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ABSTRACT 1

I will start with a review of [1], which was presented at the 2021 edition of this workshop. For time-
fractional parabolic equations with a Caputo time derivative of order α P p0, 1q, we give pointwise-
in-time a posteriori error bounds in the spatial L2 and L8 norms. Hence, an adaptive time stepping
algorithm is applied for the L1 method, which yields optimal convergence rates 2�α in the presence
of solution singularities. Interestingly, the proposed time stepping algorithm yields the grids similar
to a-priori-constructed optimal grids in [2, 3].
In the main part of the talk, we shall discuss recent extensions of the proposed methodology to
variable-coefficient multiterm time-fractional subdiffusion equations [4], and to the case of higher-
order discretizations [5]. The stable implementation of the proposed algorithm will also be addressed
[5].

1. N. Kopteva, Pointwise-in-time a posteriori error control for time-fractional parabolic equations, Appl.
Math. Lett., 123 (2022), 107515.

2. N. Kopteva and X. Meng, Error analysis for a fractional-derivative parabolic problem on quasi-graded
meshes using barrier functions, SIAM J. Numer. Anal., 58 (2020), 1217–1238.

3. N. Kopteva, Error analysis for time-fractional semilinear parabolic equations using upper and lower
solutions, SIAM J. Numer. Anal., 58 (2020), 2212–2234.

4. N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient multiterm time-fractional
subdiffusion equations, J. Sci. Comput., (2022).

5. S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for higher-order discretizations of
time-fractional parabolic equations, J. Comput. Appl. Math., volume 427 (2023), 115122.



PROBLEM ADDRESSED 2

• Consider a fractional-order parabolic problem with α P p0, 1q :

Dα
t u� Lu � fpx, tq for px, tq P Ω� p0, T s

where Ω � Rd, d P t1, 2, 3u, subject to upx, 0q � u0pxq and u � 0 on BΩ

Dα
t up�, tq :�

1
Γp1�αq

³t
0
pt� sq�α Bsup�, sq ds � J1�α

t Btu �Caputo fractional derivative

Lu :�
°d

k�1

!
�Bxk

pakpxq Bxk
uq � bkpxq Bxk

u
)
� cpxqu �2nd order, elliptic L � Lptq
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• In the a priori error analysis, an initial singularity of the exact solution is typi-

cally addressed, such as |Bltup�, tq| À 1� tα�l or similar...

NOTE: This is a realistic assumption, in contrast to |Blup�, tq| À 1...

• AIM: an adaptive framework (a posteriori error estimates + an adaptive
time stepping algorithm) capable of identifying various solution singularities...



PLAN OF THE TALK 3

1. A-priori pointiwise-in-time error bounds
+ give lots of insight in what can be expected of the error;
+ a-priori chosen temporal meshes are our main competition, so to speak :)

2. Review of N. Kopteva, Pointwise-in-time a posteriori error control for time-
fractional parabolic equations, Appl. Math. Lett., 123 (2022), 107515.

3. RECENT EXTENSIONS:

+ N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient
multiterm time-fractional subdiffusion equations, J. Sci. Comput., (2022).

+ S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for
higher-order discretizations of time-fractional parabolic equations, J. Comput.
Appl. Math., volume 427 (2023), 115122.

+ Stable implementation is also addressed in the latter



A PRIORI ANALYSIS — SOME LITERATURE 4

• Discrete Laplace transform approach: low regularity assumptions on the ex-
act solution, BUT uniform meshes (frequently convergence in positive time)

[B. Jin, R. Lazarov, Z. Zhou, IMA J. Numer. Anal., 2016], ...
[Y. Yan, M. Khan, N.J. Ford, SINUM, 2018], ...
[B. Jin, R. Lazarov, Z. Zhou, CMAME, 2019 – review]

• Graded temporal meshes ñ global in time convergence:

[H. Brunner, Math. Comp., 1985] – collocation for Volterra integral equations
[W. McLean, K. Mustapha, Numer. Math., 2007] – fractional wave equation
[K. Mustapha, B. Abdallah, K. M. Furati, 2014] — high-order Petrov-Galerkin in time
[M. Stynes, E. O’Riordan, J. L. Gracia, SINUM, 2017] — L1 method

• Discrete Grönwall inequality on graded (general) meshes – quite intircate...

[H.-L. Liao, D. Li, J. Zhang, SINUM, 2018],
[H.-L. Liao, W. McLean, J. Zhang, SINUM, 2019],...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• In this talk, I rely on insights from sharp a-priori pointwise-in-time bounds
using barrier functions on quasi-graded grids with arbitrary degree of grad-
ing: [N. Kopteva, X. Meng, SINUM, 2020], also [N. Kopteva, Math. Comp., 2019]...



[NK+MENG, SINUM 2020] 5

• THEOREM [Kopteva+Meng]: Using (quasi-)graded mesh ttj � T pj{MqruMj�0

with r ¥ 1, if }Bltuptq} À 1� tα�l for l � 1, 2 and t P p0, T s, then

}uptmq � Um} À

$'''&
'''%

M�r tα�1
m if 1 ¤ r   2� α,

Mα�2 tα�1
m r1� lnptm{t1qs if r � 2� α,

Mα�2 t
α�p2�αq{r
m if r ¡ 2� α.

