2-type difference scheme 00000 0000000 00 The Parallel-in-space method

Numerical experiments 0000 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary 0000

A bilateral preconditioning for an L2-type all-at-once system arising from time-space fractional PDEs

<u>Y.-L. Zhao</u>¹, X.-M. Gu²

¹Sichuan Normal University, Chengdu, P.R. China ²Southwestern University of Finance and Economics, Chengdu, P.R. China Why fractional models? L2-type difference scheme The Paralle 0 000000 000000 0000000 000000

he Parallel-in-space method

Numerical experiment 0000 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

2-type difference schem

The Parallel-in-space method

Numerical experimer

Summary 0000

Why fractional models?

 Recently, fractional models, due to their ability to model anomalous transport phenomena, have attracted considerable interest in the fields of science and engineering¹;

¹H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, *Commun. Nonlinear Sci. Numer. Simul.* 64(2018): 213-231.

.2-type difference schem

The Parallel-in-space method

Numerical experimer

Summary 0000

Why fractional models?

- Recently, fractional models, due to their ability to model anomalous transport phenomena, have attracted considerable interest in the fields of science and engineering¹;
- Traditional PDEs may not be adequate to describe the underlying phenomena;

¹H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, *Commun. Nonlinear Sci. Numer. Simul.* 64(2018): 213-231.

Summary 0000

Why fractional models?

- Recently, fractional models, due to their ability to model anomalous transport phenomena, have attracted considerable interest in the fields of science and engineering¹;
- Traditional PDEs may not be adequate to describe the underlying phenomena;
- Anomalous diffusion is a phenomenon connected with the interactions within complex and non-homogeneous backgrounds;

¹H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, Commun. Nonlinear Sci. Numer. Simul. 64(2018): 213-231.

2-type difference schem 00000 0000000 00 The Parallel-in-space method

Numerical experiment

Summary 0000

Why fractional models?

- Recently, fractional models, due to their ability to model anomalous transport phenomena, have attracted considerable interest in the fields of science and engineering¹;
- Traditional PDEs may not be adequate to describe the underlying phenomena;
- Anomalous diffusion is a phenomenon connected with the interactions within complex and non-homogeneous backgrounds;
- Time-space fractional diffusion equations can model the anomalous diffusion, that is, the suddiffusion in time and the superdiffusion in space simultaneously.

¹H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, Commun. Nonlinear Sci. Numer. Simul. 64(2018): 213-231.

Why fractional models? $_{\rm O}$

L2-type difference scheme

he Parallel-in-space method

Numerical experiment

(日) (四) (日) (日) (日)

Summary 0000

Outline

Why fractional models?

L2-type difference scheme Introduction

Time-stepping schemes Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

L2-type difference scheme

The Parallel-in-space method

Numerical experimer

Summary 0000

The Caputo fractional derivatives

Definition

Consider u(t) as an integrable function defined on (0, T), $(T \text{ is finite or } \infty)$, $0 < \alpha < 1$. Define

$$\partial_t^{\alpha} u(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{u'(\xi)}{(t-\xi)^{\alpha}} d\xi, \qquad (1)$$

is the Caputo fractional derivative and where $\Gamma(\cdot)$ is the Gamma function. When $\alpha \to 1$, then $\partial_t^{\alpha} \to \partial_t$.

 \checkmark M. Caputo, Linear Models of Dissipation whose Q is almost Frequency Independent-II, Geophys. J. Int., 13(5) (1967): 529-539.

L2-type difference scheme

The Parallel-in-space method

Numerical experimer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Summary 0000

The Riesz fractional derivative

Definition

Consider the function $u(x, \cdot)$ defined in \mathbb{R} , we define

$$\frac{\partial^{\beta}}{\partial |x|^{\beta}}u(x,\cdot) = -\frac{1}{2\cos\left(\frac{\beta\pi}{2}\right)\Gamma(2-\beta)}\frac{\partial^{2}}{\partial x^{2}}\int_{-\infty}^{\infty}|x-\zeta|^{1-\beta}u(\zeta,\cdot)d\zeta, (2)$$

where $1 < \beta < 2$. This is the so-called Riesz fractional derivative and if $\beta \rightarrow 2$, then $\frac{\partial^{\beta}}{\partial |x|^{\beta}} \rightarrow \frac{\partial^2}{\partial x^2}$.

 \checkmark V.J. Ervin, J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in \mathbb{R}^d , <u>Numer. Methods Partial Differ. Equ.</u>, 23(2) (2007): 256-281.

The time-space fractional Bloch-Torrey equation

In this talk, we consider the following initial-boundary value problem of the time-space fractional Bloch-Torrey equation:

$$\begin{cases} \partial_t^{\alpha} u(x,t) = \kappa \frac{\partial^{\beta} u(x,t)}{\partial |x|^{\beta}} + f(x,t), & x \in \Omega, \ t > 0, \\ u(x,0) = \phi(x), & x \in \Omega \cup \partial\Omega, \\ u(x,t) = 0, & x \in \Omega, \ t \ge 0, \end{cases}$$
(3)

where $0 < \alpha \leq 1$ and $1 < \beta \leq 2$ are the orders of the fractional derivatives appeared in Eq. (3) and $\kappa > 0$ is the diffusion coefficient. We set $\Omega = (a, b)$, $\Omega^c = \mathbb{R} \setminus \Omega$. f(x, t) is the known source term and $\phi(x)$ is a known function.

