Unconditional energy dissipation law and optimal error estimate of fast L1 schemes for a time-fractional Cahn-Hilliard problem

Chaobao Huang

Shandong University of Finance and Economics

7th Conference on Numerical Methods for Fractional-derivative Problems, Beijing CSRC

July 27-29, 2023

uly 27-29, 2023 1 / 48

1 Fractional PDE

- 2 Unconditional error estimate of the fast L1 FEM scheme
 - The fully discrete fast L1-FEM
 - The boundness of the computed solution in L^{∞} -norm
 - Unconditional error analysis of the fast L1 FEM scheme
- Onconditional energy stability results
 - 4 Numerical experiments

1 Fractional PDE

- 2 Unconditional error estimate of the fast L1 FEM scheme
 - The fully discrete fast L1-FEM
 - The boundness of the computed solution in L^{∞} -norm
 - Unconditional error analysis of the fast L1 FEM scheme
- 3 Unconditional energy stability results
- 4 Numerical experiments

Time-fractional Cahn-Hilliard equations (TFCHE):

$$Lu := D_t^{\alpha} u - \kappa \Delta (-\epsilon^2 \Delta u + f(u)) = 0$$
(1)

for $(x,t)\in Q:=\Omega imes(0,T]$, with

$$egin{aligned} u(x,0) &= u_0(x) & ext{for } x \in \Omega, \ \partial_\upsilon u ig|_{\partial\Omega} &= \partial_\upsilon (\epsilon^2 \Delta u - f(u)) ig|_{\partial\Omega} = 0 & ext{for } 0 < t \leq T, \end{aligned}$$

where $\alpha \in (0, 1)$, $u_0 \in C(\overline{\Omega})$, and f(u) is the derivative of the double well potential $F(u) = \frac{1}{4}(u^2 - 1)^2$. Here the spatial domain $\Omega \subset \mathbb{R}^d$ (where $d \in \{1, 2, 3\}$) is bounded, with a Lipschitz continuous boundary $\partial\Omega$.

 D_t^{α} denotes the Caputo fractional derivative defined by

$$D_t^{\alpha}u(x,t)=\frac{1}{\Gamma(1-\alpha)}\int_0^t(t-s)^{-\alpha}\frac{\partial u(x,s)}{\partial s}\,ds.$$

The previous works:

- Linear schemes
 - T. Tang, H. J. Yu, and T. Zhou, SIAM J. Sci. Comput., 41(6): A3757-A3778, 2019.

L1 scheme +uniform meshes+ stabilization : $O(\tau^{\alpha})$.

The previous works:

- Linear schemes
 - T. Tang, H. J. Yu, and T. Zhou, SIAM J. Sci. Comput., 41(6): A3757-A3778, 2019.

L1 scheme +uniform meshes+ stabilization : $O(au^{lpha})$.

• C. Y. Quan, T. Tang, B. Y. Wang, and J. Yang, Commun. Comput. Phys. 33(4):962-991, 2023.

L1 scheme +uniform meshes+ stabilization : $\tilde{E}[u^n] \leq \tilde{E}[u^{n-1}]$.

- Nonlinear schemes
 - M. Al-Maskari, and S. Karaa, IMA J. Numer. Anal., 42(2):1831-1865, 2022.

 $\|\partial_t^l u(x,t)\| \leq Ct^{\alpha-l}$ and CQ generated by BE method : $O(\tau)$.

- Nonlinear schemes
 - M. Al-Maskari, and S. Karaa, IMA J. Numer. Anal., 42(2):1831-1865, 2022.

 $\|\partial_t^l u(x,t)\| \leq Ct^{\alpha-l}$ and CQ generated by BE method : $O(\tau)$.

• B. Q. J, X. H. Zhu, and H. L. Liao, arXiv:2201.00920, 2022.

The nonuniform L1 type schemes : $O(\tau^{2-\alpha})$ + Energy stability results.

- Nonlinear schemes
 - M. Al-Maskari, and S. Karaa, IMA J. Numer. Anal., 42(2):1831-1865, 2022.

 $\|\partial_t^l u(x,t)\| \leq Ct^{\alpha-l}$ and CQ generated by BE method : $O(\tau)$.

• B. Q. J, X. H. Zhu, and H. L. Liao, arXiv:2201.00920, 2022.

The nonuniform L1 type schemes : $O(\tau^{2-\alpha})$ + Energy stability results.

• H. L. Liao, N. Liu, and X. Zhao, arXiv:2210.12514, 2022.

The nonuniform BDF2 scheme : $O(\tau^2)$ + Energy stability results.

- Other theoretical works
 - C. Y. Quan, T. Tang, and J. Yang, CSIAM-AM, 1:478-490, 2020.

- Other theoretical works
 - C. Y. Quan, T. Tang, and J. Yang, CSIAM-AM, 1:478-490, 2020.
 - Samir Karaa, SIAM J. Numer. Anal., 59(4):2040-2053, 2021.

- Other theoretical works
 - C. Y. Quan, T. Tang, and J. Yang, CSIAM-AM, 1:478-490, 2020.
 - Samir Karaa, SIAM J. Numer. Anal., 59(4):2040-2053, 2021.
 - T. Tang, B. Y. Wang, and J. Yang, SIAM J. Appl. Math., 82(3): 773-792, 2022.

