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Integral Fractional Laplacian (IFL)

Let s > 0, and u : Rd → R be a smooth function with rapidly decaying
derivatives (i.e., of Schwartz class)1

Pseudo-differential operator via Fourier transform

(−∆)su(x) = F −1{
|ξ|2sF [u](ξ)

}
(x), x ∈ Rd

Point-wise integral representation: for s ∈ (0, 1),

(−∆)su(x) = Cd,s p.v.
∫
Rd

u(x) − u(y)
|x− y|d+2s

dy, x ∈ Rd

where Cd,s is a normalisation constant.

1M. Kwasnicki. Ten equivalent definitions of fractional Laplace operator, FCAA’17.
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PDEs with IFL: Challenges

(−∆)su(x) = f(x) in Ω; u(x) = 0 on Ωc := Rd\Ω.

Nonlocality — dense matrix even for local basis
Singularity — nonstandard basis and/or ad hoc quadrature
Regularity — Low or slow decaying

Figure: Exact or numerical solutions with s = 0.3. Note: u ∈ Hs+ 1
2 −ϵ(Ω) (cf.

Vishik-Eskin’65; Grubb’15).
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Some existing works

Caffarelli-Silvestre Extension’07: (d+ 1)-dimensional “local” singular
problem (Cheng-Xu-Yamamoto’01)

FD: Li et al.’21,· · ·
FEM: Nochetto et al.’15,· · ·
SM: Chen-Shen’20

Finite Difference: Huang-Oberman’14; Dou-Zhang’18’19,
Dou-Wang-Zhang’19; Minden-Ying’20; Hao-Zhang-Du’20;
Xu-Cheng-Leung-Qian’20 (spherical means),· · ·

Finite Element: Acosta et al’17; Ainsworth-Glusa’18; Bonito-Lei-Pasciak’19
(Dunford-Taylor formula), Wu-Xu et. al.’22, S.-Wang-Chen-Li’22, Deng et al’21,
Chen et al’21 · · · , many on FEM analysis

Radial Basis/Meshless Method: Burkardt-Wu-Zhang’21

Spectral Method in 1D or unit disk: Mao-Chen-Shen’16; Hao-Zhang’20;
Hao-Li-Zhang-Zhang’20; Mao-Chen-Shen’16; Chen-Mao-Li’19;· · ·
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Existing works: spectral method on Rd

Mao-Shen’17; Tang-Yuan-Zhou’18; Tang-Wang-Yuan-Zhou’19;
Shen-Wang’22;

Generalised Hermite function (GHF)2

Fractional Sobolev orthogonality: if i ̸= j,(
(−∆)s/2Hi, (−∆)s/2Hj

)
L2(Rd)

=
∫
Rd

|ξ|2sF [Hi](ξ) F [Hj ](ξ) dξ = 0

Then S = diagonal.

Mapped Chebyshev function (MCF)3

Fourier-like bi-orthogonality: if p ̸= q,

(T̂p, T̂q)L2(Rd) = 0 ;
(
∇T̂p,∇T̂q

)
L2(Rd) = 0

Based on the Dumford-Taylor formulation, S ≈ SN = diagonal.
2S.-Ma-Li-Wang-Jia. Nontensorial generalised Hermite spectral methods for PDEs with

fractional Laplacian and Schrodinger operators. ESAIM M2AN, 2021.
3S.-Shen-Tang-Wang-Yuan. Fast Fourier-like mapped Chebyshev spectral Galerkin methods

for PDEs with IFL in unbounded domains. SINUM, 2020.
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Other existing works

Deep neural networks:

Gulian-Raissi-Perdikaris-Karniadakis’2019

Mao-Li-Karniadakis’2019

Pang-D’Elia-Parks-Karniadakis’2019

Guo-Wu-Yu-Zhou’2022

Monte Carlo Method:

Kyprianou-Osojnik-Shardlow’2018: Unbiased walk-on-spheres
Monte Carlo methods: 2D case

Shardlow’2019: fields and first eigenvalue: 2D case

August 13, 2022 7 / 41



Feynman-Kac formula (FKf)

FKf is a link between PDEs and stochastic processes.