L2-type difference scheme

The Parallel-in-space method

Numerical experim

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary 0000

Review the previous work

The framework of establishing the numerical methods for Eq. (3):

Temporal discretization + Spatial discretization

- Temporal discretization:
 - L1 formula (Oldham & Spanier, Book74; Lin & Xu JCP07; Sun & Wu, ANM06);
 - L1-2 formula (Gao et al. JCP14, Lv & Xu, SISC16); L2-1 $_{\sigma}$ formula (Alikhanov, JCP15); L2-type formula (Alikhanov and Huang, AMC21).
 - Grünwald-Letnikov scheme (BDF1) and Lubich's convolution quadrature (i.e., BDFk, Lubich, SIMA86)
- Spatial discretization:
 - Finite difference method: fractional central difference formula, WSGD formula and related work.
 - Finite element method;
 - Finite volume method;
 - Spectral/collaction method.

Why fractional models? $_{\rm O}$

L2-type difference scheme

he Parallel-in-space method

Numerical experimer 0000 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

Our research objective

We want to make the current work consider the following characteristics:

- We present a second-order implicit numerical methods for (3) and prove our scheme is unconditional stable and convergent;
- Set up the parallel-in-space formulation of the proposed difference scheme and solve it iteratively and quickly;
- Analyze the preconditioned PinS iterative algorithm for solving the model (3).

Why fractional models? $_{\rm O}$

L2-type difference scheme

The Parallel-in-space method

Numerical experiment

イロト 不得 トイヨト イヨト ニヨー

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

L2-type difference scheme ○○○○○ ○●○○○○○○ ○○○ The Parallel-in-space method

Numerical experiment 0000 0000 Summary 0000

The high-order discretization of Caputo derivative (1) Partition the time domain by $t_m = m\tau_t$ ($\tau_t = \frac{T}{M}$, $m = 0, 1, \dots, M$). Let $u^m = u(x, t_m)$, then we discretize $\partial_t^{\alpha} u$ at $t = t_{m+1}$ for $1 \le m \le M - 1$ by using the L2-type formula [Alikhanov & Huang, AMC21]:

$$\partial_t^{\alpha} u(x, t_{m+1}) \approx \mathbb{D}_t^{\alpha} u(x, t_{m+1}) + \mathcal{O}(\tau_t^{3-\alpha}) \\ \triangleq \frac{\tau_t^{-\alpha}}{\Gamma(2-\alpha)} \sum_{s=0}^m c_{m-s}^{(\alpha)} [u^{s+1} - u^s] + \mathcal{O}(\tau_t^{3-\alpha}),$$
(4)

where for m = 1

$$c_s^{(\alpha)} = egin{cases} a_0^{(\alpha)} + b_0^{(\alpha)} + b_1^{(\alpha)}, & s = 0, \ a_1^{(\alpha)} - b_1^{(\alpha)} - b_0^{(\alpha)}, & s = 1, \end{cases}$$

for m = 2 $c_s^{(\alpha)} = \begin{cases} a_0^{(\alpha)} + b_0^{(\alpha)}, & s = 0, \\ a_1^{(\alpha)} + b_1^{(\alpha)} + b_2^{(\alpha)} - b_0^{(\alpha)}, & s = 1, \\ a_2^{(\alpha)} - b_2^{(\alpha)} - b_1^{(\alpha)}, & s = 2, \end{cases}$

odels?	L2-type difference scheme	The Parallel-in-space method	Numerical experiments	0
	000000	00000	0000	(
	0000000	000000	0000	

The high-order discretization of Caputo derivative (2)

for $m \geq 3$,

$$c_{s}^{(\alpha)} = \begin{cases} a_{0}^{(\alpha)} + b_{0}^{(\alpha)}, & s = 0, \\ a_{s}^{(\alpha)} + b_{s}^{(\alpha)} - b_{s-1}^{(\alpha)}, & 1 \le s \le m-2, \\ a_{m-1}^{(\alpha)} + b_{m-1}^{(\alpha)} + b_{m}^{(\alpha)} - b_{m-2}^{(\alpha)}, & s = m-1, \\ a_{m}^{(\alpha)} - b_{m}^{(\alpha)} - b_{m-1}^{(\alpha)}, & s = m, \end{cases}$$

with $a_{\ell}^{(\alpha)} = (\ell+1)^{1-\alpha} - \ell^{1-\alpha} \ (\ell \ge 0)$ and $b_{\ell}^{(\alpha)} = \frac{1}{2-\alpha} \left[(\ell+1)^{2-\alpha} - \ell^{2-\alpha} \right] - \frac{1}{2} \left[(\ell+1)^{1-\alpha} + \ell^{1-\alpha} \right], \quad \ell \ge 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

models?	L2-type difference scheme	The Parallel-in-space method	Numerical experiment
	000000	00000	0000
	0000000	000000	0000
	000	000	