1 Fractional PDE

2 Unconditional error estimate of the fast L1 FEM scheme

- The fully discrete fast L1-FEM
- The boundness of the computed solution in L^{∞} -norm
- Unconditional error analysis of the fast L1 FEM scheme

3 Unconditional energy stability results

4 Numerical experiments

1 Fractional PDE

2 Unconditional error estimate of the fast L1 FEM scheme

- The fully discrete fast L1-FEM
- The boundness of the computed solution in L^{∞} -norm
- Unconditional error analysis of the fast L1 FEM scheme

3 Unconditional energy stability results

4 Numerical experiments

Nonuniform meshes in time

M-conv. Let *r* represents the temporal mesh grading constant. There exists a constant $C_r > 0$, independent of *k*, such that $\tau_1 = C_r \tau^{r\alpha}$, $\tau_k \leq C_r \tau \min\{1, t_k^{1-1/r}\}$, $t_k \leq C_r t_{k-1}$, and $\tau_k \leq \rho_k \tau_{k-1}$ for $2 \leq k \leq N$.

Nonuniform meshes in time

M-conv. Let *r* represents the temporal mesh grading constant. There exists a constant $C_r > 0$, independent of *k*, such that $\tau_1 = C_r \tau^{r\alpha}$, $\tau_k \leq C_r \tau \min\{1, t_k^{1-1/r}\}$, $t_k \leq C_r t_{k-1}$, and $\tau_k \leq \rho_k \tau_{k-1}$ for $2 \leq k \leq N$.

The sum-of-exponentials technique

$$\left|\frac{t^{-\alpha}}{\Gamma(1-\alpha)}-\sum_{j=1}^{N_q}\omega_j e^{-s_j t}\right|\leq \varepsilon,$$

where

$$N_q = \mathcal{O}\left(\log \frac{1}{\varepsilon} \left(\log \log \frac{1}{\varepsilon} + \log \frac{T}{\Delta t}\right) + \log \frac{1}{\Delta t} \left(\log \log \frac{1}{\varepsilon} + \log \frac{1}{\Delta t}\right)\right).$$

Fast L1 discretisation in time

The Caputo fractional derivative is approximated by the fast L1 scheme

$$D_t^{\alpha} v(x, t_n) \approx D_F^{\alpha} v^n := \underbrace{a_0^{(n)} \nabla_{\tau} v^n}_{\text{The local part}} + \underbrace{\sum_{j=1}^{N_q} \omega_j e^{-s_j \tau_n} \mathbb{H}_j(t_{n-1})}_{\text{The history part}} \text{ for } n = 1, 2, \dots, N, (2)$$

where $\mathbb{H}_{i}(t_{k})$ is defined by

$$\mathbb{H}_j(t_0) = 0, \; \mathbb{H}_j(t_k) = e^{-s_j au_k} \mathbb{H}_j(t_{k-1}) + rac{1}{ au_k} \int_{t_{k-1}}^{t_k} e^{-s_j(au_k-s)}
abla_{ au} v^k \; ds$$

Image: A match a ma

Fast L1 discretisation in time

The Caputo fractional derivative is approximated by the fast L1 scheme

$$D_t^{\alpha} v(x, t_n) \approx D_F^{\alpha} v^n := \underbrace{a_0^{(n)} \nabla_{\tau} v^n}_{\text{The local part}} + \underbrace{\sum_{j=1}^{N_q} \omega_j e^{-s_j \tau_n} \mathbb{H}_j(t_{n-1})}_{\text{The history part}} \text{ for } n = 1, 2, \dots, N, (2)$$

where $\mathbb{H}_{j}(t_{k})$ is defined by

$$\mathbb{H}_{j}(t_{0})=0, \,\, \mathbb{H}_{j}(t_{k})=e^{-s_{j} au_{k}}\mathbb{H}_{j}(t_{k-1})+rac{1}{ au_{k}}\int_{t_{k-1}}^{t_{k}}e^{-s_{j}(au_{k}-s)}
abla_{ au}v^{k}\,\,ds$$

for $k \ge 1, 1 \le j \le N_q$. The fast L1 scheme (2) can be rewritten as:

$$D_F^{\alpha} \mathbf{v}^n := \sum_{k=1}^n A_{n-k}^{(n)} \nabla_{\tau} \mathbf{v}^k,$$

where

$$A_0^{(n)} := a_0^{(n)}$$
 and $A_{n-k}^{(n)} := rac{1}{ au_k} \int_{t_{k-1}}^{t_k} \sum_{j=1}^{N_q} \omega_j e^{-s_j(au_n-s)} \ ds$ for $1 \le k \le n-1$.

Lemma 1

Assume $\|\partial_t^I v(x,t)\| \le C(1+t^{\alpha-1})$ for I = 0, 1, 2. Then there exists a constant C_T satisfying

$$\left\|D_t^{\alpha}v(\cdot,t_n)-D_F^{\alpha}v^n\right\|\leq C_T(t_n^{-\alpha}\tau^{-\min\{2-\alpha,r\alpha\}}+\varepsilon)$$

and

$$\|\mathbf{v}^n-\mathbf{v}^{n-1}\|\leq C_{\mathcal{T}}\tau^{\min\{1,r\alpha\}}$$

for n = 1, 2, ..., N.

The equivalent formulation:

$$\begin{aligned} D_t^{\alpha} u - \kappa \Delta w &= 0 \ \forall (x, t) \in Q, \\ w + \epsilon^2 \Delta u - f(u) &= 0 \ \forall (x, t) \in Q, \\ u(x, 0) &= u_0(x) \ \text{ for } x \in \Omega, \\ \partial_v u|_{\partial\Omega} &= \partial_v w|_{\partial\Omega} = 0 \ \text{ for } 0 < t \le T. \end{aligned}$$
(3)

- 一司

2

The time-discrete system:

$$\begin{cases} D_F^{\alpha} U^n - \kappa \Delta W^n = 0 \ \forall (x, t) \in Q, \\ W^n + \epsilon^2 \Delta U^n - f(U^{n-1}) - S(U^n - U^{n-1}) = 0 \ \forall (x, t) \in Q, \\ U^0(x) = u_0(x) \ \text{for} \ x \in \Omega, \\ \partial_{\upsilon} U^n|_{\partial\Omega} = \partial_{\upsilon} W^n|_{\partial\Omega} = 0 \ \text{for} \ 0 < t \le T, \end{cases}$$

$$(4)$$

where $S \ge 0$ is a stabilization constant.

