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Research Background

People use the FDEs to provide an adequate and accurate description for
these anomalous diffusion, for example,

modeling chaotic dynamic of classical conservation systems;

groundwater contaminant transport;

turbulent flow;

applications in biology, finance, image processing, physics and flow
in human meniscus;

etc.
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Research Background

A closed-form analytical solution is usually not available, and numerical
methods have become an important means for reliably and effectively
computing approximate solution for fractional diffusion equations.

There are many research results on numerical methods for FDEs. To
obtain the numerical solutions, it usually needs two steps,

Step 1. Discretization: finite difference methods, finite element
methods, finite volume methods, spectral methods, etc.

Step 2. Solution of the discrete systems: direct methods,
(preconditioned) iteration methods, etc.
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Step 1. Discretization

The finite difference method is a powerful tool and widely used to solve
the DEs as well as the FDEs in science and engineering, which is also easy
to be understood. Meanwhile, the implementation of the finite difference
scheme is simple and easy to be put into practice in computer programs.
The work on the finite difference method for FDEs are very rich.

Classic finite difference schemes for FDEs:

Grünwald-Letnikov formula is often unconditionally unstable [1]

Shifted Grünwald formula is often unconditionally stable [2]

The shifted finite difference formulas of Grünwald-Letnikov type: the
coefficient matrices have Toeplitz-like structure [3]

Fractional centered difference formula is unconditionally stable [4]

Weighted average finite difference scheme [5]

etc.

1Meerschaert M M, Tadjeran C. J., Comput. Appl. Math. 172(1)(2004)65-77.
2Meerschaert M M, Tadjeran C., Appl. Numer. Math. 56(1)(2006) 80-90.
3Wang H, Wang K, Sircar T., J. Comput. Phys. 229(21) (2010) 8095-8104.
4Çelik C, Duman M., J. Comput. Phys. 231(4)(2012) 1743-1750.
5Sousa E, Li C., Appl. Numer. Math. 90 (2015) 22-37.
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Fast solution methods for the discretization systems

Preconditioned iteration methods for one-dimensional (1D) spatial
fractional diffusion equations:

Circulant preconditioner [6]

Approximate inverse preconditioner and scaled-circulant
preconditioner [7,8]

Banded preconditioners and splitting preconditioner [9,10]

Structure preserving preconditioners [11]

Splitting iteration methods [12,13,14]

6Lei S L, Sun H W., J. Comput. Phys. 242(2013) 715-725.
7Pan JY, Ke RH, Ng MK and Sun HW., SIAM J. Sci. Comput. 36(6)(2014) A2698-A2719.
8Bai Z Z, Lu K Y, Pan J Y., Numer. Linear Algebra Appl. 2017, 24(4)(2017)e2093.
9Lin F R, Yang S W, Jin X Q., J. Comput. Phys. 256 (2014) 109-117.

10Lin XL, Ng MK, Sun HW., SIAM J. Matrix Anal. A. 38(4)(2017)1580-1614.
11Donatelli M, Mazza M, Serra-Capizzano S., J. Comput. Phys. 307(2016) 262-279.
12Bai ZZ, Lu KY, Pan JY., Numer. Linear Algebra Appl. 24(4)(2017) e2093.
13Bai ZZ, Lu KY., BIT 59(1)(2019)1-33.
14Bai ZZ, Lu KY., Numer. Linear Algebra Appl. 27(1)(2020) e2274.
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Fast solution methods for the discretization systems

Preconditioned iteration methods for two-dimensional (2D) spatial
fractional diffusion equations:

Banded preconditioners [15 ]

Fast matrix splitting preconditioners [16]

ADI-based matrix splitting preconditioning method [17]

Multilevel circulant preconditioner [18]

τ-preconditioner[19]

Kronecker product splitting preconditioner[20]

etc.