The fractional central difference approximation (1) Denote

$$\Psi^{2+\alpha}(\mathbb{R}) = \left\{ y \middle| \int_{-\infty}^{+\infty} (1+|\omega|)^{2+\alpha} |\hat{y}(\omega)| d\omega < \infty, \ y \in L^1(\mathbb{R}) \right\},$$

where $\hat{y}(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} y(t) dt$ is the Fourier transform of y(t) and $i = \sqrt{-1}$. The Riesz fractional derivative at $x = x_i$ can be approximated by the 2nd fractional centered difference approximation [Çelik & Duman, JCP12], that is, for $u(x, \cdot) \in \Psi^{2+\alpha}(\mathbb{R})$,

$$\frac{\partial^{\beta} u(x_{i}, t)}{\partial |x|^{\beta}} = -h^{\beta} \sum_{k=-N+i}^{i} g_{k}^{(\beta)} u(x_{i-k}, t) + \mathcal{O}(h^{2})
= \delta_{x}^{\beta} u(x_{i}, t) + \mathcal{O}(h^{2}),$$
(5)

where

$$g_k^{(\beta)} = \frac{(-1)^k \Gamma(1+\beta)}{\Gamma(\beta/2-k+1) \Gamma(\beta/2+k+1)}, \quad k \in \mathbb{Z}.$$

 models?
 L2-type difference scheme
 The Parallel-in-space method
 Numerical experiments

 00000
 00000
 0000
 0000

 00000
 00000
 0000

 00000
 00000
 0000

 00000
 0000
 0000

 00000
 0000
 0000

Discretized mesh information

Discretize the space domain by $x_i = a + ih$ (h = (b - a)/N, $i = 0, 1, \dots, N$ and denote $x_{i+1/2} = (x_{i+1} + x_i)/2$ as the midpoint of the neighboring nodes x_{i+1} and x_i . We also consider the sets

$$\Omega_h = \{x_i | 0 \le i \le N\}, \quad \Omega_\tau = \{t_m | 0 \le m \le M\},$$

$$\Omega_{h,\tau} = \{(x_i, t_m) | 0 \le i \le N, \ 0 \le m \le M\}$$

and let $v = \{v_i^m | 0 \le i \le N, 0 \le m \le M\}$ be a grid function on $\Omega_{h\tau}$. We also consider the set $\mathcal{V}_h = \{v | v = (v_0, v_1, \cdots, v_{N-1}, v_N)\}$ of grid functions on Ω_h and provide it with the norm

$$\|v\|_{\infty} = \max_{0 \le i \le N} |v_i|.$$

L2-type difference scheme

The Parallel-in-space method

Numerical experime

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

Implicit difference schemes (1)

We define $u_i^m \approx u(x_i, t_m)$ and $f_i^m = f(x_i, t_m)$, the second-order implicit difference scheme for Eq. (3) reads

$$\begin{cases} \mathbb{D}_{t}^{\alpha} u_{i}^{m+1} = \kappa \delta_{x}^{\beta} u_{i}^{m+1} + f_{i}^{m+1}, & 1 \leq i \leq N-1, \ 1 \leq m \leq M-1, \\ u_{i}^{0} = \phi(x_{i}), & 1 \leq i \leq N-1, \\ u_{0}^{m} = u_{N}^{m} = 0, & 0 \leq m \leq M, \end{cases}$$
(6)

L2-type difference scheme

The Parallel-in-space method 00000 000000 000 Numerical experime

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

Implicit difference schemes (1)

We define $u_i^m \approx u(x_i, t_m)$ and $f_i^m = f(x_i, t_m)$, the second-order implicit difference scheme for Eq. (3) reads

$$\begin{cases} \mathbb{D}_{t}^{\alpha} u_{i}^{m+1} = \kappa \delta_{x}^{\beta} u_{i}^{m+1} + f_{i}^{m+1}, & 1 \leq i \leq N-1, \ 1 \leq m \leq M-1, \\ u_{i}^{0} = \phi(x_{i}), & 1 \leq i \leq N-1, \\ u_{0}^{m} = u_{N}^{m} = 0, & 0 \leq m \leq M, \end{cases}$$
(6)

Notice that the above scheme is not a self-starting scheme because u_i^1 is unknown.

L2-type difference scheme

The Parallel-in-space method 00000 000000 000 Numerical experime

Summary 0000

Implicit difference schemes (1)

We define $u_i^m \approx u(x_i, t_m)$ and $f_i^m = f(x_i, t_m)$, the second-order implicit difference scheme for Eq. (3) reads

$$\begin{cases} \mathbb{D}_{t}^{\alpha} u_{i}^{m+1} = \kappa \delta_{x}^{\beta} u_{i}^{m+1} + f_{i}^{m+1}, & 1 \leq i \leq N-1, \ 1 \leq m \leq M-1, \\ u_{i}^{0} = \phi(x_{i}), & 1 \leq i \leq N-1, \\ u_{0}^{m} = u_{N}^{m} = 0, & 0 \leq m \leq M, \end{cases}$$
(6)

Notice that the above scheme is not a self-starting scheme because u_i^1 is unknown.