FEM discretisation in space

Let *M* be a positive integer. Partition Ω by a quasiuniform mesh of *M* elements $\{K_m : m = 1, \dots, M\}$. Set

$$h_m = \operatorname{diam}(K_m)$$
 for each m and $h = \max_{1 \le m \le M} \{h_m\}.$

FEM discretisation in space

Let *M* be a positive integer. Partition Ω by a quasiuniform mesh of *M* elements $\{K_m : m = 1, \dots, M\}$. Set

$$h_m = \operatorname{diam}(K_m)$$
 for each m and $h = \max_{1 \le m \le M} \{h_m\}.$

Define the finite element spaces on spatial mesh by

$$V_h:=\left\{v_h\in C(ar\Omega)\cap H^2(\Omega):v_hert_{K_m}\in Q_1(K_m) ext{ on each } K_m\in \mathcal{T}_h ext{ and } \int_\Omega v_h ext{ } dx=0.
ight\}.$$

15 / 48

Three operators

Define the *Ritz projector* $R_h: H^1(\Omega) \to V_h$ by

$$(\nabla R_h w, \nabla v_h) = (\nabla w, \nabla v_h) \quad \forall \ v_h \in V_h.$$

It is well known that

$$\|w - R_h w\| + h\|w - R_h w\|_1 \le Ch^{k+1} |w|_{k+1} \quad \forall \ w \in H^{k+1}(\Omega) \cap H^1(\Omega).$$
 (5)

Three operators

Define the *Ritz projector* $R_h : H^1(\Omega) \to V_h$ by

$$(\nabla R_h w, \nabla v_h) = (\nabla w, \nabla v_h) \quad \forall \ v_h \in V_h.$$

It is well known that

$$\|w - R_h w\| + h\|w - R_h w\|_1 \le Ch^{k+1} |w|_{k+1} \quad \forall \ w \in H^{k+1}(\Omega) \cap H^1(\Omega).$$
(5)

Define the discrete Laplacian $\Delta_h: V_h \to V_h$ by

$$(\Delta_h v, w) = -(\nabla v, \nabla w) \quad \forall \ v, w \in V_h \ . \tag{6}$$

16 / 48

C. M. Elliott and S. Larsson, Math. Comp., 58(198):603-630, S33-S36, 1992.

$$\Delta_h R_h v = P_h \Delta v \quad \forall \ v \in H^2(\Omega) \ . \tag{7}$$

Define the operator T_h by $T_h := (-\Delta_h)^{-1}$, and we have

$$(T_h v, g) = (\nabla T_h v, \nabla T_h g)$$
 for any $v, g \in L_2(\Omega)$. (8)

The fully discrete fast L1-FEM:

$$\begin{cases} D_F^{\alpha} U_h^n - \kappa \Delta_h W_h^n = 0, \\ W_h^n + \epsilon^2 \Delta_h U_h^n - P_h \left[f(U_h^{n-1}) + S(U_h^n - U_h^{n-1}) \right] = 0, \\ U_h^0 := R_h u_0, \\ \partial_{\nu} U_h^n |_{\partial \Omega} = \partial_{\nu} W_h^n |_{\partial \Omega} = 0, \end{cases}$$

$$(9)$$

for n = 1, ..., N.

э

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1 Fractional PDE

2 Unconditional error estimate of the fast L1 FEM scheme

- The fully discrete fast L1-FEM
- The boundness of the computed solution in L^{∞} -norm
- Unconditional error analysis of the fast L1 FEM scheme

3 Unconditional energy stability results

4 Numerical experiments

• Error estimate:

$$\| (u^n)^3 - (U_h^n)^3 \| = \| \left[(u^n)^2 + u^n U_h^n + (U_h^n)^2 \right] (u^n - U_h^n) \|$$

$$\leq \left[\| u^n \|_{\infty}^2 + \| u^n \|_{\infty} \| U_h^n \|_{\infty} + \| U_h^n \|_{\infty}^2 \right] \| u^n - U_h^n \|$$

ly 27-29, 2023 20 / 48

æ

イロト イポト イヨト イヨ

• Error estimate:

$$\| (u^n)^3 - (U_h^n)^3 \| = \| \left[(u^n)^2 + u^n U_h^n + (U_h^n)^2 \right] (u^n - U_h^n) \|$$

$$\leq \left[\| u^n \|_{\infty}^2 + \| u^n \|_{\infty} \| U_h^n \|_{\infty} + \| U_h^n \|_{\infty}^2 \right] \| u^n - U_h^n \|$$

Time-step restriction:

$$\begin{split} \|U_{h}^{n}\|_{L^{\infty}} &\leq \|R_{h}u^{n}\|_{L^{\infty}} + \|R_{h}u^{n} - U_{h}^{n}\|_{L^{\infty}} \\ &\leq \|R_{h}u^{n}\|_{L^{\infty}} + Ch^{-d/2} \|R_{h}u^{n} - U_{h}^{n}\|_{L^{2}} \\ &\leq C \|u^{n}\|_{2} + Ch^{-d/2} (\tau^{\min\{1,r\alpha\}} + \varepsilon + h^{2}) \end{split}$$

ly 27-29, 2023 20 / 48

э

æ

Without certain time-step restrictions:

$$\begin{split} \|U_h^n\|_{L^{\infty}} &\leq \|R_h U^n - U_h^n\|_{L^{\infty}} + \|R_h U^n\|_{L^{\infty}}, \\ &\leq C_{\Omega} h^{-d/2} \underbrace{\|R_h U^n - U_h^n\|}_{\text{The error in space}} + C_{\Omega} \|U^n\|_2, \\ &\leq C_{\Omega} h^{-d/2} h^{\frac{7}{4}} + C_{\Omega} (1+C_1) \\ &\leq K_1. \end{split}$$

C. B. Huang N. An X.J.Yu Unconditional error analysis for the TFCHE

э

æ

Error equation in time

Denote

$$e_u^n := u^n - U^n$$
 and $e_w^n := w^n - W^n$.