Particular cases:

• When the optimal grading parameter ropt � p2 � αq{α is used, then the error is
bounded by Mα�2 � 1, i.e. we recover the optimal global convergence rates of
2� α, as particular cases of our more general error bounds.

• Another straightforward particular case of our error bounds indicates that the
optimal convergence rates of 2� α in positive time t Á 1 are attained using

much milder grading with r ¡ 2� α .



WHY GRADED MESHES? 6

• Frequently assumed: there exists a unique solution of this problem in CpΩ̄ �

r0, T sq:

|Bltup�, tq| À 1� tα�l for l � 0, 1, 2

NOTE: This is a realistic assumption, in contrast to |Blup�, tq| À 1;

• Graded meshes in time:
 
tj � T pj{Mqr

(M
j�0

with some r ¡ 1

0 1
0

1

—yield global accuracy...

• Uniform meshes in time: i.e. r � 1 — yield convergence in positive time...



A PRIORI ERROR ANALYSIS - SOME REFERENCES 7

• N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a
fractional-derivative problem in two and three dimensions, Math. Comp., 88 (2019), 2135–
2155. L1 + framework for spatial discretizations + bounds on the exact solutions

• N. Kopteva and X. Meng, Error analysis for a fractional-derivative parabolic problem on
quasi-graded meshes using barrier functions, SIAM J. Numer. Anal., 58 (2020), 1217–
1238. L1 + Alikhanov

• N. Kopteva, Error analysis of an L2-type method on graded meshes for a fractional-order
parabolic problem, Math. Comp., 90 (2021), 19-40. L2 scheme

• N. Kopteva, Error analysis for time-fractional semilinear parabolic equations using upper and
lower solutions, SIAM J. Numer. Anal., 58 (2020), 2212–2234. semilinear case



MORE REFERENCES (INCOMPLETE LIST...) 8
• B. Jin, R. Lazarov and Z. Zhou, Numerical methods for time-fractional evolution equations with nons-

mooth data: a concise overview, Comput. Methods Appl. Mech. Engrg., 346 (2019), 332–358.
• B. Jin, R. Lazarov and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth

data, IMA J. Numer. Anal. 36 (2016), 197–221. uniform mesh
• H. Brunner, The numerical solution of weak singular Volterra integral equations by collocation on graded

meshes, Math. Comp., 45 (1985), 417–437.
• W. McLean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation,

Numer. Math., 105 (2007), 481–510. graded mesh
• K. Mustapha, B. Abdallah and K. M. Furati, A discontinuous Petrov-Galerkin method for time-fractional

diffusion equations, SIAM J. Numer. Anal., 52 (2014), 2512–2529. graded mesh
• M. Stynes, E. O’Riordan and J. L. Gracia, Error analysis of a finite difference method on graded meshes

for a time-fractional diffusion equation, SINUM, 55 (2017), 1057–1079. L1 + graded
• H.-L. Liao, W. McLean and J. Zhang, A discrete Grönwall inequality with application to numerical

schemes for fractional reaction-subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237.
• H.-L. Liao, D. Li and J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-

subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133.
• H.-L. Liao, W. McLean and J. Zhang, A second-order scheme with nonuniform time steps for a linear

reaction-subdiffusion problem, arXiv:1803.09873v4, (2018). discrete Grönwall inequalities
• A. A. Alikhanov, A new difference scheme for the time fract..., J. Comput. Phys., 280 (2015), 424–438.
• H. Chen and M. Stynes, Error analysis of a second-order method on fitted meshes for a time-fractional

diffusion problem, J. Sci. Comput., 79 (2019), 624–647. Alihanov + graded mesh
• C. Lv and C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J.

Sci. Comput. 38 (2016), A2699–A2724. L2 scheme + uniform mesh



BACK TO MAIN TOPIC 9

OUR MAIN FOCUS IN THIS TALK:

Pointwise-in-time a posteriori error control for time-fractional
parabolic equations

MESSAGES:
+ pointwise-in-time a posteriori error bounds in the L2pΩq and L8pΩq norms

+ explicit upper barriers on the residual are given that guarantee that the error remains within a
prescribed tolerance and within certain desirable pointwise-in-time error profiles
+ applicability to wide classes of time discretizations and arbitrarily large times



PLAN OF THE TALK 10

1. A-priori pointiwise-in-time error bounds
+ give lots of insight in what can be expected of the error;
+ a-priori chosen temporal meshes are our main competition, so to speak :)

2. Review of N. Kopteva, Pointwise-in-time a posteriori error control for time-
fractional parabolic equations, Appl. Math. Lett., 123 (2022), 107515.

3. RECENT EXTENSIONS:

+ N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient
multiterm time-fractional subdiffusion equations, J. Sci. Comput., (2022).

+ S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for
higher-order discretizations of time-fractional parabolic equations, J. Comput.
Appl. Math., volume 427 (2023), 115122.

