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Preliminaries

Critical point x∗ ∈ RN of the energy E(x) implies ∇E(x∗) = 0.

A critical point of E(x) that is not a local minimum is called a saddle point.

Morse index of a critical point x∗ is the maximal dimension of a subspace
on which ∇2E(x∗) is negative definite. Denote a saddle point of Morse
index k by k-saddle.

Solution landscape is a pathway map consisting of all critical points and
their connections.

Figure: (a) A diagram of the solution landscape; (b) The solution landscape of
E(x, y) = (x2 − 1)2 + (y2 − 1)2 [Yin-Yu-Zhang Sci. China Math. 21]
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Preliminaries

To construct the solution landscape, we need to find the any-index saddle
points of a given system, and we will focus on a k-saddle for illustration.

For a k-saddle x∗, ∇2E(x∗) has exactly k negative eigenvalues
λ1 ≤ · · · ≤ λk with corresponding orthonormal eigenvectors v1, · · · , vk.

Let V = span{v1, · · · , vk}, x∗ is a local maximum on x∗ + V and a local
minimum on x∗ + V ⊥, where V ⊥ is the orthogonal complement space of V .

Let PV be the orthogonal projection operator on the finite-dimensional
subspace V .

Force F (x) = −∇E(x) and negative Hessian H(x) = −∇2E(x).

For autonomous system ẋ = F (x), the stationary point x∗ implies
F (x∗) = 0. If this is a gradient system there exists an energy E(x) such
that F (x) = −∇E(x), and the Jacobian J(x) = ∇F (x) coincides with
H(x). For non-gradient system we could not find the corresponding E(x),
while the Jacobian J(x) still exists. This motivates the high-index saddle
dynamics for both gradient and non-gradient systems using the Jacobian
J(x), though we derive the saddle dynamics for gradient systems for
illustration.
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Construction of subspace V for a k-saddle

Computing the ith eigenvector could be transformed into a constrained
optimization problem (Rayleigh-Ritz theorem)

min
vi

v>i ∇2E(x)vi, v>i vj = δi,j , 1 ≤ j ≤ i.

Corresponding Lagrangian function

Li(vi, ξ1, · · · , ξi) = v>i ∇2E(x)vi − ξi(v>i vi − 1)−
i−1∑
j=1

ξjv
>
i vj .

Dynamics of vi

dvi
dt

= −γ
2

∂Li
∂vi

= −γ
(
∇2E(x)vi − ξivi −

1

2

i−1∑
j=1

ξjvj

)
.

Parameters {ξi} are determined by the orthonormal condition: v>i vj = δi,j
for 1 ≤ i, j ≤ k.
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Construction of saddle dynamics

Ascent direction on V : PV (−F (x)).

Descent direction on V ⊥: (I − PV )F (x).

Corresponding gradient dynamics:

dx

dt
= β1PV (−F (x)) + β2(I − PV )F (x), β1, β2 > 0.

β1 = β2 = β > 0, then

dx

dt
= β

(
I − 2PV

)
F (x).

PV =

k∑
i=1

viv
>
i =⇒ dx

dt
= β

(
I − 2

k∑
i=1

viv
>
i

)
F (x).
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High-index saddle dynamics for a k-saddle [Yin-Zhang-Zhang SISC 2019]

High-index saddle dynamics for gradient systems
dx

dt
= β

(
I − 2

k∑
j=1

vjv
>
j

)
F (x),

dvi
dt

= γ

(
I − viv>i − 2

i−1∑
j=1

vjv
>
j

)
H(x)vi, 1 ≤ i ≤ k.

Relaxation parameters β, γ > 0. Initial conditions x(0) = x0 and
vi(0) = vi,0 with v>i,0vj,0 = δi,j for 1 ≤ i, j ≤ k.

A linear stable steady state =⇒ A k-saddle. Orthonormal-preservation:
vi(t)

>vj(t) = δi,j for t ≥ 0.

High-index saddle dynamics for non-gradient systems replace the
equations of {vi} by

dvi
dt

= γ
(
I − viv>i

)
J(x)vi − γ

i−1∑
j=1

vjv
>
j

(
J(x) + J>(x)

)
vi, 1 ≤ i ≤ k.
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Problems in numerical analysis

Two kinds of numerical analysis problems in saddle dynamics:

Problem 1: Accuracy of pathway.

The trajectory x(t) of saddle dynamics provides reasonable predictions
for the transition pathway between saddle points.
Numerical accuracy of the pathway is characterized by, e.g.