From (3) and (4), one has

$$D_{F}^{\alpha} e_{u}^{n} - \kappa \Delta e_{w}^{n} = \mathbb{P}^{n},$$

$$e_{w}^{n} + \epsilon^{2} \Delta e_{u}^{n} = \mathbb{Q}^{n}$$

$$e_{u}^{0} = 0,$$

$$\partial_{\upsilon} e_{u}^{n}|_{\partial\Omega} = \partial_{\upsilon} e_{w}^{n}|_{\partial\Omega} = 0,$$
(10)

where \mathbb{P}^n and \mathbb{Q}^n are defined by

$$\mathbb{P}^{n} = D_{F}^{\alpha} u^{n} - D_{t}^{\alpha} u^{n},$$

$$\mathbb{Q}^{n} = (u^{n})^{3} - u^{n} - (U^{n-1})^{3} + U^{n-1} - S(U^{n} - U^{n-1}).$$

ly 27-29, 2023 22 / 48

The error equation of the time-discrete system:

$$D_F^{\alpha} e_u^n + \kappa \epsilon^2 \Delta^2 e_u^n = \mathbb{P}^n + \kappa \Delta \left(\phi_{u,1}^n + (\phi_{u,2}^n - 1 - S) e_u^{n-1} + S e_u^n \right),$$
(11)

where $\phi_{\textit{u},1}^{\textit{n}}$ and $\phi_{\textit{u},2}^{\textit{n}}$ are defined by

$$\phi_{u,1}^{n} := (u^{n})^{2} + u^{n}u^{n-1} + (u^{n-1})^{2}(u^{n} - u^{n-1})$$

and

$$\phi_{u,2}^{n} := (u^{n-1})^{2} + u^{n-1}U^{n-1} + (U^{n-1})^{2}.$$

Lemma 2 (The robust discrete fractional Grönwall inequality)

Let λ_s be nonnegative constants with $0 < \sum_{s=1}^n \lambda_s \leq \Lambda$ for $n \geq 1$, where Λ is a positive constant independent of n. Suppose that the nonnegative sequences $\{\xi^n, \eta^n : n \geq 1\}$ are bounded and the nonnegative grid function $\{v^n \mid n \geq 0\}$ satisfies

$$D_F^{\alpha}(v^n)^2 \le \sum_{s=1}^n \lambda_{n-s}(v^s)^2 + \xi^n v^n + (\eta^n)^2 \quad \text{for} \quad n \ge 1.$$
 (12)

If the nonuniform grid satisfies the maximum time-step criterion $\tau \leq [3\Gamma(2-\alpha)\Lambda]^{-1/\alpha}$, then

$$v^{n} \leq 2E_{\alpha} \left(3\Lambda t_{n}^{\alpha}\right) \left[v^{0} + \max_{1 \leq k \leq n} \sum_{j=1}^{k} P_{k-j}^{(k)}(\xi^{j} + \eta^{j}) + \max_{1 \leq j \leq n} \{\eta^{j}\}\right] \quad \text{for} \quad 1 \leq n \leq N.$$
 (13)

Lemma 2 (The robust discrete fractional Grönwall inequality)

Let λ_s be nonnegative constants with $0 < \sum_{s=1}^n \lambda_s \leq \Lambda$ for $n \geq 1$, where Λ is a positive constant independent of n. Suppose that the nonnegative sequences $\{\xi^n, \eta^n : n \geq 1\}$ are bounded and the nonnegative grid function $\{v^n \mid n \geq 0\}$ satisfies

$$D_F^{\alpha}(v^n)^2 \le \sum_{s=1}^n \lambda_{n-s}(v^s)^2 + \xi^n v^n + (\eta^n)^2 \quad \text{for} \quad n \ge 1.$$
 (12)

If the nonuniform grid satisfies the maximum time-step criterion $\tau \leq [3\Gamma(2-\alpha)\Lambda]^{-1/\alpha}$, then

$$v^{n} \leq 2E_{\alpha} \left(3\Lambda t_{n}^{\alpha}\right) \left[v^{0} + \max_{1 \leq k \leq n} \sum_{j=1}^{k} P_{k-j}^{(k)}(\xi^{j} + \eta^{j}) + \max_{1 \leq j \leq n} \{\eta^{j}\}\right] \quad \text{for} \quad 1 \leq n \leq N.$$
 (13)

H. Chen and M. Stynes, IMA J. Numer. Anal., 41(2):974-997, 2021.

$$\sum_{j=1}^{n} P_{n-j}^{(n)} j^{r(\gamma-\alpha)} \leq \frac{3\Gamma(1+\gamma-\alpha)}{2\Gamma(1+\gamma)} \, T^{\alpha} \left(\frac{t_n}{T}\right)^{\gamma} \, N^{r(\gamma-\alpha)}$$