- Other numerical methods for u_i^1 is required;
- To ensure the global error such that $\mathcal{O}(\tau_t^{3-\alpha})$, the temporal step size of the method for u_i^1 is specially chosen;
- Reduce the computational cost of getting u_i^1 is still important.

L2-type difference scheme ○○○○○ ○○○○○●○ ○○○ The Parallel-in-space method 00000 000000 000 Numerical experim

Summary 0000

Implicit difference schemes (2)

In order to fast calculation of u_i^1 , the fast L1 scheme [Jiang, et al. CiCP17] is exploited as follow.

$$\begin{cases} \hat{\mathbb{D}}_{t}^{\alpha} \tilde{u}_{i}^{j} = \kappa \delta_{x}^{\beta} \tilde{u}_{i}^{j} + f_{i}^{j}, & 1 \leq i \leq N-1, \ 1 \leq j \leq \hat{M} = \lfloor t_{1}/\hat{\tau} \rfloor, \\ \tilde{u}_{i}^{0} = \phi(x_{i}), & 1 \leq i \leq N-1, \\ \tilde{u}_{0}^{j} = \tilde{u}_{N}^{j} = 0, & 0 \leq j \leq M, \end{cases}$$

$$(7)$$

where $\hat{ au} = au_t^{rac{3-lpha}{2-lpha}}$, $u_i^1 = ilde{u}_i^{\hat{M}}$ and

$$\hat{\mathbb{D}}_{t}^{\alpha} u_{i}^{j} = \frac{1}{\Gamma(1-\alpha)} \left[\check{b}_{j}^{(\alpha)} \tilde{u}_{i}^{j} - \sum_{k=1}^{j-1} \left(\check{b}_{k+1}^{(\alpha)} - \check{b}_{k}^{(\alpha)} \right) \tilde{u}_{i}^{k} - \check{b}_{1}^{(\alpha)} \tilde{u}_{i}^{0} \right]$$
(8)

with

$$\check{b}_{k}^{(\alpha)} = \begin{cases} \sum_{\ell}^{\hat{M}_{exp}} \omega_{\ell} \int_{k-1}^{k} e^{-\hat{\tau}s_{\ell}(j-s)} ds, & k = 1, 2, \cdots, j-1, \\ \frac{\hat{\tau}^{-\alpha}}{1-\alpha}, & k = j, \end{cases}$$
(9)

and $\hat{M}_{exp} \in \mathbb{N}^+$ and $\omega_{\ell}, s_{\ell} \geq 0$ $(\ell = 1, 2, \cdots, \hat{M}_{exp})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Implicit difference schemes (3)

In order to implement the above difference scheme, we note that:

- In each time level, we need to solve a symmetric Toeplitz linear system where the coefficient matrix is strictly diagonally dominant; (PCG + τ preconditioner)
- Due to the historical effect, we must repeatedly compute the linear combination of numerical solutions from the time level t₀ to t_{m-1}; (About the O(M²) complexity)
- Fast and parallel numerical schemes are not easy but very meaningful especially when the number of time levels is fairly large.

L2-type difference scheme

The Parallel-in-space method

Numerical experiment

イロト 不得 トイヨト イヨト ニヨー

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction Time-stepping schemes Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

L2-type difference scheme ○○○○○ ○○○○○○ ○●○ The Parallel-in-space method

Numerical experin 0000 0000 Summary 0000

Stability and convergence of IDS (1) For $\forall \boldsymbol{v}, \ \boldsymbol{w} \in S = \{ \boldsymbol{v} | \boldsymbol{v} = (v_0, v_1, \dots, v_N), \ v_0 = v_N = 0 \}$, we define an inner product and the corresponding norm:

$$(\boldsymbol{v}, \boldsymbol{w}) = h \sum_{i=1}^{N-1} v_i w_i, \qquad \|\boldsymbol{v}\| = \sqrt{(\boldsymbol{v}, \boldsymbol{v})}.$$

Let $\boldsymbol{u}^m = [u_1^m, u_2^m, \dots, u_{N-1}^m]^\top$ and $\boldsymbol{f}^m = [f_1^m, f_2^m, \dots, f_{N-1}^m]^\top$. With these at hand, we have the following priori estimate.

Theorem

Suppose u_i^m $(0 \le i \le N, 1 \le m \le M - 1)$ be a solution of the scheme (6). Then, we have

$$\tau_t \sum_{m=1}^{M-1} \left(\|\boldsymbol{u}^{m+1}\|^2 + \|\Xi^{\beta} \boldsymbol{u}^{m+1}\|^2 \right) \le C_1 \left(\|\boldsymbol{u}^1\|^2 + \|\boldsymbol{u}^0\|^2 + \tau_t \sum_{m=1}^{M-1} \|\boldsymbol{f}^{m+1}\|^2 \right),$$

where Ξ^{β} is the square root of $-\delta_{x}^{\beta}$, and C_{1} is a positive constant independent of τ_{t} and h.