The first example of FKf is for the following PDEs{
∂tu+ µ∂xu+ 1

2σ
2∂2

xu− V u+ f = 0, (x, t) ∈ R × [0, T ],

u(x, T ) = ψ(x), on x ∈ R,

where µ, σ, V, ψ, and f are known functions. Then, the FKf tells
us that the solution u can be written as

u(x, t) = E
[ ∫ T

t

e
−

∫ τ

t
V (Xτ ,τ)dτ

f(Xτ , r)dr+e−
∫ τ

t
V (Xτ ,τ)dτ

ψ(XT )
∣∣∣Xt = x

]
where X is an Itó process driven by the equation

dX = µ(X, t)dt+ σ(X, t)dWQ,

with WQ(t) is a Wiener process (i.e., Brownian motion) under Q,
and the initial condition for X(t) is X(t) = x.
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Preliminaries

The classical Poisson equations

−∆u(x) = f(x) in Ω; u(x) = g(x) on ∂Ω,

which is governed by Brownian motion and the solution has a FKf
, expressed as an expectation at first exit from Ω of the associated
Wiener process.

Remarkably, the FKf was extended to fractional Laplacian:(−∆)
α
2 u(x) = f(x), in Ω,

u(x) = g(x), on Ωc := Rn\Ω.
(1.1)

where Brownian motion was replaced by α-stable Lévy process.
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Feynman-Kac Formula (FK)
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Figure: The motion trajectory of α-stable process with α = 0.4, 0.8, 1.2, 1.6
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Feynman-Kac Formula

For any α ∈ (0, 2) and a Borel set Λ ⊂ Rn, we denote

L1
α(Λ) =

{
u ∈ L1(Λ) s.t.

∫
Λ

|u(x)|
1 + |x|n+α

dx < ∞
}
.

FKf for (1.1): Suppose that g(x) ∈ L1
α(Ωc) and f(x) ∈ Cα+ϵ(Ω) for

some ϵ > 0. Then there exists a unique continuous solution to
problem (1.1) in L1

α(Rn), which is given by

u(x) = EXα
0 =x

[ ∫ τΩ

0
f(Xα

s ) ds
]

+ EXα
0 =x

[
g(Xα

τΩ)
]
, x ∈ Ω,

where τΩ = inf{t > 0|Xα
t /∈ Ω}, and {Xα

t }t≥0 is a symmetric
α-stable Lévy process with Xα

0 = x.
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Feynman-Kac representation in a ball

We define Bn,c0
r = {x ∈ Rn : |x − c0| ≤ r}, with c0 ∈ Rn and r > 0.

Let Bn
r = Bn,0

r for simplicity.

Lemma

Let r > 0, and assume that f ∈ L1
α(Bn

r ) ∩ C(Bn
r ), g ∈ L1

α(Rn\Bn
r ), then

the solution can be represented as a

u(x) =


∫
Bn

r

f(y)Qr(x,y) dy +
∫
Rn\Bn

r

g(z)Pr(x, z)dz, inBn
r ,

g(x), onRn\Bn
r ,

aC. Bucur Some observations on the Green function for the ball in the fractional Laplace
framework, CPAA’16.

August 13, 2022 12 / 41



Feynman-Kac representation in a ball

Pr(x, z) is the Poisson kernel defined by

Pr(x, z) = C̃α
n

(r2 − |x|2

|z|2 − r2

)α/2 1
|x − z|n

, x ∈ Bn
r , z ∈ Rn\Bn

r ,

For x ̸= y,

Qr(x,y) =


Ĉα

n |y − x|α−n
∫ ϱ(x,y)

0

t
α
2 −1

(t+ 1)
n
2

dt, α ̸= n,

Ĉ
1
2
1 log

(
r2−xy+

√
(r2−x2)(r2−y2)

r|y−x|

)
, α = n,

with

ϱ(x,y) = (r2 − |x|2)(r2 − |y|2)
r2|x − y|2

,

C̃α
n = Γ(n/2) sin(πα/2)

π
n
2 +1 , Ĉα

n = Γ(n/2)
2απ

n
2 Γ2(α/2)

.
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Feynman-Kac representation in a ball

The following alternative formulation with explicit expression for
the solution of (1.1) is more convenient for computation, where we
transform the expression of the original solution into an
expectation form.