15Jin XQ, Lin FR, Zhao Z., Commun. Comput. Phys. 18(2)(2015)469-488.
16Bai ZZ, Lu KY., J. Comput. Phys. 404 (2020) 109117.
17Tang SP, Huang YM., Comput. Math. Appl. 144(2023)210-220.
18Lei SL, Chen X, Zhang X., E. Asian J. Appl. Math. 6(2)(2016)109-130.
19Lin X, Huang X, Ng M K, Sun HW., Numer. Algorithms 92(1)(2023)795-813.
20Chen H, Lv W, Zhang T., J. Comput. Phys. 360(2018)1-14.
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Research Object

Consider the numerical solutions for spatial fractional diffusion equations
(FDEs) of the form











d(x, t)
∂ u(x, t)
∂ t

=
∂ u(x, t)
∂+xβ

+
∂ u(x, t)
∂−xβ

+ f (x, t), (x, t)∈Ω× (0, T ],

u(x, t) = 0, (x, t)∈ ∂ Ω× (0, T ],

u(x, 0) = u0(x), x ∈Ω,

(1.1)

where d(x, t) is a prescribed nonnegative function, the fractional order
β ∈ (1, 2), f (x, t) is the source term.
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Research Object

Here the left Riemann-Liouville (R-L)and the right R-L fractional
derivatives ∂ u(x,t)

∂+xβ
and ∂ u(x,t)

∂−xβ
for Ω= [xL, xR] are defined in the

Grünwald-Letnikov form as[21] :

∂ u(x, t)
∂+xβ

= lim
h→0+

1

hβ

b(x−xL)/hc
∑

k=0

g (β )k u(x−kh, t),

∂ u(x, t)
∂−xβ

= lim
h→0+

1

hβ

b(xR−x)/hc
∑

k=0

g (β )k u(x+kh, t),

where bxc denotes the floor of x, and the coefficient g (β )k are defined as
follows:

g (β )0 = 1, g (β )k =
(−1)k

k!
β (β −1) . . . (β −k+1), k= 1, 2, . . . . (1.2)

21I. Podlubny., IEEE Trans. Autom. Control, 44(1):208õ214, 1999.
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Discretization

Let
u(m)i = u(xi, tm), d(m)i = d(xi, tm) and f (m)i = f (xi, tm).

Using the shifted Grünwald-Letnikov approximations [22, 23]:

∂ βu(xi, tm)
∂+xβ

=
1

hβ

i+1
∑

k=0

g (β )k u(xi−k+1, tm)+O (h),

∂ βu(xi, tm)
∂−xβ

=
1

hβ

N−i+2
∑

k=0

g (β )k u(xi+k−1, tm)+O (h),

and a standard first-order time difference quotient, we obtain the
following implicit finite difference scheme, which is unconditionally
stable (i= 1, 2, . . . , N , m= 0, 1, 2, . . . , M −1):

d(m+1)
i

u(m+1)
i −u(m)i

4t
−

1

hβ

i+1
∑

k=0

g (β )k u(m+1)
i−k+1−

1

hβ

N−i+2
∑

k=0

g (β )k u(m+1)
i+k−1 = f (m+1)

i . (2.1)

22M. M. Meerschaert and C. Tadjeran., J. Comput. Appl. Math. 172(1):65õ77, 2004.
23M. M. Meerschaert and C. Tadjeran., Appl. Numer. Math., 56(1):80õ90, 2006.
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Discretization

By employing the boundary condition u(m)0 = u(m)N+1 = 0 and the denotation

u(m) = [u(m)1 , u(m)2 , . . . , u(m)N ]
T , f(m) = [f (m)1 , f (m)2 , . . . , f (m)N ]T ,

the numerical scheme (2.1) can be rewritten in matrix form as

A(m+1)u(m+1) = (D(m+1)+T )u(m+1) =4tf(m+1)+D(m+1)u(m), m= 0, 1, 2, . . . , M−1,
(2.2)

where D(m+1) = diag(d(m+1)
1 , d(m+1)

2 , . . . , d(m+1)
n ) is a diagonal matrix and

T =
4t

hβ
(Tβ +T T

β )

with

Tβ =−





















g (β )1 g (β )0 0 . . . 0 0

g (β )2 g (β )1 g (β )0 0 . . . 0
...

...
...

...
...

g (β )N−1

...
...

... g (β )0

g (β )N g (β )N−1 . . . . . . g (β )2 g (β )1
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Discretization

It can be easily seen from the previous section that, at each temporal step,
one requires to solve the discretized linear system (2.2), whose coefficient
matrix A(m+1) =D(m+1)+T is a diagonal-plus-Toeplitz matrix.
Therefore, we focus on an efficient preconditioning technique for the
matrix A∈RN×N of the form

A=D+T , (2.3)

where D ∈RN×N is a diagonal matrix of nonnegative diagonal elements,
and T ∈RN×N is a SPD Toeplitz matrix.
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Existing splitting methods and preconditioners

The DTS Iteration Method and the DCS preconditioner[24]:

(

(αI +D)uk+ 1
2 = (αI −T )uk+b,

(αI +T )uk+1 = (αI −D)uk+ 1
2 +b.