The boundless of U^n , $D_F^{\alpha}U^n$, and W^n

Lemma 3

The time discrete system (4) has a unique solution U^n . For $0 \le n \le N$, if $\tau \le \tau_1^*$, one has

$$\|\boldsymbol{e}_{\boldsymbol{u}}^{n}\|_{2} \leq C_{1}^{*}(\tau^{\min\{1,r\alpha\}}+\varepsilon), \tag{14}$$

$$\|U^n\|_2 \le 1 + C_1. \tag{15}$$

Furthermore, if $1 \leq r \leq 1/\alpha$, one has

$$\|D_F^{\alpha}U^n\|_2 \le C_2^* \quad \text{for } 1 \le n \le N.$$

$$\tag{16}$$

The boundless of U^n , $D_F^{\alpha}U^n$, and W^n

Lemma 3

The time discrete system (4) has a unique solution U^n . For $0 \le n \le N$, if $\tau \le \tau_1^*$, one has

$$\|e_u^n\|_2 \le C_1^*(\tau^{\min\{1,r\alpha\}} + \varepsilon), \tag{14}$$

$$\|U^n\|_2 \le 1 + C_1. \tag{15}$$

Furthermore, if $1 \le r \le 1/\alpha$, one has

$$\|\boldsymbol{D}_{\boldsymbol{F}}^{\alpha}\boldsymbol{U}^{n}\|_{2} \leq \boldsymbol{C}_{2}^{*} \quad \text{for } 1 \leq n \leq N.$$

$$\tag{16}$$

Lemma 4

The solution W^n of the time discrete system (4) satisfies

$$\|W^n\|_2 \le C_3^*$$
 for $1 \le n \le N$. (17)

25 / 48

Error equation in space

Denote

$$U^{n} - U^{n}_{h} = (R_{h}U^{n} - U^{n}_{h}) - (R_{h}U^{n} - U^{n}) := \vartheta^{n}_{u} - \rho^{n}_{u},$$
$$W^{n} - W^{n}_{h} = (R_{h}W^{n} - W^{n}_{h}) - (R_{h}W^{n} - W^{n}) := \vartheta^{n}_{w} - \rho^{n}_{w}.$$

From (4) and (9), one has

$$D_{F}^{\alpha}\vartheta_{u}^{n} - \kappa\Delta_{h}\vartheta_{w}^{n} = [R_{h}(D_{F}^{\alpha}U^{n}) - \kappa\Delta_{h}R_{h}W^{n}] - [D_{F}^{\alpha}U_{h}^{n} - \kappa\Delta_{h}W_{h}^{n}]$$
$$= (R_{h} - P_{h})D_{F}^{\alpha}U^{n} + P_{h}[D_{F}^{\alpha}U^{n} - \kappa\Delta W^{n}]$$
$$= P_{h}D_{F}^{\alpha}\rho_{u}^{n}, \qquad (18)$$

ly 27-29, 2023 26 / 48

< 一型

э

and

$$\vartheta_{w}^{n} + \epsilon^{2} \Delta_{h} \vartheta_{u}^{n} = \left[R_{h} W^{n} + \epsilon^{2} \Delta_{h} R_{h} U^{n} \right] - \left[W_{h}^{n} + \epsilon^{2} \Delta_{h} U_{h}^{n} \right]$$
$$= (R_{h} - P_{h}) W^{n} + P_{h} \left[W^{n} + \epsilon^{2} \Delta U^{n} \right]$$
$$- P_{h} \left[(U_{h}^{n-1})^{3} - U_{h}^{n-1} + S(U_{h}^{n} - U_{h}^{n-1}) \right]$$
$$= P_{h} \left[\rho_{w}^{n} + (\psi_{u}^{n} - 1 - S)(\vartheta_{u}^{n-1} - \rho_{u}^{n-1}) + S(\vartheta_{u}^{n} - \rho_{u}^{n}) \right], \quad (19)$$

where ψ_u^n is defined by

$$\psi_u^n := (U^{n-1})^2 + (U_h^{n-1})^2 + U^{n-1}U_h^{n-1}.$$

▶ ৰ≣ ▶ ≣ ৩৭৫ 27-29,2023 **27 / 4**8

• • • • • • • •

and

$$\vartheta_{w}^{n} + \epsilon^{2} \Delta_{h} \vartheta_{u}^{n} = \left[R_{h} W^{n} + \epsilon^{2} \Delta_{h} R_{h} U^{n} \right] - \left[W_{h}^{n} + \epsilon^{2} \Delta_{h} U_{h}^{n} \right]$$
$$= (R_{h} - P_{h}) W^{n} + P_{h} \left[W^{n} + \epsilon^{2} \Delta U^{n} \right]$$
$$- P_{h} \left[(U_{h}^{n-1})^{3} - U_{h}^{n-1} + S(U_{h}^{n} - U_{h}^{n-1}) \right]$$
$$= P_{h} \left[\rho_{w}^{n} + (\psi_{u}^{n} - 1 - S)(\vartheta_{u}^{n-1} - \rho_{u}^{n-1}) + S(\vartheta_{u}^{n} - \rho_{u}^{n}) \right], \quad (19)$$

where ψ_u^n is defined by

$$\psi_u^n := (U^{n-1})^2 + (U_h^{n-1})^2 + U^{n-1}U_h^{n-1}.$$

Applying (18) and (19) yields $D_{F}^{\alpha}\vartheta_{u}^{n} + \kappa\epsilon^{2}\Delta_{h}^{2}\vartheta_{u}^{n} = D_{F}^{\alpha}\rho_{u}^{n} + \kappa\Delta_{h}P_{h}\left[\rho_{w}^{n} + (\psi_{u}^{n} - 1 - S)(\vartheta_{u}^{n-1} - \rho_{u}^{n-1}) + S(\vartheta_{u}^{n} - \rho_{u}^{n})\right].$ (20)