Theorem

The solution of problem (1.1) can also be expressed as

u(x) = ζ(x)EQ̃r
[f(Y )] + EPr [g(Z)], Y ∈ Br, Z ∈ Rn\Bn

r ,

where ζ(x) is the weight function of the form

ζ(x) =
∫
Bn

r

Qr(x,y) dy.
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Feynman-Kac representation in a ball

A comparison with existing one:
with Q̃r and Pr are the probability density functions

u(x) = ζ(x)EQ̃r
[f(Y )] + EPr [g(Z)], Y ∈ Br, Z ∈ Rn\Bn

r ,

associated with the α-stable Lévy process

u(x) = EXα
0 =x

[ ∫ τΩ

0
f(Xα

s ) ds
]

+ EXα
0 =x

[
g(Xα

τΩ
)
]
, x ∈ Ω.

It is difficult to directly solve problems in complex regions, as the
Green’s function and Poisson kernel in the complex domain is not
easy to find.
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A new representation for the irregular domain

We aim to develop an efficient algorithm with easy to implement
for a bounded domain in high dimensions.

For bounded domain Ω, the solution of (1.1) can be simulated by
an α-stable process, that is, the solution to (1.1) at the point x:

u(x) = EXα
0 =x

[ ∫ τΩ

0
f(Xα

s ) ds
]

+ EXα
0 =x

[
g(Xα

τΩ)
]
, x ∈ Ω.

This process stops when it reaches the outside of the region Ω.

The movement path in the complex domain can still be simulated
according to the random way, and the path is composed of a
series of balls, Pr and Qr in the balls are known, so the
approximate value of the function in the domain can be obtained.
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A new representation for the irregular domain

Since the Markov process will leave the given domain at a finite
time, the discrete point sequence can reach outside the domain Ω
after a limited number of steps. Therefore, at each jump, the
probability of this point leaving the given region at the next move
always be positive, that is, P (m∗ < ∞) = 1, where we denoted by

m∗ = inf{m ∈ N : Xm /∈ Ω},

the stopping step for the random walk.
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Irregular domain
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Figure: The path of walk; Left: on 2-D irregular domain; Right: on the unit ball
in 3-D.
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A new representation for the irregular domain

Theorem

Let α ∈ (0, 2] and Ω be an open bounded domain, and assume that
f ∈ L1

α(Ω) ∩ C(Ω) and g ∈ L1
α(Rn\Ω), then the solution of (1.1) in

L1
α(Rn) can be expressed as

u(x) =
m∗−1∑
k=1

ζ(Xk)EQ̃rk
[f(Yk)] + EPrm∗−1

[g(Zm∗)], Yk ∈ Brk
, Zk ∈ Rn\Bn

rk
,

where ζ(Xk) is the weight function in k-th ball,

ζ(Xk) =
∫
Bn

rk

Qrk
(Xk,y) dy.

August 13, 2022 19 / 41



Efficient algorithm

Instead of simulating the irregular trajectories of symmetric α-stable
processes, we take advantage of the explicit expressions of Q̃r and Pr

as the probability density functions, which gives the transition probability
of the symmetric α-stable process trajectory inside the ball during its
passage from the center to the boundary ∂Ω or outside the domain Ω.