MDCS =
1

2α
(αI +D)(αI +C).

The diagonal and circulant or skew-circulant splitting
preconditioners[25];

The lopsided scaled DTS preconditioner[26];

The dominant Hermitian splitting iteration method[27];

etc.

24Z.-Z. Bai, K.-Y. Lu, and J.-Y. Pan, Numer. Linear Algebra Appl., 24(4):e2093, 2018.
25K.-Y. Lu, Comput. Appl. Math. 37: 4196õ4218, 2018.
26S.-P. Tang, Y.-M. Huang, Appl Math Lett 131, 108022, 2022.
27K.-Y. Lu, D.-X. Xie, F. Chen, G.V. Muratova, Appl. Numer. Math. 164: 15-28, 2021.
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Existing iteration methods and preconditioners

Pan, Ke, Ng and Sun introduce the preconditioner P1 with [28]

P−1
1 =

N
∑

i=1

eie
T
i K−1

i

based on the fact eT
i A= eT

i Ki, where ei is the ith column of the identity
matrix I , Ki = diI+T , i= 1, 2, . . . , N . One can use a circulant matrix, such as
the Strang circulant matrix [29], to approximate the Toeplitz matrix Ki.
Therefore, we can obtain the preconditioner PC with

P−1
C =

N
∑

i=1

eie
T
i C−1

i ,

where Ci = diI +C, i= 1, 2, . . . , N , with C being the Strang circulant
approximation of the Toeplitz matrix T .

28J.-Y. Pan, R.-H. Ke, M. K. Ng, and H.-W. Sun., SIAM J. Sci. Comput., 36(6):A2698õA2719,
2014.

29R. H. Chan and G. Strang., SIAM J. Sci. Stat. Comput., 10(1):104õ119, 1989.
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τmatrix

Because T is an SPD Toeplitz matrix in the linear system (2.2) [30], we can
use the τmatrix τ(T ), which is discussed in [31] to approximate the matrix
T .
As the first column of T is −(2g (β )1 , g (β )0 + g (β )2 , g (β )3 , . . . , g (β )N )T , then the τ
matrix τ(T ) can be obtained by using the Hankel correction[32] :

τ(T ) = T −HC(T ), (3.1)

where HC(T ) is the Hankel matrix with the first column and the last
column being

−(g (β )3 , g (β )4 , . . . , g (β )N , 0, 0)T and − (0, 0, g (β )N , . . . , g (β )4 , g (β )3 )
T ,

respectively.

30Z.-Z. Bai, K.-Y. Lu, and J.-Y. Pan, Numer. Linear Algebra Appl., 24(4):e2093, 2018.
31S. Serra., Math. Comp., 68(226):793õ803, 1999.
32D. Bini and F. Benedetto, In Proceedings of the Second Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 220õ223. ACM, 1990.
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Main idea

Therefore, we can easily obtain that the first column of the τmatrix τ(T ) is

− (2g (β )1 − g (β )3 , g (β )0 + g (β )2 − g (β )4 , g (β )3 − g (β )5 , . . . , g (β )N−2− g (β )N , g (β )N−1, g (β )N )
T . (3.2)

It’s known that the τmatrix τ(T ) can be diagonalized as,

τ(T ) = SNΛSN , SN =
�

Ç

2

N +1
· sin

πij

N +1

�

, i, j= 1, 2, . . . , N ,

and
Λ= diag(λ1,λ2, . . . ,λN ),

where λi =
∑N

j=1 τj sin(jξi)

sinξi
with (τ1,τ2, . . . ,τN )T being the first column of τ(T )

and ξi = πi
N+1

, SN is the discrete sine transform matrix of order N .
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τmatrix

Obviously, Tj = djI +τ(T ) is also a τmatrix. Replacing the SPD Toeplitz
matrix T by the τ-matrix Ti, we obtain the τmatrix-based preconditioner
P2 with

P−1
2 =

N
∑

i=1

eie
T
i T−1

i . (3.3)