Stability and convergence of IDS (2)

This proof is similar to the proof of Theorem 3.1 in [Alikhanov & Huang, AMC21]. Thus, we omit it here. It is worth mentioning that in this proof, the property given as follows is used:

$$(-\delta_x^\beta \boldsymbol{u}^m, \boldsymbol{u}^m) = \|\Xi^\beta \boldsymbol{u}^m\|^2 \ge c_*^\beta (x_R - x_L)^{-\beta} \|\boldsymbol{u}^m\|^2,$$

where $c_*^{\beta} = 2e^{-2} \frac{(4-\beta)(2-\beta)\Gamma(\beta+1)}{(6+\beta)(4+\beta)(2+\beta)\Gamma^2(\beta/2+1)} (3/2+\beta/4)^{\beta+1}$, see [Sun et al. AMC16] for details.

Based on Theorem 3, both the stability and the convergence of the scheme (6) can be proved without difficulty. (Hint: $\mathcal{O}(\tau_t^{3-\alpha} + h^2))$

Why fractional models? $_{\rm O}$

2-type difference schem

The Parallel-in-space method •••••• ••••• Numerical experiment: 0000 0000

イロト 不得 トイヨト イヨト ニヨー

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system

Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

L2-type difference schem 000000 00000000 000 The Parallel-in-space method

Numerical experime

Summary 0000

The L2-type all-at-once system (1)

We can rewrite the scheme (6) into the matrix-vector product form for $1 \le m \le M - 1$.

$$\frac{h^{\beta}\tau_{t}^{-\alpha}}{\Gamma(2-\alpha)}\sum_{s=0}^{m}c_{m-s}^{(\alpha)}\left(\boldsymbol{u}^{s+1}-\boldsymbol{u}^{s}\right)+\kappa\ \boldsymbol{G}_{\beta}\boldsymbol{u}^{m+1}=h^{\beta}\boldsymbol{f}^{m+1},\quad(10)$$

where

is a symmetric positive definite Toeplitz matrix.

odels?	L2-type difference scheme	The Parallel-in-space method	Numerical experiments
	000000 0000000 000	00000 000000 000	0000

The L2-type all-at-once system (2)

Suppose that O is a zero matrix with suitable size, I_t and I_x are two identity matrices with orders M-1 and N-1, respectively. Denote

$$\boldsymbol{u} = \left[\left(\boldsymbol{u}^2 \right)^T, \cdots, \left(\boldsymbol{u}^M \right)^T \right]^T$$
 and $\boldsymbol{f} = \left[\left(\boldsymbol{f}^2 \right)^T, \cdots, \left(\boldsymbol{f}^M \right)^T \right]^T$.

To avoid the misunderstanding, let $\tilde{c}_{0}^{(\alpha)} = a_{0}^{(\alpha)} + b_{0}^{(\alpha)} + b_{1}^{(\alpha)}$, $\tilde{c}_{k}^{(\alpha)} = a_{k}^{(\alpha)} + b_{k}^{(\alpha)} + b_{k+1}^{(\alpha)} - b_{k-1}^{(\alpha)}$, $\hat{c}_{k}^{(\alpha)} = a_{k}^{(\alpha)} - b_{k}^{(\alpha)} - b_{k-1}^{(\alpha)}$, k = 1, 2, ..., M - 1. Then, let $A_{11} = \frac{h^{\beta} \tau_{1}^{-\alpha}}{\Gamma(2-\alpha)} \tilde{c}_{0}^{(\alpha)}$,

$$A_{12} = \frac{h^{\beta} \tau_t^{-\alpha}}{\Gamma(2-\alpha)} \left[\tilde{c}_1^{(\alpha)} - c_0^{(\alpha)}, \tilde{c}_2^{(\alpha)} - c_1^{(\alpha)}, \dots, \tilde{c}_{M-2}^{(\alpha)} - c_{M-3}^{(\alpha)} \right]^T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

and

 nodels?
 L2-type difference scheme
 The Parallel-in-space method
 Numerical experiments

 00000
 0000
 0000
 0000

 000000
 00000
 0000
 0000

 00000
 00000
 0000
 0000

The L2-type all-at-once system (3)

$$A_{22} = \frac{h^{\beta} \tau_t^{-\alpha}}{\Gamma(2-\alpha)} \begin{bmatrix} c_0^{(\alpha)} & 0 & \cdots & \cdots & 0\\ c_1^{(\alpha)} - c_0^{(\alpha)} & c_0^{(\alpha)} & \ddots & \ddots & \vdots\\ & \ddots & \ddots & \ddots & \ddots & 0\\ & \ddots & \ddots & \ddots & c_0^{(\alpha)} & 0\\ c_{M-3}^{(\alpha)} - c_{M-4}^{(\alpha)} & \cdots & \cdots & c_1^{(\alpha)} - c_0^{(\alpha)} & c_0^{(\alpha)} \end{bmatrix}.$$