Given an accuracy threshold ε > 0, we
define an inwardly ‘thickening’ the
boundary ∂Ω as

Γε = {x ∈ Ω : dist(x, ∂Ω) < ε},

where dist(x, ∂Ω) denotes the distance
from x ∈ Ω to ∂Ω.
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The path of walk on 2-D irregular domain
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Efficient algorithm

In each experiment, we need to simulate several important
quantities as below

1 The coordinates of the center of i-th ball;

2 The jump distance from the i-th ball to (i+ 1)-th ball;

3 The weight of the expectation ζ(xi);

To simplify the implementation, we recommend proceeding with
this calculation in spherical coordinates.
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Computation of the jump distance γ

We can evaluate the jump distance (denoted by γ) from the
current ball to the next ball by using the following formula, which
indicates the jump distance is a uniformly distributed random
number.

Lemma
Let α ∈ (0, 2] and let the radius of the current ball r > 0. Assume that
the ball jumps in the region Ω, then the jump distance γ from the
current ball to the next ball is given by

γ(ω; r, n, α) =

√√√√ r2

B(1 − α
2 ,

α
2 ) −B−1( π ω

sin(πα/2) ; 1 − α
2 ,

α
2 ) , ω ∈ (0, 1),

where B−1(· ; a, b) denote the inverse function of incomplete Beta
function B(· ; a, b), and B(a, b) := B(1; a, b) denote the Beta function.
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Computation of the weight function ζ(x)

We reformulate Green’s function into a concise form, which helps us
evaluate the weight function ζ(x) of each ball more easily.

Lemma
For r > 0, ζ(x) in Theorem 2 can be computed by

ζ(x) = Ĉα
n

∫
Bn

r

|y − x|α−n
[
B

(n− α

2 ,
α

2
)

−B
(
ϱ∗(x,y); n− α

2 ,
α

2
)]

dy.

In particular, if x = 0, we have

ζ(0) = rα

2α−1Γ2(α
2 )

∫ 1

0
ρ̃α−1

[
B

(n− α

2 ,
α

2
)

−B
(
ρ̃2; n− α

2 ,
α

2
)]

dρ̃.
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The Monte Carlo simulation

The density Q̃(x,y) can be used to construct transition probabilities for
a discrete sequence of points. When calculating the value of a point x0
in the region Ω, namely u(x0),
(1) First calculate the shortest distance r1 = dist(x0,Γε) from x to the

boundary Γε, and draw a sphere Bn
r1 tangent to the boundary with

x0 as the center and r1 as the radius.
(2) Next, construct a random variable X1 that is evaluated outside

sphere Bn
r1 , and its density function is Pr1(x0,x1), and then

construct another random variable Y1 that is evaluated inside the
sphere Bn

r1 which is follow the density function Q̃(x0,y1).
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The Monte Carlo simulation

(3) If X1 = x1 is taken outside the region Ω, then, the value of u(x0)
can be expressed as:

u(x0) = ζ(x0)Ex0 [f(Y1)] + Ex0 [g(X1)].

If X1 = x1 is taken inside the region Ω, we compute
r2 = dist(x1,Γε) which is the shortest distance from x1 to the
region boundary Γε, and draw a sphere Bn

r2 tangent to the
boundary with x1 as the center and r2 as the radius.

(4) Next, construct a random variable X2 that is evaluated outside
sphere Bn

r2 , and its density function is Pr2(x1,x2), and then
construct another random variable Y2 that is evaluated inside the
sphere Bn

r2 which is follow the density function Q̃(x1,y2).
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The Monte Carlo simulation

(5) If X2 = x2 is taken outside the region Ω, Then, the value of u(x0)
can be expressed as:

u(x0) = ζ(x0)Ex0 [f(Y1)] + ζ(x1)Ex1 [f(Y1)|X1] + Ex0 [g(X2)].

Then, we let

u(Xk) = ζ(Xk)Ex[f(Yk+1)|Xk] + Ex[u(Xk+1)|Xk].