+ Stable implementation is also addressed in the latter



PROBLEM ADDRESSED + AIM 11

• Consider a fractional-order parabolic problem with α P p0, 1q :

Dα
t u� Lu � fpx, tq for px, tq P Ω� p0, T s

where Ω � Rd, d P t1, 2, 3u, subject to upx, 0q � u0pxq and u � 0 on BΩ

Dα
t up�, tq :�

1
Γp1�αq

³t
0
pt� sq�α Bsup�, sq ds � J1�α

t Btu �Caputo fractional derivative

L is a second-order elliptic operator

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Our AIM: pointwise-in-time a posteriori error estimates in L2pΩq and L8pΩq

norms on general temporal meshes for reasonably general discretizations

Main REF for this part: NK, Pointwise-in-time a posteriori error control for time-fractional parabolic

equations, Applied Mathematics Letters, 123 (2022), 107515

NOTE also: Lehel Banjai and Charalambos G. Makridakis, A posteriori error analysis for approxima-

tions of time-fractional subdiffusion problems. Math. Comp., 2022. (no algorithm)



AIM & PLAN 12

• Our AIM: pointwise-in-time a posteriori error estimates in L2pΩq and L8pΩq

norms on general temporal meshes for reasonably general discretizations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A posteriori error estimates in the L2pΩq norm:
Crucial LEMMA:

xDα
t vp�, tq, vp�, tqy ¥

�
Dα

t }vp�, tq}
�
}vp�, tq}

THEOREM: error estimate via the residual Rh

}puh � uqp�, tq}L2pΩq ¤ pDα
t � λq�1}Rhp�, tq}L2pΩq

Residual BARRIERS to guarantee a desirable error profile...
ñ no need to store past values of the sampled residual...

• Application for the L1 method: (for other methods, see [NK + S.Franz, 2022])
Adaptive time stepping algorithm + Numerics
Optimal orders of convergence: globally / in positive time
Competitive in comparison with a-priori-chosen graded meshes

• A posteriori error estimates in the L8pΩq norm

• Variable-coefficient multiterm time-fractional case (jointly with M. Stynes, 2022)



SETTING + TERMINOLOGY 13

• We look for a posteriori error estimates��errorptq
��
LppΩq

¤ function
�
mesh, comp.sol-n

�
with all constants explicit in the RHS

• Substantial literature for classical parabolic and elliptic PDEs

• We shall only consider discretizations in time (i.e. in space we keep L undis-
cretized)

• We shall first consider the popular L1 method = an analogue of the backward Euler method

extended to fractional-parabolic equations (works for wide classes of methods...)

• residual of the computed solution Rhp�, tq :� pDα
t �Lquhp�, tq� fp�, tq (some-

times, Btuh may be a distribution...)

• to compute the residual, one needs to (appropriately) interpolate the computed
solution in time between time layers



CRUCIAL LEMMA 14

• LEMMA: Let vp�, 0q � 0 and v P L8p0, t; L2pΩqqXW 1,8pϵ, t; L2pΩqq for any
0   ϵ   t ¤ T . Then

xDα
t vp�, tq, vp�, tqy ¥

�
Dα

t }vp�, tq}
�
}vp�, tq} for t ¡ 0

• Discrete version for the L1 discretization is quite obvious:

Dα
t vp�, tmq � δαt v

m � κm,mloomoon
¡0

vm �
m̧

j�1

pκm,j � κm,j�1qloooooooomoooooooon
¡0

vj�1

where κm,j :�
τ�1
j

Γp1�αq

³tj
tj�1
ptm � sq�α, so

xδαt v
m, vmy ¥ κm,mloomoon

¡0

}vm}2�
m̧

j�1

pκm,j � κm,j�1qloooooooomoooooooon
¡0

}vj�1}}vm} �
�
δαt }v

m}
�
}vm}

see, e.g., [NK, Error analysis of the L1 method on graded and uniform meshes for a fractional-

derivative problem in two and three dimensions, Math. Comp., 88 (2019)]



CRUCIAL LEMMA — PROOF 15

• LEMMA: Let vp�, 0q � 0 and v P L8p0, t; L2pΩqqXW 1,8pϵ, t; L2pΩqq for any
0   ϵ   t ¤ T . Then

xDα
t vp�, tq, vp�, tqy ¥

�
Dα

t }vp�, tq}
�
}vp�, tq} for t ¡ 0

• PROOF of the continuous version relies on the alternative (equivalent) defini-
tion of Dα

t (for the case vp�, 0q � 0):

Γp1� αqDα
t vp�, tq � t�αvp�, tq �

» t

0

αpt� sq�α�1 tvp�, tq � vp�, squ ds

This representation was also used by:

[Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math.
Anal. Appl., 351 (2009), 218–223],

[H. Brunner, H. Han and D. Yin, The maximum principle for time-fractional diffusion equations
and its application, Numer. Funct. Anal. Optim., 36 (2015), 1307–1321]



A POSTERIORI ERROR ESTIMATES — L2pΩq NORM 16

• THEOREM: Let L, for some λ P R, satisfy xLv, vy ¥ λ}v}2 @ v P H1
0 pΩq.