9, 2023 27 / 48

The boundless of the numerical solution U_h^n

Theorem 5

Assume $\tau \leq \tau_2^*$ and $h \leq h_1^*$. Let U^n and U_h^n be the solutions of (4) and (9), respectively. Then for n = 0, 1, ..., N, one has

$$\|R_h U^n - U_h^n\| \le h^{\frac{7}{4}}, \tag{21}$$

and

 $\|U_h^n\|_{L^{\infty}} \leq K_1. \tag{22}$

1 Fractional PDE

2 Unconditional error estimate of the fast L1 FEM scheme

- The fully discrete fast L1-FEM
- The boundness of the computed solution in L^{∞} -norm
- Unconditional error analysis of the fast L1 FEM scheme

Unconditional energy stability results

4 Numerical experiments

29 / 48

Error equation of the fully discrete scheme

Denote

$$u^{n} - U_{h}^{n} = R_{h}u^{n} - U_{h}^{n} - (R_{h}u^{n} - u^{n}) := \eta_{u}^{n} - \varrho_{u}^{n},$$

$$w^{n} - W_{h}^{n} = R_{h}w^{n} - W_{h}^{n} - (R_{h}w^{n} - w^{n}) := \eta_{w}^{n} - \varrho_{w}^{n}.$$

From (3) and (9), we get

$$D_F^{\alpha}\eta_u^n + \kappa \epsilon^2 \Delta_h^2 \eta_u^n = P_h(D_t^{\alpha} \varrho_u^n - R_h \varphi^n) + \Delta_h P_h \left[\varrho_w^n + \phi_{u,1}^n + \Phi_u^n (\eta_u^{n-1} - \varrho_u^{n-1}) + S(\eta_u^n - \varrho_u^n) \right], \quad (23)$$

where Φ_{u}^{n} is defined by

$$\Phi_u^n = (u^{n-1})^2 + u^{n-1}U_h^{n-1} + (U_h^{n-1})^2 - 1 - S.$$

uly 27-29, 2023 30 / 48

The boundless of Φ_u^n :

$$\begin{split} \|\Phi_{u}^{n}\|_{\infty} &\leq \|u^{n-1}\|_{\infty}^{2} + \|u^{n-1}\|_{\infty} \|U_{h}^{n-1}\|_{\infty} + \|U_{h}^{n-1}\|_{\infty}^{2} + 1 + S \\ &\leq C_{\Omega}(C_{1}^{2} + C_{1}K_{1} + K_{1}^{2}) + 1 + S := C_{4}, \end{split}$$
(24)

where $\|u^k\|_{L^{\infty}} \leq C_1$ and $\|U^k_h\|_{L^{\infty}} \leq K_1$ are used.

Set

$$C_4 := C_{\Omega}(C_1^2 + C_1K_1 + K_1^2) + 1 + S \text{ and } \Lambda_3^* := \frac{2\kappa(C_4^2 + S^2)}{\epsilon^2}.$$

<u>.</u>

2

< 🗗 🕨 🔸

Theorem 6 (Error estimate for the fast L1 FEM)

Assume $\tau \leq \min \{\tau_2^*, [\Im\Gamma(2-\alpha)\Lambda_3^*]^{-1/\alpha}\}$ and $h \leq h_1^*$. Let u^n and U_h^n be the solutions of (3) and (9), respectively. Then for n = 1, 2, ..., N, one has

$$\|u^n-U_h^n\|\leq \Theta_n(\tau,r)+C_Rh^2, \qquad (25)$$

where

$$\Theta_n(\tau, r) := 2E_\alpha \left(3\Lambda_3^* t_n^\alpha\right) \left[\left(3C_T \Gamma(1-\alpha) + \frac{3\sqrt{\kappa}C_\Omega C_T C_1^2}{2\epsilon} (3\Gamma(1-\alpha)t_n^\alpha + 2)\right) \tau^{\min\{1, r\alpha\}} + 3C_T \Gamma(1-\alpha)t_n^\alpha \varepsilon + C_R C_1 \left(3\Gamma(1-\alpha)t_n^\alpha + \frac{\sqrt{\kappa}(1+C_4+S)}{2\epsilon} (3\Gamma(1-\alpha)t_n^\alpha + 2)\right) h^2 \right].$$

If $r \geq 1/\alpha$, then one has

$$\|u^n - U_h^n\| \leq C\left(\tau + \varepsilon + h^2\right)$$
 for $n = 0, 1, \dots, N$.

Fractional PDE

2 Unconditional error estimate of the fast L1 FEM scheme

- The fully discrete fast L1-FEM
- The boundness of the computed solution in L^{∞} -norm
- Unconditional error analysis of the fast L1 FEM scheme

Onconditional energy stability results

4 Numerical experiments

• The approximation of the modified energy:

$$\begin{split} f(U_h^{n-1})\nabla_{\tau} U_h^n &= F(U_h^n) - F(U_h^{n-1}) - \int_0^1 f'(U_h^{n-1} + s\nabla_{\tau} U_h^n)(1-s) \, ds \, (\nabla_{\tau} U_h^n)^2 \\ &\geq F(U_h^n) - F(U_h^{n-1}) + \frac{1}{2} (\nabla_{\tau} U_h^n)^2 \\ &- \int_0^1 3 \left((1-s) \|U_h^{n-1}\|_{\infty} + s \|U_h^n\|_{\infty} \right)^2 (1-s) \, ds \, (\nabla_{\tau} U_h^n)^2 \end{split}$$