(6) By an induction argument, we suppose that the process exist the
region Ω on m step, then the solution of problem (1.1) is

u(x) = Ex[u(X0)] = Ex[u(Xm)] +
m−1∑
k=0

Ex[u(Xk) − u(Xk+1)]

= Ex[u(Xm)] +
m−1∑
k=0

Ex
[
u(Xk) − Ex[u(Xk+1)|Xk]

]
.
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The Monte Carlo simulation

Therefore, we can construct a Monte Carlo procedures based on the
random sample

Si = g(Xi
m∗) +

m∗−1∑
k=0

ζ(Xi
k)f(Y i

k+1),

where i denotes the i-th experiment, and we have E(Si) ≈ u(x0).

Corollary

Let r > 0, and assume that f, g ∈ L1
α(Bn

r ) ∩ C(Bn
r ), for x ∈ Ω, the

estimate for u(x) is given by

u(x) = lim
N→∞

1
N

N∑
i=1

Si = Ex

[
g(Xm∗) +

m∗−1∑
k=0

ζ(Xk)f(Yk+1)
]
.
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A comparison with existing work

Kyprianou-Osojnik-Shardlow’2018: Unbiased walk-on-spheres
Monte Carlo methods

The simulation in [KOS’18] involves α-stable Lévy process:

u(x) = EXα
0 =x

[
g(Xα

τΩ
)
]

+ EXα
0 =x

[ ∫ τΩ

0
f(Xα

s ) ds
]
, x ∈ Ω,

Then, the discretization in the time direction requires saving
massive historical data including the whole stochastic process.

It is difficult to analyze the high-dimensional problem.

Our method overcomes all the above two problems!

August 13, 2022 28 / 41



The analysis of the error

Lemma

For any ε > 0, and let u ∈ L1
α(Rn), f ∈ L1

α(Bn
r ) ∩ C(Bn

r ) and
g ∈ L1

α(Rn\Bn
r ) with r > 0 and α ∈ (0, 2], there holds

∣∣E[g(X ′
m∗)] − E[u(Xm∗)]

∣∣ ≤ 21−αM

αΓ2(α/2) ε
α, Xm∗ ∈ Rn \ Bn

r−ε,

where

X ′
m∗ =


Xm∗ , if Xm∗ ∈ Rn \ Bn

r ,

inf
χ∈∂Bn

r

{|χ−Xm∗ |}, if Xm∗ ∈ Bn
r \ Bn

r−ε.
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The error bound

Lemma
For any ε > 0, and assume that u ∈ L1

α(Rn), f ∈ L1
α(Bn

r ) ∩ C(Bn
r ) and

g ∈ L1
α(Rn\Bn

r ) with r > 0 and α ∈ (0, 2], then we have

Ex[S̄ − u(x)]2 ≤ O(N−1 + ε2α).
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An estimate of the average computation

Lemma

For any ε > 0, α ∈ (0, 2], and given initial point x ∈ Bn
r with r > 0, then

the probability of the point x leaving the domain Bn
r is positive, that is,

Ex(m∗) < 1 + q∗
(1 − p∗)2 ,

where the constants

p∗ := p∗(n, α, r, ε) =
πn/2

Γ(n/2)
C̃

α
n

[
B

( α

2
, 1 −

α

2

)
− B

( ε2

r2
;

α

2
, 1 −

α

2

)]
,

q∗ := q∗(n, α, r, ε) = 1 −
πn/2

Γ(n/2)
C̃

α
n

[
B

( α

2
, 1 −

α

2

)
− B

( (r − ε)2

r2
;

α

2
, 1 −

α

2

)]
.

with C̃α
n is a positive constant.
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2D with homogeneous BCs

Consider (1.1) on a unit disk B2
1 with the following exact solutions:

u(x) = (1 − |x|2)
α
2
+ ,

where a+ = max{a, 0}.

The source term f = 2αΓ2(α
2 + 1), and the nonlocal boundary

condition becomes homogeneous, that is, g(x) = 0 in Ωc.