Here $c_0^{(\alpha)} = a_0^{(\alpha)} + b_0^{(\alpha)}$ and $c_s^{(\alpha)} = a_s^{(\alpha)} + b_s^{(\alpha)} - b_{s-1}^{(\alpha)}$ ($s = 1, \ldots, M-3$). With the help of Eq. (10) and the above notations, the all-at-once system is written as:

$$\mathcal{M}\boldsymbol{u} = -\boldsymbol{\eta} + h^{\beta}\boldsymbol{f}, \qquad (11)$$

where $\mathcal{M} = A_t \otimes I_x + I_t \otimes (\kappa \ G_\beta)$ with

$$A_t = \begin{bmatrix} A_{11} & O \\ A_{12} & A_{22} \end{bmatrix}$$

_2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experime

.

Summary 0000

The L2-type all-at-once system (4)

$$\eta = \frac{h^{\beta} \tau_{t}^{-\alpha}}{\Gamma(2-\alpha)} \begin{bmatrix} \hat{c}_{1}^{(\alpha)} (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) - \tilde{c}_{0}^{(\alpha)} \boldsymbol{u}^{1} \\ \hat{c}_{2}^{(\alpha)} (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) - \tilde{c}_{1}^{(\alpha)} \boldsymbol{u}^{1} \\ \vdots \\ \hat{c}_{M-1}^{(\alpha)} (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) - \tilde{c}_{M-2}^{(\alpha)} \boldsymbol{u}^{1} \end{bmatrix}$$

Inspired by [Lin, et al. JCP21], in this work, we concentrate on another version of (11).

/hy fractional models? L2-type 00000

2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experime

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Summary 0000

The L2-type all-at-once system (4)

$$\eta = \frac{h^{\beta} \tau_{t}^{-\alpha}}{\Gamma(2-\alpha)} \begin{bmatrix} \hat{c}_{1}^{(\alpha)} (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) - \tilde{c}_{0}^{(\alpha)} \boldsymbol{u}^{1} \\ \hat{c}_{2}^{(\alpha)} (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) - \tilde{c}_{1}^{(\alpha)} \boldsymbol{u}^{1} \\ \vdots \\ \hat{c}_{M-1}^{(\alpha)} (\boldsymbol{u}^{1} - \boldsymbol{u}^{0}) - \tilde{c}_{M-2}^{(\alpha)} \boldsymbol{u}^{1} \end{bmatrix}$$

Inspired by [Lin, et al. JCP21], in this work, we concentrate on another version of (11). More precisely, after doing a permutation transformation of \boldsymbol{u} , $\boldsymbol{\eta}$ and \boldsymbol{f} , we have

$$\tilde{\mathcal{M}}\tilde{\boldsymbol{u}} = -\tilde{\boldsymbol{\eta}} + h^{\beta}\tilde{\boldsymbol{f}}, \qquad (12)$$

where $\tilde{\mathcal{M}} = (\kappa \ G_{\beta}) \otimes I_t + I_x \otimes A_t$.

Why fractional models? $_{\rm O}$

2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experiment

イロト 不得 トイヨト イヨト ニヨー

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique

Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

.2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experimer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Summary 0000

A bilateral preconditioning (1)

Following the idea of [Lin, et al. JCP21], our left and right preconditioners can be written as follows:

$$P_{l} = (\kappa \ G_{h})^{-\frac{1}{2}} \otimes A_{t} + (\kappa \ G_{h})^{\frac{1}{2}} \otimes I_{t}$$
(13)

and

$$P_r = (\kappa \ G_h)^{\frac{1}{2}} \otimes I_t, \qquad (14)$$

respectively. Here, $G_h = G_\beta - H_\beta$ is a τ -matrix [Bini & Benedetto, SPAA'90], where H_β is a Hankel matrix and its antidiagonals are given by

$$\left[g_2^{\beta},g_3^{\beta},\ldots,g_{N-2}^{\beta},0,0,0,g_{N-2}^{\beta},\ldots,g_3^{\beta},g_2^{\beta}\right]^{\mathsf{T}}.$$

.2-type difference schem 000000 00000000 000 The Parallel-in-space method

Numerical experimen

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

A bilateral preconditioning (2)

The bilateral precondtioning is used to Eq. (12)

$$\begin{cases} P_l^{-1} \tilde{\mathcal{M}} P_r^{-1} \hat{\boldsymbol{u}} = P_l^{-1} \left(-\tilde{\boldsymbol{\eta}} + h^\beta \tilde{\boldsymbol{f}} \right), \\ \tilde{\boldsymbol{u}} = P_r^{-1} \hat{\boldsymbol{u}}. \end{cases}$$
(15)

In a Krylov subspace method, we need to compute the matrix-vector product $P_l^{-1} \tilde{\mathcal{M}} P_r^{-1} \boldsymbol{v}$ (\boldsymbol{v} is a vector with suitable size) efficiently.