‖xn − x(tn)‖ ≤ Qτp, 1 ≤ n ≤ N

for some time step size τ and some positive integer N (i.e. for finite
terminal time).

Problem 2: Convergence to the target saddle point.

One may also interest in the convergence rate of xn to the target
saddle point x∗.
The convergence rate is characterized by

‖xn − x∗‖ ≤ Qqn

for some 0 < q < 1 and for any n ≥ 1.
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Discretization for Problem 1



xn − xn−1
τ

= β

(
I − 2

k∑
j=1

vj,n−1v
>
j,n−1

)
F (xn−1),

vi,n − vi,n−1
τ

= γ

(
I − vi,n−1v>i,n−1

−2

i−1∑
j=1

vj,n−1v
>
j,n−1

)
H(xn−1)vi,n−1, 1 ≤ i ≤ k.

Note: v>i,nvj,n 6= δi,j due to the error of discretization. Modified schemes of

{vi}ki=1:

ṽi,n − vi,n−1
τ

= γ

(
I − vi,n−1v>i,n−1

−2

i−1∑
j=1

vj,n−1v
>
j,n−1

)
H(xn−1)vi,n−1, 1 ≤ i ≤ k,

{vi,n}ki=1 = GramSchmidt{ṽi,n}ki=1.
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Error estimate


Numerical scheme:

ṽi,n − vi,n−1
τ

= · · · , 1 ≤ i ≤ k;

Reference equation:
vi(tn)− vi(tn−1)

τ
= · · ·+O(τ), 1 ≤ i ≤ k.

Define the error evin = vi(tn)− vi,n. If we subtract the numerical scheme from
the reference equation, we will encounter

(evin 6=)vi(tn)− ṽi,n = evin−1 + · · ·+O(τ2),

which is not an error equation. A straightforward idea is to split vi(tn)− ṽi,n as

(vi(tn)− vi,n) + (vi,n − ṽi,n) = evin + (vi,n − ṽi,n),

which leads to the error equation

evin = evin−1 + · · ·+O(τ2) + (vi,n − ṽi,n).

Therefore, the main task is to show vi,n − ṽi,n = O(τ2).
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Error estimate

Relation between vi,n and ṽi,n lies in the Gram-Schmidt orthonormalization

vi,n =

ṽi,n −
i−1∑
j=1

(ṽ>i,nvj,n)vj,n

(
‖ṽi,n‖2 −

i−1∑
j=1

(ṽ>i,nvj,n)2
)1/2

, 1 ≤ i ≤ k,

which requires several auxiliary estimates for the quantities involving vi,n and ṽi,n.

Lemma
{lem1k}

The following estimates hold for 1 ≤ n ≤ N∣∣(ṽm,n)>ṽi,n
∣∣ ≤Mτ2, 1 ≤ m < i ≤ k;∣∣‖ṽi,n‖ − 1

∣∣ ≤ ∣∣‖ṽi,n‖2 − 1
∣∣ ≤Mτ2, 1 ≤ i ≤ k.

Here the positive constant M is independent from n, N and τ .
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Error estimate

Lemma
The following estimate holds for τ small enough

|ṽ>i,nvm,n| ≤ Gτ2, 1 ≤ m < i ≤ k, 1 ≤ n ≤ N

for some positive constant G > M independent from n, N and τ .

Lemma
{lem2k}

The following estimate holds for τ small enough

‖vi,n − ṽi,n‖ ≤ Qτ2, 1 ≤ i ≤ k, 1 ≤ n ≤ N.

Here the positive constant Q is independent from n, N and τ .

Theorem
{thmevk}

The following estimate holds for τ sufficiently small

‖x(tn)− xn‖+

k∑
i=1

‖vi(tn)− vi,n‖ ≤ Qτ, 1 ≤ n ≤ N.
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Numerical experiments

Let β = γ = T = 1. Numerical solutions computed under τ = 2−13 serve as the
reference solutions. We compute the index-1 saddle point of the Eckhardt surface

E(x1, x2) = exp(−x21 − (x2 + 1)2)

+exp(−x21 − (x2 − 1)2) + 4exp

(
− 3

x21 + x22
2

)
+
x22
2

with the initial conditions

x(0) = (−2, 1)>, v(0) =
1√
2

(−1, 1)>.