Consider a small number l<<N of values {x̃t}lt=1 ⊂ {xi}Ni=1 such that it
covers most of the range of values of {xi}Ni=1.
Define the function qk(x) = 1

λk+d(x) , where λk ∈ sp(τ(T )) = {λ1,λ2, . . . ,λN},
k= 1, 2, . . . , N .
Let

pk(x) =φ1(x)qk(x̃1)+φ2(x)qk(x̃2)+ . . .+φl(x)qk(x̃l) =
l
∑

s=1

φs(x)qk(x̃s)

be the piecewise linear interpolation for qk(x) based on the l(l<<N)
points.
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τmatrix based approximate inverse preconditioner

Substituting Tj = SΛjS, j= 1, 2, . . . , N , where S is the discrete sine transform
matrix and Λj is a diagonal matrix, whose diagonals are eigenvalues of Tj,
follows the interpolation to approximate T−1

j :

T−1
j = SΛ−1

j S= Sdiag(q1(xj), q2(xj), . . . , qN (xj))S

≈ Sdiag(p1(xj), p2(xj), . . . , pN (xj))S

= Sdiag(
l
∑

s=1

φs(xj)q1(x̃s),
l
∑

s=1

φs(xj)q2(x̃s), . . . ,
l
∑

s=1

φs(xj)qN (x̃s))S

= Sdiag(
l
∑

s=1

rs,jq1(x̃s),
l
∑

s=1

rs,jq2(x̃s), . . . ,
l
∑

s=1

rs,jqN (x̃s))S

= S
l
∑

s=1

rs,jdiag(q1(x̃s), q2(x̃s), . . . , qN (x̃s))S

¬ S
�

l
∑

s=1

rs,jΛ̃−1
s

�

S,

where rs,j =φs(xj).
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τmatrix based approximate inverse preconditioner

By substituting the approximation of T−1
i from above into (3.3), it follows

the approximation of P−1
2 as

P−1
3 =

N
∑

i=1

eie
T
i S(

l
∑

s=1

rs,iΛ̃−1
s )S

=
l
∑

s=1

(
N
∑

i=1

eie
T
i rs,i)SΛ̃−1

s )S

=
l
∑

s=1

ΦsSΛ̃−1
s S,

where
Φs = diag(ϕs(x1),ϕs(x2), . . . ,ϕs(xN ))

and
Λ̃−1

s = diag(q1(x̃s), q2(x̃s), . . . , qN (x̃s)),

s= 1, 2, . . . , l, are diagonal matrices.
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Spectral properties of the preconditioned matrix P−1
3 A

Definition

Let A= (ai,j)i,j∈I be a matrix, where I =Z,N or {1, 2, . . . , N}, then we say A
belongs to the classLs, if

|ai,j| ≤
c

(1+ |i− j|)s

for s> 1, and some constant c> 0.

Lemma

It holds[a]:

g (β )k = (1−
β +1

k
)g (β )k−1, k= 1, 2, . . . ,

g (β )0 = 1, g (β )1 =−β < 0, 1> g (β )2 > g (β )3 > . . .> 0 and
∞
∑

k=0

g (β )k = 0,
m
∑

k=0

g (β )k < 0, 1≤m<∞.

aM. M. Meerschaert and C. Tadjeran., J. Comput. Appl. Math. 172(1):65õ77, 2004.
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Spectral properties of the preconditioned matrix P−1
3 A

Lemma

g (β )k =
1

Γ(−β )kβ+1
(1+O (

1

k
)),

where Γ(x) is the Gamma function[a].

aH. Wang, K.-X. Wang, and T. Sircar., J. Comput. Phys., 229(21):8095õ8104, 2010.

Theorem

|Lm,n| ≤
c0

(1+ |m−n|)β+1
,

where c0 is a positive constant and L= (Lm,n)m,n∈I with I = {1, 2, . . . , N} can
be T, A, Ki, Tβ , T−1, A−1, K−1

i and T−1
β
[a].

aS. Jaffard., volume 7, pages 461õ476. Elsevier, 1990.
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Spectral properties of the preconditioned matrix P−1
3 A

Lemma

Let β ∈ (1, 2) and L ∈Lβ+1. Then ∃ a constant$ s.t. ‖L‖∞ ≤$.