.2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experime

Summary 0000

A bilateral preconditioning (2)

The bilateral precondtioning is used to Eq. (12)

$$\begin{cases} P_l^{-1} \tilde{\mathcal{M}} P_r^{-1} \hat{\boldsymbol{u}} = P_l^{-1} \left(-\tilde{\boldsymbol{\eta}} + h^{\beta} \tilde{\boldsymbol{f}} \right), \\ \tilde{\boldsymbol{u}} = P_r^{-1} \hat{\boldsymbol{u}}. \end{cases}$$
(15)

In a Krylov subspace method, we need to compute the matrix-vector product $P_l^{-1}\tilde{\mathcal{M}}P_r^{-1}\boldsymbol{v}$ (\boldsymbol{v} is a vector with suitable size) efficiently. First, the product $\boldsymbol{z} = P_l^{-1}\tilde{\mathcal{M}}P_r^{-1}\boldsymbol{v}$ can be split into the three substeps:

$$\begin{cases} \mathbf{v}_1 = P_r^{-1} \mathbf{v}, & \text{Step1}, \\ \mathbf{v}_2 = \tilde{\mathcal{M}} \mathbf{v}_1, & \text{Step2}, \\ \mathbf{z} = P_l^{-1} \mathbf{v}_2, & \text{Step3}. \end{cases}$$
(16)

\mathbf{F} The property (e.g., matrix diagonalization) of the matrix G_h is a key to finishing the above computations.

_2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experim

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary 0000

A bilateral preconditioning (3)

According to [Bini & Benedetto, SPAA'90], the τ -matrix G_h can be diagonalized as

$$G_h = Q_x^\top D_h Q_x$$

where $D_h = \text{diag}(\lambda_{h,1}, \lambda_{h,2}, \dots, \lambda_{h,N-1})$ is a diagonal matrix containing all eigenvalues of G_{τ} , and

$$Q_{x} = \left[\sqrt{2/N}\sin\left(\frac{ij\pi}{N}\right)
ight]_{1 \le i,j \le N-1}$$

is the sine transform matrix.

_2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experin

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Summary 0000

A bilateral preconditioning (3)

According to [Bini & Benedetto, SPAA'90], the τ -matrix G_h can be diagonalized as

$$G_h = Q_x^\top D_h Q_x$$

where $D_h = \text{diag}(\lambda_{h,1}, \lambda_{h,2}, \dots, \lambda_{h,N-1})$ is a diagonal matrix containing all eigenvalues of G_{τ} , and

$$Q_{x} = \left[\sqrt{2/N}\sin\left(\frac{ij\pi}{N}\right)
ight]_{1 \le i,j \le N-1}$$

is the sine transform matrix. With this decomposition, **Step1** in Eq. (16) can be fast implemented in the following way:

$$\boldsymbol{v}_1 = P_r^{-1} \boldsymbol{v} = \left(Q_x^T \otimes I_t \right) \left[(\kappa \ D_h)^{-\frac{1}{2}} \otimes I_t \right] \left(Q_x \otimes I_t \right) \boldsymbol{v}.$$

L2-type difference schen 000000 00000000 000 The Parallel-in-space method

Numerical experiments 0000 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

A bilateral preconditioning (4) As for **Step2** in Eq. (16), $\tilde{\mathcal{M}}\mathbf{z}_1 = [(\kappa G_\beta) \otimes I_t + I_x \otimes A_t]\mathbf{z}_1$ can be computed by using FFTs since A_{22} and G_β are two Toeplitz matrices.

L2-type difference schem 000000 00000000 000 The Parallel-in-space method

Numerical experi

Summary 0000

A bilateral preconditioning (4)

As for **Step2** in Eq. (16), $\tilde{\mathcal{M}}\mathbf{z}_1 = [(\kappa G_\beta) \otimes I_t + I_x \otimes A_t]\mathbf{z}_1$ can be computed by using FFTs since A_{22} and G_β are two Toeplitz matrices. **Step3** is a little more complicated. Using the diagonalization of G_h , we can rewrite P_l as:

$$P_{I} = \left(Q_{x}^{T} \otimes I_{t}\right) \left[(\kappa D_{h})^{\frac{1}{2}} \otimes I_{t} + (\kappa D_{h})^{-\frac{1}{2}} \otimes A_{t} \right] \left(Q_{x} \otimes I_{t}\right).$$

Denote

$$\Sigma_i = (\kappa \lambda_{h,i})^{\frac{1}{2}} I_t + (\kappa \lambda_{h,i})^{-\frac{1}{2}} A_t, \text{ for } i = 1, 2, \dots, N-1.$$