τ maxn ‖x(tn)− xn‖ conv. rate maxn ‖v1(tn)− v1,n‖ conv. rate
1/32 1.41E-02 2.16E-03
1/64 6.98E-03 1.01 1.09E-03 0.98
1/128 3.45E-03 1.01 5.46E-04 1.00
1/256 1.70E-03 1.02 2.70E-04 1.02 {table2:1}
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Numerical experiments

To observe the pathway convergence of saddle dynamics, we plot the trajectories
of x with k = 1 and the initial conditions

x(0) = (1.5, 1.2)>, v(0) =
1√
5

(−1, 2)>.
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Figure: (Left) Numerical solution of x(t) with τ = 2−8 and different terminal
time T ; (Right) Numerical solution of x(t) with T = 5 and different τ . The
symbols on the curves indicate the time steps.

{fig}
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Analysis for Problem 2

Scheme of x for some step size βn

xn+1 = xn + βn

(
I − 2

k∑
i=1

vi,nv
>
i,n

)
F (xn), (1) {xx}

where the computed vectors {vi,n}ki=1 form the approximated unstable
subspace Vn at the n-th step.

Assumption on the approximation Vn of the unstable subspace V (tn) at tn:∥∥V (tn)V (tn)> − VnV >n
∥∥ ≤ α for some 0 ≤ α ≤ 1.

Lemma

The scheme (1) could be reformulated as

xn+1 − x∗ =
(
I + βn(I − 2VnV

⊥
n )H(xn)

)
(xn − x∗) +Bn(xn − x∗)

where

‖Bn‖ ≤
1

2
βnM‖I − 2VnV

⊥
n ‖‖xn − x∗‖.

Here M is the Lipschitz constant of H(x).
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Analysis for Problem 2

Lemma

Let {rn}n≥0 be a non-negative series satisfying

rn+1 ≤ (1− q)rn + cr2n, n ≥ 0, q ∈ (0, 1), c > 0.

(a) If rn <
q

c
for some n ≥ 0, then rn+1 < rn <

q

c
;

(b) If r0 <
q

c
, then rn+1 ≤

(
1

1 + q

)n+1
qr0

q − cr0
for all n ≥ 0.

{useful_lemma}

Theorem

Suppose 1− α > κα(α+ 5) where κ = L/µ and 0 < µ ≤ |λi| ≤ L within Bδ(x
∗)

for 1 ≤ i ≤ d, the initial point x0 satisfies r0 := ‖x0 − x∗‖ < min{δ, r} where
r = 2µη/M , η = 1− α− κα(α+ 5) > 0, and M is the Lipschitz constant of
H(x). Then for βn = 2/(L(1− α2) + µ(1− α)), x(n) converges to x∗ with

‖xn − x∗‖ ≤
(

1− 2η

κ(1− α2) + 1− α+ 2η

)n
rr0
r − r0

.
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Variable-order fractional Laplacian

1D fractional Laplacian on [0, 1]

(−∆)α(x)/2u(x) =
∑
k∈Z

(
4π2k2

)α(x)/2
uke

2πikx

where the Fourier coefficients {uk} and their discretizations {ûk} are given
by

uk =

∫ 1

0

u(x)e−2πikxdx, ûk = h

N−1∑
i=0

u(xi)e
−2πikxi .

Approximation scheme

(−∆)
α(xi)/2
N,h u(xi) =

∑
k∈N

(
4π2k2

)α(xi)/2
ûke

2πikxi , 0 ≤ i < N.

where N := {z ∈ Z : −N/2 ≤ z ≤ N/2− 1}.
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Variable-order fractional Laplacian

We treat
(
4π2k2

)α(x)/2
as a power function gk(z) :=

(
4π2k2

)z/2
for k 6= 0 and

0 < z ≤ 2 such that gk(α(x)) =
(
4π2k2

)α(x)/2
, and expand gk at z = 1

gk(z) =

S∑
s=0

g
(s)
k (1)

Γ(s+ 1)
(z − 1)s +

g
(S+1)
k (ξ)

Γ(S + 2)
(z − 1)S+1

=

S∑
s=0

(
4π2k2

)1/2
Γ(s+ 1)

lns(4π2k2)

2s
(z − 1)s

+

(
4π2k2

)ξ/2
Γ(S + 2)

lnS+1(4π2k2)

2S+1
(z − 1)S+1 =: Gk(z) +Rk(z).