э

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• The approximation of the modified energy:

$$\begin{split} f(U_h^{n-1}) \nabla_{\tau} U_h^n &= F(U_h^n) - F(U_h^{n-1}) - \int_0^1 f' (U_h^{n-1} + s \nabla_{\tau} U_h^n) (1-s) \, ds \, (\nabla_{\tau} U_h^n)^2 \\ &\geq F(U_h^n) - F(U_h^{n-1}) + \frac{1}{2} (\nabla_{\tau} U_h^n)^2 \\ &- \int_0^1 3 \left((1-s) \| U_h^{n-1} \|_{\infty} + s \| U_h^n \|_{\infty} \right)^2 (1-s) \, ds \, (\nabla_{\tau} U_h^n)^2 \end{split}$$

• Two assumptions: (D. Li and Z. H. Qiao, J. Sci. Comput., 70(1):301-341, 2017.) The Lipschitz assumption:

$$\max_{u \in R} |f'(u)| \le L.$$
(26)

 L^{∞} bounds on the numerical solution:

$$\|U_h^n\|_{\infty} \le L. \tag{27}$$

The discrete energy functional $E[U_h^n]$:

$$E[U_h^n] := \frac{\epsilon^2}{2} \|\nabla U_h^n\|^2 + (F(U_h^n), 1) \text{ with } F(U_h^n) := \frac{1}{4} ((U_h^n)^2 - 1)^2 \text{ for } 0 \le n \le N.$$

C. B. Huang N. An X.J.Yu Unconditional error analysis for the TFCHE

э

Image: A mathematical states and a mathem

æ

The discrete energy functional $E[U_h^n]$:

$$E[U_h^n] := \frac{\epsilon^2}{2} \|\nabla U_h^n\|^2 + (F(U_h^n), 1) \text{ with } F(U_h^n) := \frac{1}{4} ((U_h^n)^2 - 1)^2 \text{ for } 0 \le n \le N.$$

The modified discrete energy $E_{\alpha}[U_h^n]$:

$$E_{lpha}[U_h^0] := E[U_h^0] ext{ and } E_{lpha}[U_h^n] := E[U_h^n] + rac{\kappa}{2} \sum_{j=1}^n P_{n-j}^{(n)} \|
abla W_h^j \|^2 ext{ for } 1 \le n \le N.$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The energy stability result

Theorem 7 (The energy stability result for the modified energy)

Let $S \ge \frac{3K_1^2}{2} - \frac{1}{2}$. Assume $\tau \le \tau_2^*$ and $h \le h_1^*$, the fully discrete semi-implicit L1-FEM (9) preserves the following discrete energy dissipation law

 $E_{\alpha}[U_h^n] \leq E_{\alpha}[U_h^{n-1}] \quad \text{for } 1 \leq n \leq N.$

27-29, 2023 36 / 48

The energy stability result

Theorem 7 (The energy stability result for the modified energy)

Let $S \geq \frac{3K_1^2}{2} - \frac{1}{2}$. Assume $\tau \leq \tau_2^*$ and $h \leq h_1^*$, the fully discrete semi-implicit L1-FEM (9) preserves the following discrete energy dissipation law

$$E_{\alpha}[U_h^n] \leq E_{\alpha}[U_h^{n-1}] \quad \text{for } 1 \leq n \leq N.$$

The energy stability property for $E[U_h^n]$:

 $E[U_h^n] \le E_{\alpha}[U_h^n] \le E[U_h^0]$ for $1 \le n \le N$.

Fractional PDE

2 Unconditional error estimate of the fast L1 FEM scheme

- The fully discrete fast L1-FEM
- The boundness of the computed solution in L^{∞} -norm
- Unconditional error analysis of the fast L1 FEM scheme

3 Unconditional energy stability results

4 Numerical experiments

Example 1

To verify the accuracy in time and space, we consider the time-fractional Cahn-Hilliard problem (1) in two-dimensional with $\kappa = 1$, $\epsilon = 1$, $\Omega = (0, 2\pi) \times (0, 2\pi)$, T = 1, and $u_0(x, y) = \cos(x)\cos(y)$. In addition, the graded mesh $t_n := T(n/N)^r$ is used in temporal direction.

Taking $r = 1/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(\tau)$.

Table 1: $\max_{1 \le n \le N} \|u^n - U_h^n\|$ errors and rates of convergence (dominated by temporal error)

	N=20	N=40	N=80	N=160
$\alpha = 0.4$	1.3070E-2	7.1577E-3 0.8687	3.7393E-3 0.9367	1.9487E-3 0.9402
$\alpha = 0.6$	1.5168E-2	8.1019E-3 0.9046	4.0908E-3 0.9858	2.0115E-3 1.0240
$\alpha = 0.8$	1.7323E-2	9.6204E-3 0.8485	4.9963E-3 0.9452	2.5035E-6 0.9969

Taking $r = 1/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(\tau)$.

Table 1: $\max_{1 \le n \le N} \|u^n - U_h^n\|$ errors and rates of convergence (dominated by temporal error)

	N=20	N=40	N=80	N=160
$\alpha = 0.4$	1.3070E-2	7.1577E-3 0.8687	3.7393E-3 0.9367	1.9487E-3 0.9402
$\alpha = 0.6$	1.5168E-2	8.1019E-3 0.9046	4.0908E-3 0.9858	2.0115E-3 1.0240
$\alpha = 0.8$	1.7323E-2	9.6204E-3 0.8485	4.9963E-3 0.9452	2.5035E-6 0.9969
\Downarrow				

 \bigvee $O(\tau)$

Taking $r = (2 - \alpha)/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(\tau)$.