Suppose the exact solution u and its approximation uh are in L8p0, t; L2pΩqq X

W 1,8pϵ, t; L2pΩqq for any 0   ϵ   t ¤ T , and also in H1
0 pΩq for any t ¡ 0,

while uhp�, 0q � u0 and Rhp�, tq :� pDα
t � Lquhp�, tq � fp�, tq. Then

}puh � uqp�, tq}L2pΩq ¤ pDα
t � λq�1}Rhp�, tq}L2pΩq for t ¡ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• NOTATION:
pDα

t � λq�1vptq :�

» t

0

pt� sqα�1Eα,αp�λrt� ssαq vpsq ds

Here Eα,βpsq �
°8

k�0tΓpαk � βqu�1sk is a generalized Mittag-Leffler function,
while pDα

t � 0q�1v :� Jα
t v �

³t
0
pt� sqα�1 vpsq ds.

• Also, wptq � pDα
t � λq�1vptq is a solution of the equation pDα

t � λqwptq � vptq

for t ¡ 0 subject to wp0q � 0.

As Eα,α ¡ 0, so v ¥ 0 implies w ¥ 0 — comparison principle!



L2pΩq NORM THEOREM — PROOF 17

• THEOREM: Let L, for some λ P R, satisfy xLv, vy ¥ λ}v}2 @ v P H1
0 pΩq.

Suppose the exact solution u and its approximation uh are in L8p0, t; L2pΩqq X

W 1,8pϵ, t; L2pΩqq for any 0   ϵ   t ¤ T , and also in H1
0 pΩq for any t ¡ 0,

while uhp�, 0q � u0 and Rhp�, tq :� pDα
t � Lquhp�, tq � fp�, tq. Then

}puh � uqp�, tq}L2pΩq ¤ pDα
t � λq�1}Rhp�, tq}L2pΩq for t ¡ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• PROOF: Set e :� uh � u. Then ep�, 0q � 0 and pDα
t � Lqep�, tq � Rhp�, tq for

t ¡ 0 subject to e � 0 on BΩ.

Taking the inner product of this equation with ep�, tq, then applying the obvious

xLe, ey ¥ λ}e}2 and (crucially!) xDα
t ep�, tq, ep�, tqy ¥

�
Dα

t }ep�, tq}
�
}ep�, tq}

(by our crucial LEMMA), one arrives at pDα
t � λq}ep�, tq} ¤ }Rhp�, tq} for t ¡ 0.

Then pDα
t �λq

 
pDα

t �λq�1}Rhp�, tq}�}ep�, tq}
(
¥ 0, so the comparison principle

yields the desired bound. �



RESIDUAL BARRIERS I 18

Using the comparison principle, one can derive residual barriers that guarantee
certain desirable pointwise-in-time error profiles.

• COROLLARY: If }Rhp�, tq} ¤ pDα
t �λqEptq @ t ¡ 0 for some barrier function

Eptq ¥ 0 @ t ¥ 0, then }puh � uqp�, tq} ¤ Eptq @ t ¥ 0.

ADVANTAGE: no need to store past values of the sampled residual...

NOTE: The above corollary may seem to imply that one can get any desirable pointwise-in-time error

profile Eptq on demand. The tricky part is to ensure that pDα
t � λqEptq ¡ 0 for t ¡ 0, which is not true for

a general positive E . Two possible error profiles will be described by the following result.



RESIDUAL BARRIERS II 19

Using the comparison principle, one can derive residual barriers that guarantee
certain desirable pointwise-in-time error profiles for}e}LppΩq with p � 2 (p�8Ñlater)

• COROLLARY: If }Rhp�, tq}LppΩq ¤ pDα
t � λqEptq @ t ¡ 0 for some barrier

function Eptq ¥ 0 @ t ¥ 0, then }puh � uqp�, tq}LppΩq ¤ Eptq @ t ¥ 0.

• COROLLARY: Suppose that λ ¥ 0. Then for the error e � uh � u one has

}Rhp�, sq}LppΩq ¤ TOL �R0ptq ñ }ep�, tq}LppΩq ¤ TOL,

}Rhp�, sq}LppΩq ¤ TOL �R1ptq ñ }ep�, tq}LppΩq ¤ TOL � tα�1,

R0ptq :� tΓp1� αqu�1 t�α � λ, R1ptq :� tΓp1� αqu�1 t�1ϱpτ{tq � λ E1ptq,

E1ptq :� maxtτ, tuα�1,

ϱpsq :� s�βr1� pp1� sq�qβs ¥ s�β mintβs, 1u, β :� 1� α,

where τ ¡ 0 is an arbitrary parameter (and tα�1 can be replaced by E1ptq).

ADVANTAGE: no need to store past values of the sampled residual...