Here ξ lies in between 1 and z. We could substitute gk(α(x)) by Gk(α(x)) for

k ∈ N/{0} in (−∆)
α(xi)/2
N,h u(xi) and notice that g0(α(x)) = 0 to reach a further

approximation for 0 ≤ i < N

(−∆)
α(xi)/2
N,h,F u(xi) =

∑
k∈N/{0}

Gk(α(xi))ûke
2πikxi

=

S∑
s=0

(α(xi)− 1)s
∑

k∈N/{0}

(
4π2k2

)1/2
Γ(s+ 1)

lns(4π2k2)

2s
ûke

2πikxi .
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Variable-order fractional Laplacian

Theorem
{thm:R}

For 0 < m ∈ Z, let S =
⌈
eµ+1 ln(πN)− 1

⌉
with µ satisfying

µeµ+1 ≥ m+ 2.

Then the truncation error can be bounded by

|Rk(z)| ≤ N−m, k ∈ N/{0}, 0 < z ≤ 2.

Theorem
{thm:cpu}

The implementation of (−∆)
α(xi)/2
N,h,F u(xi) for 0 ≤ i < N requires O(N ln2N)

operations via the FFT, which is much faster than the evaluation of

(−∆)
α(xi)/2
N,h u(xi) for 0 ≤ i < N that needs O(N2 lnN) operations.
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Numerical experiments

We first measure the L2 errors between the fast method and the direct method.
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Figure: Plots of L2 errors under (A) α = 1.5 and N = 212; (B) α = 1.5 and
N = 218 and (C) α = 1.5 + 0.4 sin(2πx) and N = 212.

{plot1}
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Numerical experiments

We then test the efficiency of the fast method with S = 25.
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Figure: Plots of CPU times under (A) α = 1.5 and (B) α = 1.5 + 0.4 sin(2πx).
{plot2}
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High-dimensional extension

2D fractional Laplacian on [0, 1]2

(−∆)α(x,y)/2u(x, y) :=
∑
k,l∈Z

[
4π2(k2 + l2)

]α(x,y)/2
uk,le

2πi(kx+ly).

Approximation for 0 ≤ i, j < N

(−∆)
α(xi,yj)/2
N,h u(xi, yj) =

∑
k,l∈N

[
4π2(k2 + l2)

]α(xi,yj)/2
ûk,le

2πi(kxi+lyj).

Fast scheme for 0 ≤ i, j < N

(−∆)
α(xi,yj)/2
N,h,F u(xi, yj) :=

S∑
s=0

(α(xi, yj)− 1)s

×
∑

k,l∈N,(k,l) 6=(0,0)

(
4π2(k2 + l2)

)1/2
Γ(s+ 1)

lns(4π2(k2 + l2))

2s
ûkle

2πi(kxi+lyj).

S =
⌈
eµ+1 ln(

√
2πN)− 1

⌉
with µeµ+1 ≥ m+ 2 (recall that for the 1D case

S =
⌈
eµ+1 ln(πN)− 1

⌉
).
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Solution landscape of space-fractional phase-field model

Variable-order constant-coefficient space-fractional phase field equation

u̇ = F (u) := −κ(−∆)α(x)/2u+ u− u3. (2) {zxc1}

Variable-coefficient integer-order phase field model

u̇ = F (u) := κ(x)∆u+ u− u3. (3) {zxc2}

How to compare different models? A potential criteria is the solution
landscapes of these two models since all stationary points and their
connections (transition pathways) could provide a comprehensive description
for the models.

Parameter selection: model (2) with

α(x) = 1.2 + 0.1 cos(2πx), 1.3 + 0.2 cos(2πx), 1.55 + 0.45 cos(2πx)

and κ = 0.02, and model (3) with

κ(x) = 3× 10−3 + 2× 10−3 cos(2πx).
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Figure: (A)-(C) Solution landscapes of 1D variable-order phase field model with
different α(x). (D) Solution landscape of the integer-order phase field model (??)
with variable coefficient.

{fig:variableorder1d}
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Conclusion

It seems that the solution landscape of variable-order constant-coefficient
space-fractional phase field equation could be recovered by adjusting the
variable coefficient in integer-order space-fractional phase field equation.
That is, these two models exhibit similar behaviors under suitable
parameters.

Probably the singularity of the solutions to fractional problems may
distinguish the fractional models from the integer-order analogues with
variable coefficients as it could be difficult to recover the boundary
singularities by adjusting the variable coefficients in integer-order models,
and we are currently working on this problem.

The proposed method does not work for time-fractional problems
straightforwardly since the current saddle dynamics only works for the
first-order autonomous systems. How to compare the time-fractional models
with variable order and variable coefficient remains to be investigated.
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