE(?), . . . . Stay tuned!
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