ADAPTIVE TIME STEPPING (STRAIGHTFORWARD?) 20

u0
h :� u0; t0 :� 0; t1 :� mintτ�, T u; m :� 0;
while tm   T

m :� m� 1; flag :� 0;
while tm � tm�1 ¡ τ��

compute um
h using the L1 method

if }Rhp�, tq} ¤ TOL �Rpptq @ t P ptm�1, tmq

if tm � T

M :� m; break
elseif tm   T

ũm
h :� um

h ; t̃m :� tm;
tm :� minttm�1 �Qptm � tm�1q, T u; flag :� 1;

end
else

if flag � 0

tm :� tm�1 � ptm � tm�1q{Q;
else

um
h :� ũm

h ; tm :� t̃m;
tm�1 :� minttm � ptm � tm�1q, T u; break

end
end

end
end

Parameters: Q :� 1.1,
τ� :� 5TOL1{α for
R0 and τ� :� TOL for
R1, τ�� :� 0.

Here we used the

standard mathematical

notation combined with

the MatLab while

loop syntax (where,

to be precise, break

denotes an exit from

the interior while loop).



APPLICATION TO THE L1 METHOD 21

Given an arbitrary temporal mesh ttjuMj�0 on r0, T s, let tuj
hu

M
j�0 be the semi-discrete

approximation obtained using the popular L1 method.

Then its standard Lagrange piecewise-linear-in-time interpolant uh, defined on Ω̄�

r0, T s, satisfies

pDα
t � Lquhpx, tjq � fpx, tjq for x P Ω, j � 1 . . . ,M,

subject to u0
h :� u0 and uh � 0 on BΩ.

So for the residual of uh one immediately gets Rhp�, tjq � 0 for j ¥ 1, i.e. on each
ptj�1, tjq for j ¡ 1, the residual is a non-symmetric bubble.

Hence, for the piecewise-linear interpolant RI
h of Rh one has RI

h � 0 for t ¥ t1,

and, more generally, RI
h � rLu0 � fp�, 0qsp1� t{t1q

� for t ¡ 0.

Finally, note that Rh �RI
h � pDα

t uh � fq � pDα
t uh � fqI (as pLuhq

I � Luh).

NOTE: one can compute Rh by sampling, using parallel/vector evaluations, without
a direct application of L to tuj

hu.
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Test problem A. pDα
t � 3qu � fptq with the exact solution u � uptq � tα � t2

(which exhibits a typical singularity at t � 0) for t P p0, 1s.
The adaptive algorithm constructed a temporal mesh: }Rhp�, tq} ¤ TOL � Rpptq,
p � 0, 1 (with τ :� t1 in R1 on next page).
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Figure 1: Adaptive algorithm with R0ptq: maxr0,T s |eptq| on the adaptive mesh, the corresponding TOL and
error on the graded mesh, α � 0.4 (left) and α � 0.7 (centre). Right: graphs of ttjuMj�0 as a function of j{M
for the adaptive mesh v graded mesh with r � p2� αq{α, α � 0.7, TOL � 10�3, M � 67.

• For R0, the errors on the adaptive meshes were compared with the errors on the
optimal graded meshes ttj � T pj{MqruMj�0 with r � p2� αq{α.

• We observe that the optimal global rates of convergence 2� α are attained.
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Figure 2: Adaptive algorithm with R1ptq for test problem A: |ep1q| on the adaptive mesh and the corresponding
TOL, α � 0.4 (left) and α � 0.7 (centre). Right: log-log graph of the pointwise error |eptjq| on the adaptive
mesh v TOL � tα�1, α � 0.4, TOL � 10�4, M � 146.

• For R1, we observe the optimal rates of convergence 2 � α at terminal time
t � 1.

• This is consistent with the a priori error bound [NK, X. Meng, SINUM
(2020)] for a mildly graded mesh ttj � T pj{MqruMj�0 with r � 2� α:

the error behaves as M�rtα�1 for 1 ¤ r ¤ 2� α (with a logarithmic factor
for r � 2 � α), while the optimal convergence rate 2 � α in positive time
is attained if r � 2� α.
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Test problem B. Consider px, tq P p0, πq � p0, 1s with L � �B2x and the exact
solution u :� ptα � t2q sinpx2{πq, so we set λ :� 1.
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Figure 3: Adaptive algorithm with R0ptq for parabolic test problem B: maxtjPp0,T s }eptjq} on the adaptive
mesh and the corresponding TOL, α � 0.4 (left) and α � 0.8 (centre). Adaptive algorithm with R1ptq for
parabolic test problem C: , }ep0.2q} and TOL, α � 0.6 (right).

Test problem C. Consider px, tq P p0, πq � p0, 0.2s with L � �B2x, so λ :� 1. Now
u0 :� x for x ¤ 1 and u0 :� 1� px� 1q{pπ � 1q for x ¥ 1, while f :� 0.
As Lu0 R L2pΩq, to be able to compute }Rh} on p0, t1q, we change the interpola-
tion of the computed solution tuj

hu
M
j�0 on p0, t1s to piecewise-constant...

NOTE: all changes in uh are reflected when computing its residual Rh!
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• THEOREM: Let Lu :�
°d

k�1

!
�akpxq B

2
xk
u � bkpxq Bxk

u
)
� cpxqu, with suf-

ficiently smooth coefficients taku, tbku and c in CpΩ̄q, for which we assume that
ak ¡ 0 in Ω̄, and also c ¥ λ P R (while xLv, vy ¥ λ}v}2 is no longer required).