Theorem

Let Ti = diI +τ(T ) be defined previously, then we have

‖T−1
i ‖∞ ≤

1

c0
,

where c0 =min1≤i≤N{di+
4t
hβ
·min{g (β )2 , g (β )N−k+2}}.

In the following of this section, we will concentrate on the spectral
properties of the preconditioned P−1

3 A. As

P−1
3 −A−1 = P−1

3 −P−1
2 +P−1

2 −P−1
1 +P−1

1 −A−1,

then we will focus on the properties of P−1
3 −P−1

2 , P−1
2 −P−1

1 and P−1
1 −A−1.
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The approximation property of P1 and A

Theorem

Suppose d(x)∈C1[xL, xR]. For any given ε > 0, ∃ a constant c1 and ∃ an
integer N1, such that l≥N1 and

‖P−1
1 −A−1‖∞ ≤ c1 max

1≤i≤N
4(xi, l)+ ε,

where4(xi, l) =maxi−l≤k≤i+l |xk−xi|= (l−1)h.
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The approximation property of P2 and P1

Theorem

The approximation P−1
2 to P−1

1 satisfies

P−1
2 −P−1

1 = E2+F2,

where E2 and F2 are of small norm and of low rank, respectively, i.e.,
‖E2‖< c2 · ε and rank(F2)≤ 4ς.
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The approximation property of P2 and A

Theorem

Let P2 and A be defined previously, then ∃N2, such that for N >N2, it holds

P−1
2 −A−1 = EP2 +FP2 ,

where EP2 and FP2 are of small norm and of low rank, respectively.
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The approximation property of P3 and P2

Theorem

Assume l�N, then we can rewrite P−1
3 , P−1

2 and P−1
3 −P−1

2 as X +Y +Z
with X of off-diagonal decay property, Y of a small norm matrix, and Z of a
low rank matrix.
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The approximation property of P3 and A

Theorem

Suppose$ is sufficiently small and l�N. Denote by
$=max1≤i≤N max1≤j≤N{|pλj (di)−qλj (di)|}. Then for any given ε > 0,
∃N3 > 0 (independent of N) such that

P−1
3 −P−1

2 = E3+F3,

where E3 and F3 satisfy ‖E3‖∞ ≤$(2N3+1)+ε and of a low rank matrix,
respectively.

Theorem

Let P3 and A be defined previously, then ∃ an integer N3, such that for
N >N3, it holds

P−1
3 −A−1 = EP3 +FP3 ,

where EP3 and FP3 are of small norm and of low rank, respectively.
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Experimental settings

The preconditioners used in our experiments are the identity matrix
preconditioner (denoted as ‘I’), the preconditioner PDCS, which is defined
as

PDCS =
1

2α
(αI +D)(αI +C),

and the preconditioner B3, which is defined as

B−1
3 =

l
∑

j=1

ΦjFΛ̃−1
j F∗,

where
Φj = diag(ϕj(x1),ϕj(x2), . . . ,ϕj(xN ))

with ϕj(xi)(i= 1, 2, . . . , N) being the interpolation coefficients and
Λ̃−1

j = diag(q1(x̃j), q2(x̃j), . . . , qN (x̃j)), j= 1, 2, . . . , l.
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Experimental settings

The circulant matrix corresponding to the preconditioners B3 and
PDCS is chosen as the Strang’s circulant approximations of T .

To be accordance with the preconditioner B3, we choose the
interpolation nodes in P3 as

x̃j = b
N −1

l̃−1
c · j+1, j= 0, 1, 2, . . . , l̃−1,

where bxc denotes the floor of x.

All the tests are performed in MATLAB R2017a [version 9.2.0.538062]
in double precision, on a personal computer with 2.40GHz central
processing unit (Intel(R) Core(TM) 2 Duo CPU), 4.00 GB memory and
Windows 64-bit operating system.

The initial guess is chosen to be zero vector and the iteration is
terminated once the current iterate u(k) satisfies

RES=
‖b−Au(k)‖2

‖b‖2
< 10−6.
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Example 1

Example

Consider the FDE (1.1) with the exact solution u(x, t) = t2x4(2−x)4,
[xL, xR] = [0, 2], and T = 1. The diffusion coefficient is given by

d(x, t) =
e−(0.8x+κ)

(1+ t)
,

and the source term is

f (x, t) = 2tx4(2−x)4d(x, t)−σβ t2
9
∑

i=5

qiΓ(i)(xi−1−β )+ (2−x)i−1−β )
Γ(i−β )

,

q5 = 16, q6 =−32, q7 = 24, q8 =−8, q9 = 1.