(a) α = 0.4 (b) α = 0.8 (c) α = 1.2 (d) α = 1.6

Figure: Profiles of the numerical solutions zoomed in B2
1 with various α.
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2D with homogeneous BCs
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Figure: Simulation for two-dimension. Left: the average number of steps for
fixed point with various α; Right: numerical errors against ε.
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2D with non-homogeneous BCs

Consider (1.1) with the following source functions:

f(x) = Γ(2 + α)2F1
(2 + α

2 ,
3 + α

2 ; 1; −|x|2
)
, on Ω = B2

1, (2.2)

then we have the exact solution u(x) = (1 + |x|2)− 3
2 on R2, and

the nonhomegeneous boundary condition g(x) = u(x) on Ωc.
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Figure: Simulation for two-dimension. Left: the average number of steps for
fixed point with various α; Right: numerical errors against the number of path
with various α.
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10 dimensional problem with homogeneous BCs

Consider the following exact solutions in 10-dimensions:

u(x) = (1 − |x|)
α
2
+ , x ∈ Ω = B10, (2.3)

then f(x) = 2αΓ(1 + α
2 )Γ(n+α

2 )/Γ(n
2 ) and g(x) = 0 in Ωc.
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IFL on complex domains

We further consider the following three cases:
(i) For the stripe domain, we take

f(x) = 2αΓ(1 + α

2 )(cos
α
3 (c2x) + sin

α
2 (c1x)) cos(−|x|2) on Ω,

where c1 = (π
3 ,−

π
4 ), c2 = (−π

2 ,
2π
3 ), x = (x1, x2)T , g(x) = 0.

(ii) For regular hexagon domain, we take

f(x) = sin2(c1x) + cos2(c2x) − (αx1x2)3, on Ω,

where Ω is the regular hexagon domain on [−1, 1]2, g(x) = 0.
(iii) For the annulus domain, we take

f(x) = cos(x2
2 − 2x1x2) − sin(x2

1 + 2x1x2), on Ω,

where Ω = {x ∈ R2 : 0.3 < |x|2 < 1} is the annulus domain,
g(x) = 0.
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IFL on complex domains

Figure: Profiles of the numerical solutions zoomed in the stripe domain
[−5, 5] × [−0.5, 0.5] with α = 0.4, 0.8, 1.2, 1.6 (from top to bottom).
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IFL on complex domains

(a) α = 0.4 (b) α = 0.8 (c) α = 1.2 (d) α = 1.6

(e) α = 0.4 (f) α = 0.8 (g) α = 1.2 (h) α = 1.6

Figure: Profiles of the numerical solutions with various α. Top: the hexagon
domain; Botton: the annulus domain.
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Further extension

time dependent PDEs involving IFL on Ω{
∂tu(x, t) + (−∆) α

2 u(x, t) = V (x)u(x, t) + r(x), (x, t) ∈ Ω × (0,∞),

u(x, 0) = f(x), x ∈ Ω; u(x, t) = g(x, t), x ∈ Ωc × (0,∞).

time dependent semilinear PDEs involving nonlocal operator{
∂tu(x, t) + Lδu(x, t) = f(u(x, t),x, t), (x, t) ∈ Ω × (0,∞),

u(x, 0) = f(x), x ∈ Ω; u(x, t) = g(x, t), x ∈ Ωδ × (0,∞),

where Lδ is a general nonlocal operator.

fractional Eigenvalue problem{
(−∆) α

2 u(x) = λu(x), x ∈ Ω,

u(x) = 0, x ∈ Ωc.

August 13, 2022 39 / 41



Conclusion

We propose an efficient Monte Carlo method for solving PDEs
with IFL on bounded domains in high dimensions.
We provide a new FKf for the solution of fractional Poisson
equations on the ball and the irregular domain in high dimensions.
We establish the error analysis with the aid of the explicit
expression of Green’s function and Poisson’s kernel.
It only requires the solution belong to L1

α(Ω), and the algorithm
seems more efficient with smaller α!

Reference:
1. C. Sheng, B. Su, and C. Xu. Efficient Monte Carlo Method for

Integral Fractional Laplacian in Multiple Dimensions. arXiv
preprint arXiv:2204.08860, 2022 Apr.
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Thank you !
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