Let the exact solution u and its approximation uh be in CpΩ̄ � r0, tsq X

W 1,8pϵ, t; L8pΩqq for any 0   ϵ   t ¤ T , and also in C2pΩq for any t ¡ 0.

Then the error bounds of the above THEOREM and both COROLLARIES
remain true with } � }L2pΩq replaced by } � }L8pΩq.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• PROOF: relies on the maximum principle from [Y. Luchko, Maximum principle for

the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218–223]

(λ ¥ 0) and [NK, Maximum principle for time-fractional parabolic equations with a reaction

coefficient of arbitrary sign, Appl. Math. Lett., (2022)] (λ P R).

Maximum/Comparison principle: Suppose that vpx, tq ¥ 0 for t � 0 and x P BΩ, and v is in
CpΩ̄ � r0, tsq XW 1,8pϵ, t; L8pΩqq for any 0   ϵ   t ¤ T and also in C2pΩq for any t ¡ 0.
Then pDα

t � Lqv ¥ 0 in p0, T s � Ω implies v ¥ 0 in r0, T s � Ω̄.
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• Our AIM: pointwise-in-time a posteriori error estimates in L2pΩq and L8pΩq

norms on general temporal meshes for reasonably general discretizations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• A posteriori error estimates in the L2pΩq norm:
Crucial LEMMA:

xDα
t vp�, tq, vp�, tqy ¥

�
Dα

t }vp�, tq}
�
}vp�, tq}

THEOREM: error estimate via the residual Rh

}puh � uqp�, tq}L2pΩq ¤ pDα
t � λq�1}Rhp�, tq}L2pΩq

Residual BARRIERS to guarantee a desirable error profile...
ñ no need to store past values of the sampled residual...

• Application for the L1 method: (for other methods, see [NK + S.Franz, 2022])
Adaptive time stepping algorithm + Numerics
Optimal orders of convergence: globally / in positive time
Competitive in comparison with a-priori-chosen graded meshes

• A posteriori error estimates in the L8pΩq norm

• Variable-coefficient multiterm time-fractional case (jointly with M. Stynes, 2022)
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1. A-priori pointiwise-in-time error bounds
+ give lots of insight in what can be expected of the error;
+ a-priori chosen temporal meshes are our main competition, so to speak :)

2. Review of N. Kopteva, Pointwise-in-time a posteriori error control for time-
fractional parabolic equations, Appl. Math. Lett., 123 (2022), 107515.

3. RECENT EXTENSIONS:

+ N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient
multiterm time-fractional subdiffusion equations, J. Sci. Comput., (2022).

+ S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for
higher-order discretizations of time-fractional parabolic equations, J. Comput.
Appl. Math., volume 427 (2023), 115122.

+ Stable implementation is also addressed in the latter
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• The above framework was extended to a variable-coefficient multiterm time-
fractional case (joint work with M. Stynes, JSC, 2022)

ℓ̧

i�1

�
qiptqD

αi
t upx, tq

�
� Lu � fpx, tq for px, tq P Ω� p0, T s

0   αℓ   ...   α2   α1 ¤ 1, while each qi P Cr0, T s with

ℓ̧

i�1

qiptq ¡ 0 and qiptq ¥ 0 @ i,

where Ω � Rd, d P t1, 2, 3u, subject to upx, 0q � u0pxq and u � 0 on BΩ

Dα
t up�, tq :�

1
Γp1�αq

³t
0
pt� sq�α Bsup�, sq ds � J1�α

t Btu �Caputo fractional derivative

Lu :�
°d

k�1

!
�Bxk

pakpxq Bxk
uq � bkpxq Bxk

u
)
� cpxqu �2nd order, elliptic L � Lptq
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Using the comparison principle, one can derive residual barriers that guarantee
certain desirable pointwise-in-time error profiles.

• THEOREM: If }Rhp�, tq} ¤ p
°ℓ

i�1

�
qiptqD

αi
t upx, tq

�
�λqEptq @ t ¡ 0 for some

barrier function Eptq ¥ 0 @ t ¥ 0, then }puh � uqp�, tq} ¤ Eptq @ t ¥ 0.

As in the single-term case:

ADVANTAGE: no need to store past values of the sampled residual...

NOTE: The above corollary may seem to imply that one can get any desirable pointwise-in-time error

profile Eptq on demand. The tricky part is to ensure that pDα
t � λqEptq ¡ 0 for t ¡ 0, which is not true for

a general positive E . Two possible error profiles will be described by the following result.
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Using the comparison principle, one can derive residual barriers that guarantee
certain desirable pointwise-in-time error profiles for }e}LppΩq with p P t2, 8u.

• THEOREM: If }Rhp�, tq} ¤ p
°ℓ

i�1

�
qiptqD

αi
t upx, tq

�
�λqEptq @ t ¡ 0 for some

barrier function Eptq ¥ 0 @ t ¥ 0, then }puh � uqp�, tq} ¤ Eptq @ t ¥ 0.