The parameter κ is a given constant andσβ =− 1

2 cos( πβ
2
)
> 0.
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Numerical results

Table: Numerical results for preconditioned GMRES iteration methods for
Example 1 (κ= 12,β = 1.2).

Pre.: I PDCS B3 P3

N l= 20 l= 24 l= 20 l= 24
28 IT 116 6 6 6 4 4

CPU 0.05 0.008 0.008 0.008 0.008 0.008
29 IT 186 7 6 6 4 4

CPU 0.14 0.02 0.02 0.02 0.02 0.02
210 IT 290 7 7 7 5 5

CPU 0.44 0.03 0.03 0.04 0.03 0.03
211 IT 444 7 7 7 5 5

CPU 1.8 0.06 0.07 0.07 0.06 0.06
212 IT 677 7 7 7 5 5

CPU 150.41 0.26 0.31 0.38 0.33 0.28
213 IT 1029 7 7 7 5 5

CPU 492.34 0.56 0.65 0.65 0.61 0.62
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Numerical results

Table: Numerical results for preconditioned GMRES iteration methods for
Example 1 (κ= 1,β = 1.2).

Pre.: I PDCS B3 P3

N l= 20 l= 24 l= 20 l= 24
28 IT 57 8 6 6 4 4

CPU 0.02 0.008 0.008 0.008 0.008 0.008
29 IT 66 8 6 6 4 4

CPU 0.06 0.02 0.03 0.03 0.02 0.02
210 IT 74 8 6 6 4 4

CPU 0.11 0.04 0.04 0.04 0.03 0.03
211 IT 78 8 6 6 4 3

CPU 0.33 0.06 0.08 0.08 0.06 0.06
212 IT 82 7 5 5 3 3

CPU 18.49 0.31 0.31 0.31 0.22 0.22
213 IT 84 7 5 5 3 3

CPU 43.81 0.61 0.62 0.62 0.61 0.61
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Numerical results

Table: Numerical results for preconditioned GMRES iteration methods for
Example 1 (κ= 0.1,β = 1.8).

Pre.: I PDCS B3 P3

N l= 20 l= 24 l= 20 l= 24
28 IT 133 8 7 7 5 4

CPU 0.05 0.008 0.008 0.008 0.008 0.008
29 IT 199 9 7 7 4 4

CPU 0.18 0.02 0.03 0.03 0.02 0.02
210 IT 300 8 6 6 4 4

CPU 0.45 0.03 0.03 0.04 0.03 0.03
211 IT 431 8 6 6 4 4

CPU 1.76 0.07 0.07 0.08 0.06 0.06
212 IT 594 7 6 6 4 3

CPU 126.22 0.31 0.32 0.32 0.23 0.23
213 IT 797 7 5 5 3 3

CPU 387.91 0.56 0.65 0.65 0.61 0.61
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Example 2

Example

Consider the 2D fractional diffusion equation















d(x, y, t)
∂ u(x, y, t)
∂ t

−
∂ β1 u(x, y, t)
∂+xβ1

−
∂ β2 u(x, y, t)
∂+yβ2

= f (x, y, t), (x, y, t)∈Ω× (0, T ],

u(x, y, t) = 0, (x, y, t)∈ ∂ Ω× (0, T ],

u(x, y, 0) = u0(x, y), (x, y)∈ Ω̄.

with the coefficient function being

d(x, y, t) =
e−(sin(40x)+s)(sin(40y)+s)

(2+ t+ esin(t))
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Example 2

Example

and the source term being

f (x, y, t) =2tx4(2−x)4y4(2− y)4d(x, y, t)

−σβ1 t2y4(2− y)4
9
∑

i=5

qiΓ(i)(xi−1−β1 +(2−x)i−1−β1 )
Γ(i−β1)

−σβ2 t2y4(2− y)4
9
∑

i=5

qiΓ(i)(xi−1−β2 +(2−x)i−1−β2 )
Γ(i−β2)