Table 2: $\max_{1 \le n \le N} \|u^n - U_h^n\|$ errors and rates of convergence (dominated by temporal error)

	N=10	N=20	N=40	<i>N</i> = 80
$\alpha = 0.4$	7.9016E-3	4.4416E-3 0.8310	2.3408E-3 0.9240	1.1972E-3 0.9673
$\alpha = 0.6$	1.0683E-2	5.7319E-3 0.8981	2.9323E-3 0.9669	1.4690E-3 0.9971
$\alpha = 0.8$	1.5087E-2	8.3147E-3 0.8595	4.2919E-3 0.9540	2.1475E-3 0.9989

Taking $r = (2 - \alpha)/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(\tau)$.

Table 2: $\max_{1 \le n \le N} \|u^n - U_h^n\|$ errors and rates of convergence (dominated by temporal error)

	N=10	N=20	N=40	<i>N</i> = 80
$\alpha = 0.4$	7.9016E-3	4.4416E-3 0.8310	2.3408E-3 0.9240	1.1972E-3 0.9673
$\alpha = 0.6$	1.0683E-2	5.7319E-3 0.8981	2.9323E-3 0.9669	1.4690E-3 0.9971
$\alpha = 0.8$	1.5087E-2	8.3147E-3 0.8595	4.2919E-3 0.9540	2.1475E-3 0.9989
		ψ		
		$O(\tau)$		

Taking $r = 1/\alpha$ and N = 1000, the spatial error dominates the result. Predicted rate: $O(h^2)$.

Table 3: $\max_{1 \le n \le N} \|u^n - U_h^n\|$ errors and rates of convergence (dominated by spatial error)

	M=8	M=16	M=32	M=64
$\alpha = 0.4$	1.7447E-2	4.3178E-3 2.0146	1.0758E-3 2.0048	2.6873E-4 2.0012
$\alpha = 0.6$	1.8195E-2	4.4866E-3 2.0198	1.1169E-3 2.0061	2.7891E-4 2.0016
$\alpha = 0.8$	1.9383E-2	4.7551E-3 2.0272	1.1821E-3 2.0080	2.9512E-4 2.0020

uly 27-29, 2023 41 / 48

Taking $r = 1/\alpha$ and N = 1000, the spatial error dominates the result. Predicted rate: $O(h^2)$.

Table 3: $\max_{1 \le n \le N} \|u^n - U_h^n\|$ errors and rates of convergence (dominated by spatial error)

	M=8	M=16	M=32	M=64
$\alpha = 0.4$	1.7447E-2	4.3178E-3 2.0146	1.0758E-3 2.0048	2.6873E-4 2.0012
$\alpha = 0.6$	1.8195E-2	4.4866E-3 2.0198	1.1169E-3 2.0061	2.7891E-4 2.0016
$\alpha = 0.8$	1.9383E-2	4.7551E-3 2.0272	1.1821E-3 2.0080	2.9512E-4 2.0020
		↓		
		$ O(h^{2}) $		

Example 2

Consider the time-fractional Cahn-Hilliard model (1) with $\kappa = 1$, $\epsilon = 0.05$, $\Omega = (0, 2) \times (0, 2)$. Here, the initial condition

$$u_0(x, y) = 0.1 rand(x, y) - 0.05,$$

where rand(x, y) generates uniform random numbers in the domain [0, 1].

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Example 2

Consider the time-fractional Cahn-Hilliard model (1) with $\kappa = 1$, $\epsilon = 0.05$, $\Omega = (0, 2) \times (0, 2)$. Here, the initial condition

$$u_0(x, y) = 0.1 rand(x, y) - 0.05,$$

where rand(x, y) generates uniform random numbers in the domain [0, 1].

We use the graded meshes $t_n = T_0(n/N_0)^r$ with $r = 1/\alpha$, $N_0 = 30$, and $T_0 = 0.001$ to handle the weakly singularity near the initial time. The remaining time interval adopts the following time-stepping strategy

$$\tau_{n+1} = \max\left\{\tau_{\min}, \frac{\tau_{\max}}{\sqrt{1+\delta} \|\partial_{\tau} U_h^n\|^2}\right\} \quad \text{for} \quad n \ge N_0,$$
(28)

where δ is a user chosen constant, $\tau_{\rm max}=$ 0.005, and $\tau_{\rm min}=$ 0.001.

Figure 1: The original energy and the modified energy for Example 2.

(a) The profile of U_h^n with fractional order $\alpha = 0.4$ at t = 0.1, 1, 11.

(b) The profile of U_h^n with fractional order $\alpha = 0.9$ at t = 0.1, 1, 11.

44 / 48

Example 3

Consider the time-fractional Cahn-Hilliard model (1) with $\kappa = 1$, $\epsilon = 0.02$, $\Omega = (-1, 1) \times (-1, 1)$. The initial condition is chosen as

$$u_0(x,y) = \sum_{i=1}^2 - \tanh\left(\frac{\sqrt{(x-x_i)^2 + (y-y_i)^2} - 0.36}{\sqrt{2}\epsilon}\right) + 1$$

with $(x_1, y_1) = (-0.4, 0)$ and $(x_2, y_2) = (0.4, 0)$. Actually, this example is often used to describe the coalescence of two kissing bubbles.

- 本間 と 本語 と 本語 と

Figure 2: The original energy and the modified energy for Example 3.

(a) The profile of U_h^n with fractional order $\alpha = 0.4$ at t = 0.1, 1, 8.

(b) The profile of U_h^n with fractional order $\alpha = 0.9$ at t = 0.1, 1, 8.

Thank You

C. B. Huang, Na. An, and X. J. Yu, Unconditional energy dissipation law and optimal error estimate of fast L1 schemes for a time-fractional Cahn-Hilliard problem, Commun. Nonlinear Sci. Numer. Simul., 124:107300, 2023.