• COROLLARY: Suppose that λ ¥ 0. Then for the error e � uh � u one has

}Rhp�, sq}LppΩq ¤ TOL �R0ptq ñ }ep�, tq}LppΩq ¤ TOL,

}Rhp�, sq}LppΩq ¤ TOL �R1ptq ñ }ep�, tq}LppΩq ¤ TOL � tα�1,

R0ptq :�
°ℓ

i�1

�
qiptq tΓp1� αiqu

�1 t�αi � λ, R1ptq :�
°ℓ

i�1

�
� � � s � λ E1ptq,

E1ptq :� maxtτ, tuα�1,

R1ptq is explicit (but more intricate),

where τ ¡ 0 is an arbitrary parameter (and tα�1 can be replaced by E1ptq).

ADVANTAGE: no need to store past values of the sampled residual...
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• COROLLARY: Let L, for some λ P R, satisfy xLv, vy ¥ λ}v}2 @ v P H1
0 pΩq.

Suppose the exact solution u and its approximation uh are in L8p0, t; L2pΩqq X

W 1,8pϵ, t; L2pΩqq for any 0   ϵ   t ¤ T , and also in H1
0 pΩq for any t ¡ 0, while

uhp�, 0q � u0 and Rhp�, tq :� p
°ℓ

i�1

�
qiptqD

αi
t upx, tq

�
�Lquhp�, tq�fp�, tq. Then

}puh � uqp�, tq}L2pΩq ¤

�
ℓ̧

i�1

�
qiptqD

αi
t upx, tq

�
� λ

��1

}Rhp�, tq}L2pΩq

for t ¡ 0, assuming that the RHS exists.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Extensions to the spatial L8pΩq norm are also given.

• We also performed extensive numerical experiments (5 pages):

with various configurations of tqiptqu including q1ptq being initially 0;

in all considered cases, the time stepping algorithm produced desired error pro-
files and captured solution singularities.
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1. A-priori pointiwise-in-time error bounds
+ give lots of insight in what can be expected of the error;
+ a-priori chosen temporal meshes are our main competition, so to speak :)

2. Review of N. Kopteva, Pointwise-in-time a posteriori error control for time-
fractional parabolic equations, Appl. Math. Lett., 123 (2022), 107515.

3. RECENT EXTENSIONS:

+ N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient
multiterm time-fractional subdiffusion equations, J. Sci. Comput., (2022).

+ S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for
higher-order discretizations of time-fractional parabolic equations, J. Comput.
Appl. Math., volume 427 (2023), 115122.

+ Stable implementation is also addressed in the latter
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• Our adaptive algorithm is essentially independent of the method (or its order) and, additionally,
does not require a preliminary a-priori error analysis either of the exact solution or its numerical
approximation. The latter may be important if the a-priori error analysis is lacking (such as for
collocation methods) or limited to, e.g., uniform meshes.

• We demonstrate that high-order methods (incl. continuous collocation methods of order up to as
high as 8) exhibit a huge improvement in the accuracy when the time steps are chosen adaptively.
In fact, our algorithm yields optimal convergence rates of order q�α, where q denotes the order
of the method, either globally in time or in positive time (depending on the desired error profile
used by the algorithm). At the same time, the algorithm is capable of capturing both initial
singularities and local shocks/peaks in the solution.

• We make a few subtle improvements in the original version of the time stepping algorithm that
substantially reduce the computational time. In particular, we modify the choice and search for
a suitable initial time step, and also numerically test the algorithm parameters.

• We provide clear and specific recommendations on the stable and efficient implementation of
the resulting algorithm, which are essential, and not at all straightforward, in the context of
higher-order methods. Hence, we obtain numerically stable and efficient implementations for
all considered methods (including computations of their residuals) with α at least within the
range between 0.1 and 0.999 and for values of TOL as small as 10�8.
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Test problem. Dα
t u �∆u � f inp0, 1q � p0, 1q with the exact solution upx, tq �

ptα � t2 � 1qx p1� xq (which exhibits a typical singularity at t � 0) for t P p0, 1s.

Comparison of uniform v adaptive temporal grids:
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Figure 4: L8p0, T ; L8pΩqq errors for various methods vs. number of time steps M for α � 0.4 on
uniform meshes (left), and adaptive meshes (right) with residual barrier R0, λ � π2, and ω � λ{8

• We demonstrate that high-order methods (incl. continuous collocation methods of order up
to as high as 8) exhibit a huge improvement in the accuracy when the time steps are chosen
adaptively. In fact, our algorithm yields optimal convergence rates of order q � α, where q

denotes the order of the method, either globally in time or in positive time (depending on the
desired error profile used by the algorithm).
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Test problem. Dα
t u �∆u � f inp0, 1q � p0, 1q with the exact solution upx, tq �

ptα � t2 � 1qx p1� xq (which exhibits a typical singularity at t � 0) for t P p0, 1s.
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Figure 5: L8p0, T ; L8pΩqq errors for various methods vs. number of time steps M for α � 0.4,
residual barrier R0 with λ � π2 and ω � λ{8