,

where q5 = 16, q6 =−32, q7 = 24, q8 =−8, q9 = 1. The exact solution of this
equation is u(x, y, t) = t2x4(2−x)4y4(2− y)4 and
Ω= [xL, xR]× [yD, yU ] = [0, 2]× [0, 2] and T = 1. σβ1 =−

1

2 cos( πβ1
2
)

and

σβ2 =−
1

2 cos( πβ2
2
)
.
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Settings

We report the iteration counts and computing times of the proposed
methods with respect to the following choices of β1 and β2:
Case I: (β1,β2)=(1.2, 1.2),
Case II: (β1,β2)=(1.2, 1.5),
Case III: (β1,β2)=(1.2, 1.8),
Case IV: (β1,β2)=(1.5, 1.5),
Case V: (β1,β2)=(1.5, 1.8), and
Case VI: (β1,β2)=(1.8, 1.8).
Besides, the parameters s in coefficients are chosen as s= 5 and s= 1.
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Numerical results

Table: Numerical results.

s= 5 s= 1

Case N Pre.: I PDCS B3 P3 I PDCS B3 P3
I 25 IT 58 14 14 5 58 15 16 7

CPU 0.17 0.12 0.12 0.05 0.17 0.12 0.13 0.05
26 IT 93 15 15 5 63 18 18 8

CPU 2.35 1.05 1.05 0.29 2.35 1.36 1.36 0.41
27 IT 145 18 18 6 79 18 20 10

CPU 19.68 10.36 10.36 3.63 19.68 10.36 11.23 5.39
II 25 IT 70 17 17 5 70 17 17 5

CPU 0.22 0.13 0.13 0.05 0.22 0.13 0.13 0.05
26 IT 117 20 20 5 93 20 21 8

CPU 3.18 1.52 1.53 0.29 3.18 1.52 1.63 0.41
27 IT 196 23 23 6 129 23 25 9

CPU 22.77 12.73 12.73 3.63 22.77 12.73 14.21 4.98
III 25 IT 96 21 21 4 96 21 20 5

CPU 0.32 0.17 0.17 0.04 0.32 0.17 0.17 0.04
26 IT 178 26 26 5 156 26 26 7

CPU 5.59 1.96 1.96 0.29 5.59 1.96 1.96 0.34
27 IT 332 31 31 5 253 32 34 8

CPU 41.59 19.64 19.64 2.93 41.59 20.73 21.46 4.47
IV 25 IT 59 14 14 5 59 15 15 5

CPU 0.23 0.12 0.12 0.05 0.23 0.13 0.13 0.05
26 IT 101 16 15 5 90 18 18 7

CPU 2.83 1.15 1.05 0.29 2.83 1.36 1.36 0.33
27 IT 171 19 19 5 137 23 22 8

CPU 20.73 10.93 10.93 2.93 20.73 12.73 12.51 4.47
V 25 IT 77 18 18 5 77 18 17 5

CPU 0.29 0.14 0.14 0.05 0.29 0.14 0.13 0.05
26 IT 145 21 21 5 136 22 21 6

CPU 4.67 1.63 1.63 0.29 4.67 1.71 1.63 0.31
27 IT 267 24 24 5 227 27 27 7

CPU 34.22 13.88 13.88 2.93 34.22 15.23 15.23 3.96
VI 25 IT 71 15 14 4 71 16 15 5

CPU 0.26 0.12 0.12 0.05 0.26 0.13 0.12 0.05
26 IT 132 17 17 4 128 20 19 6

CPU 3.48 1.28 1.28 0.27 3.48 1.56 1.49 0.31
27 IT 246 20 20 4 230 25 24 7

CPU 33.55 11.23 11.23 2.45 33.55 14.21 13.88 3.94
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Example 3

Example

We consider the 2D spatial fractional diffusion equation (1.1) defined on
the domain [0, 2]× [0, 2]× (0, 1), in which

d(x1, x2, t) = |sin(2πx1)|cosh(ax2+bπ)

and the source term is

f (x, t) = 2tx1x2(1−x1)(1−x2)d(x1, x2, t)−(t2+0.01)[x2(1−x2)g(x1,β1)+x1(1−x1)g(x2,β2)],

with

g(ς,β ) =
ς1−β +(1−ς)1−β

Γ(2−β )
−

2 ∗ς2−β +2 ∗ (1−ς)2−β

Γ(3−β )
,

where Γ(·) is the Gamma function.
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Example 3

Example

In addition, the initial condition is chosen as

u(x1, x2, 0) = 0.01x1x2(1−x1)(1−x2).