• Our algorithm yields optimal convergence rates of order q � α, where q denotes the order of
the method, either globally in time or in positive time (depending on the desired error profile
used by the algorithm). At the same time, the algorithm is capable of capturing both initial
singularities and local shocks/peaks in the solution (see the paper...)
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Fractional derivative in L1-method:

Evaluation for Dα
t uhp�, tq for any tk�1   t ¤ tk:

Dα
t uhp�, tq �

1

Γp2� αq

�
�

k�1̧

j�1

Uj � Uj�1

τj
pt� sq1�α

��s�tj

s�tj�1
�

Uk � Uk�1

τk
pt� tk�1q

1�α

�

Numerical ISSUES:

• singularity at s � t in integral,

• cancellation at pt� sq1�α
��s�tj

s�tj�1
for j ! k and tj�1 � tj

i.e. the difference of two nearly equal numbers (assuming that pt � tjq �

pt� tj�1q, which leads to noticeable round-off errors!
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Stable implementation of L1-method:

• ISSUE: cancellation at pt� sq1�α
��s�tj

s�tj�1
for j ! k and tj�1 � tj

• Rewriting: Let djptq :� t� tj

pt� sq1�α
��s�tj

s�tj�1
� djptq

1�α�dj�1ptq
1�α � dj�1ptq

1�α �

��
djptq

dj�1ptq

	1�α

� 1




� dj�1ptq
1�α �

�
exp

�
p1� αq ln

�
djptq

dj�1ptq

		
� 1

	

• Taylor series

exppxq � 1 �
°8

n�0
xn

n!
� 1 �

°8
n�1

xn

n!
� expm1pxq (MatLab)

log1ppyq :� lnp1� yq �
°8

n�1p�1q
n�1 yn

n
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Stable implementation of L1-method (continued):

• ISSUE: cancellation at pt� sq1�α
��s�tj

s�tj�1
for j ! k and tj�1 � tj

• Rewriting: Let djptq :� t� tj

pt� sq1�α
��s�tj

s�tj�1
� dj�1ptq

1�α �
�
exp

�
p1� αq ln

�
djptq

dj�1ptq

		
� 1

	
Let

κjptq :� ln
�

djptq

dj�1ptq

	
� ln

�
1�

τj
dj�1ptq

	
� log1p

�
�

τj
dj�1ptq

	
.

Then
pt� sq1�α

��s�tj

s�tj�1
� dj�1ptq

1�α expm1 pp1� αqκjptqq .

Stable implementation for high-order collocation methods + L2 method:
– Similar issue, but becomes even more problematic...
– See the paper for clear and specific recommendations on the stable and efficient implementation
of the resulting algorithm for such methods (up to order 8). Hence, we obtain numerically stable
and efficient implementations for all considered methods (including computations of their residuals)
with α at least within the range between 0.1 and 0.999 and for values of TOL as small as 10�8.
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1. A-priori pointiwise-in-time error bounds
+ give lots of insight in what can be expected of the error;
+ a-priori chosen temporal meshes are our main competition, so to speak :)

2. Review of N. Kopteva, Pointwise-in-time a posteriori error control for time-
fractional parabolic equations, Appl. Math. Lett., 123 (2022), 107515.

3. RECENT EXTENSIONS:

+ N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient
multiterm time-fractional subdiffusion equations, J. Sci. Comput., (2022).

+ S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for
higher-order discretizations of time-fractional parabolic equations, J. Comput.
Appl. Math., volume 427 (2023), 115122.

+ Stable implementation is also addressed in the latter



ABSTRACT 40

I will start with a review of [1], which was presented at the 2021 edition of this workshop. For time-
fractional parabolic equations with a Caputo time derivative of order α P p0, 1q, we give pointwise-
in-time a posteriori error bounds in the spatial L2 and L8 norms. Hence, an adaptive time stepping
algorithm is applied for the L1 method, which yields optimal convergence rates 2�α in the presence
of solution singularities. Interestingly, the proposed time stepping algorithm yields the grids similar
to a-priori-constructed optimal grids in [2, 3].
In the main part of the talk, we shall discuss recent extensions of the proposed methodology to
variable-coefficient multiterm time-fractional subdiffusion equations [4], and to the case of higher-
order discretizations [5]. The stable implementation of the proposed algorithm will also be addressed
[5].

1. N. Kopteva, Pointwise-in-time a posteriori error control for time-fractional parabolic equations, Appl.
Math. Lett., 123 (2022), 107515.

2. N. Kopteva and X. Meng, Error analysis for a fractional-derivative parabolic problem on quasi-graded
meshes using barrier functions, SIAM J. Numer. Anal., 58 (2020), 1217–1238.

3. N. Kopteva, Error analysis for time-fractional semilinear parabolic equations using upper and lower
solutions, SIAM J. Numer. Anal., 58 (2020), 2212–2234.

4. N. Kopteva and M. Stynes, A posteriori error analysis for variable-coefficient multiterm time-fractional
subdiffusion equations, J. Sci. Comput., (2022).

5. S. Franz and N. Kopteva, Pointwise-in-time a posteriori error control for higher-order discretizations of
time-fractional parabolic equations, J. Comput. Appl. Math., volume 427 (2023), 115122.
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Thank you!