The true solution to the corresponding FDE is given by
u(x1, x2, t) = (t2+0.01)x1x2(1−x1)(1−x2).
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Numerical results

Table: Results

a= 8 a= 1 a= 0.1

Case Pre.: PDCS B3 P3 PDCS B3 P3 PDCS B3 P3
I 25 IT 12 12 8 10 12 8 8 10 7

CPU 0.09 0.09 0.05 0.08 0.09 0.05 0.05 0.08 0.05
26 IT 14 14 9 11 13 8 10 11 7

CPU 0.94 0.94 0.48 0.61 0.83 0.41 0.49 0.51 0.34
27 IT 17 19 12 12 16 9 11 14 9

CPU 9.82 10.93 6.31 6.33 8.93 4.98 5.86 8.03 4.98
II 25 IT 13 12 8 11 12 7 10 11 7

CPU 0.09 0.09 0.05 0.09 0.09 0.05 0.08 0.09 0.05
26 IT 16 13 8 15 14 7 12 12 7

CPU 1.15 0.83 0.41 1.05 0.94 0.35 0.66 0.66 0.34
27 IT 19 16 10 17 16 8 15 14 9

CPU 10.93 8.93 5.59 9.28 8.93 4.46 8.59 8.03 4.98
III 25 IT 17 14 8 15 16 6 14 14 6

CPU 0.13 0.12 0.05 0.12 0.13 0.04 0.12 0.12 0.04
26 IT 21 16 8 17 19 7 17 17 6

CPU 1.63 1.15 0.41 1.28 1.49 0.34 1.16 1.17 0.31
27 IT 27 20 9 22 23 8 22 20 8

CPU 15.23 11.23 4.98 12.34 12.73 4.46 12.34 11.23 4.46
IV 25 IT 14 13 8 12 13 8 10 12 7

CPU 0.12 0.1 0.05 0.09 0.1 0.05 0.08 0.09 0.05
26 IT 17 16 8 15 15 7 11 14 7

CPU 1.28 1.15 0.41 1.05 1.05 0.34 0.61 0.94 0.34
27 IT 22 18 9 16 19 7 13 16 7

CPU 12.49 10.36 4.96 8.93 10.92 3.94 7.63 8.93 3.94
V 25 IT 15 14 7 13 15 7 12 13 7

CPU 0.13 0.12 0.05 0.11 0.13 0.05 0.09 0.11 0.05
26 IT 19 16 8 15 17 7 14 15 7

CPU 1.49 1.15 0.41 1.05 1.28 0.35 0.94 1.05 0.35
27 IT 22 18 8 18 21 7 15 18 7

CPU 12.49 10.36 4.46 10.36 12.08 3.94 8.59 10.36 3.94
VI 25 IT 17 15 7 14 16 7 12 14 7

CPU 0.16 0.14 0.05 0.12 0.14 0.05 0.09 0.12 0.05
26 IT 22 18 8 17 19 8 15 17 7

CPU 1.71 1.36 0.41 1.28 1.49 0.41 1.05 1.28 0.34
27 IT 29 22 8 21 24 8 18 20 7

CPU 17.44 12.49 4.46 12.08 13.88 4.46 10.36 11.23 3.94
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Eigenvalues Distribution
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Eigenvalues Distribution
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Eigenvalues Distribution
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Eigenvalues Distribution
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Eigenvalues Distribution
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Eigenvalues Distribution
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Concluding remarks

We propose a TAI preconditioning technique for solving the
discretized linear systems with diagonal-plus-Toeplitz coefficient
matrix arising from the fractional diffusion equations.

By approximating the inverses of symmetric positive and definite
Toeplitz matrix with a τmatrix and combining them row-by-row, we
obtain a new preconditioning technique.

Theoretical analysis shows that when the new preconditioners are
used, the eigenvalues of the preconditioned matrices are tightly
clustered around unity.

We implement the numerical examples to show the efficiency of the
proposed preconditioning technique.



Introduction Discretization of FDEs τmatrix based approximate inverse preconditioning technique Spectral properties of the preconditioned matrix P−1
3 A Numerical experiments Concluding remarks

Thank you for your attention!
a�Õf!
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Thanks!
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