The product $\mathbf{z} = P_l^{-1} \mathbf{v}_2$ can be calculated via the three steps:

$$\begin{cases} \boldsymbol{z}_{1} = (\boldsymbol{Q}_{x} \otimes \boldsymbol{I}_{t}) \boldsymbol{v}, & \text{Step-(a)}, \\ \boldsymbol{\Sigma}_{n} \boldsymbol{z}_{2,n} = \boldsymbol{z}_{1,n}, \ 1 \leq n \leq N-1, & \text{Step-(b)}, \\ \boldsymbol{z} = (\boldsymbol{Q}_{x}^{T} \otimes \boldsymbol{I}_{t}) \boldsymbol{z}_{2}, & \text{Step-(c)}, \end{cases}$$
(17)

_2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experim

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary 0000

A bilateral preconditioning (5) where $\mathbf{z}_{j} = \begin{bmatrix} \mathbf{z}_{j,1}^{T}, \mathbf{z}_{j,2}^{T}, \cdots, \mathbf{z}_{j,N-1}^{T} \end{bmatrix}^{T}$ with j = 1, 2. Note that Σ_{i} ($1 \le i \le N-1$) are 2-by-2 block matrices, i.e.,

$$\Sigma_i = \begin{bmatrix} \Sigma_{i,11} & \mathbf{0} \\ \Sigma_{i,12} & \Sigma_{i,22} \end{bmatrix},$$

where

$$\Sigma_{i,11} = (\kappa \ \lambda_{h,i})^{\frac{1}{2}} I_{t1} + (\kappa \ \lambda_{h,i})^{-\frac{1}{2}} A_{11}, \ \Sigma_{i,12} = (\kappa \ \lambda_{h,i})^{-\frac{1}{2}} A_{12},$$
$$\Sigma_{i,22} = (\kappa \ \lambda_{h,i})^{\frac{1}{2}} I_{t2} + (\kappa \ \lambda_{h,i})^{-\frac{1}{2}} A_{22}$$

and $\text{blkdiag}(I_{t1}, I_{t2}) = I_t$. Then, we have $\mathbf{z}_{2,n} = \Sigma_n^{-1} \mathbf{z}_{1,n}$ for $1 \le n \le N - 1$, where

$$\Sigma_{n}^{-1} = \begin{bmatrix} \Sigma_{n,11}^{-1} & \mathbf{0} \\ -\Sigma_{n,22}^{-1} \Sigma_{n,12} \Sigma_{n,11}^{-1} & \Sigma_{n,22}^{-1} \end{bmatrix}.$$
 (18)

2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experiment

イロト 不得 トイヨト イヨト ニヨー

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

.2-type difference schem

The Parallel-in-space method

Numerical experime

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Summary 0000

Condition number of preconditioned matrices (1)

For the calculation of (18), we note

- The inverse of an invertible lower triangular Toeplitz matrix is still a lower triangular Toeplitz matrix;
- The modified version of Bini's algorithm [Lin et al. TCS04] to compute Σ⁻¹_{n.22} in O(M log M) operations. (Not exactly)

.2-type difference schem

Condition number of preconditioned matrices (1)

For the calculation of (18), we note

- The inverse of an invertible lower triangular Toeplitz matrix is still a lower triangular Toeplitz matrix;
- The modified version of Bini's algorithm [Lin et al. TCS04] to compute $\Sigma_{n,22}^{-1}$ in $\mathcal{O}(M \log M)$ operations. (Not exactly)

In order to analyze the condition number of the preconditioned matrix, we need to some conclusions:

- The preconditioners P_l and P_r are nonsingular when α ∈ (0, 1) and β ∈ (1, 2);
- The matrix $A_t + A_t^{\top}$ should be positive; (Set $\alpha \in (0, 0.3624)$ and the monotonicity of $c_k^{(\alpha)}$ and $\tilde{c}_{k+1}^{(\alpha)}$);
- We have $\frac{1}{2} < \lambda(G_h^{-1}G_\beta) < \frac{3}{2}$, where $\lambda(\cdot)$ represents all the eigenvalues of $G_h^{-1}G_\beta$.

Why fractional models? \circ

.2-type difference schem 000000 00000000 000 The Parallel-in-space method ○○○○○ ○○○○○ ○○●

Numerical experime

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary 0000

Condition number of preconditioned matrices (2)

Conclusion [Zhao, et al. arXiv21]: For $\forall \alpha \in (0, 0.3624)$, the condition number of $P_l^{-1} \tilde{\mathcal{M}} P_r^{-1}$ is bounded, i.e.,

 $\kappa_2(P_l^{-1}\tilde{\mathcal{M}}P_r^{-1}) < 2\sqrt{3}.$

2-type difference scheme 000000 00000000 000 The Parallel-in-space method

Numerical experime

Summary 0000

Condition number of preconditioned matrices (2)

Conclusion [Zhao, et al. arXiv21]: For $\forall \alpha \in (0, 0.3624)$, the condition number of $P_l^{-1} \tilde{\mathcal{M}} P_r^{-1}$ is bounded, i.e.,

$$\kappa_2(P_l^{-1}\tilde{\mathcal{M}}P_r^{-1}) < 2\sqrt{3}.$$

There are some remarks:

- The condition $\alpha \in (0, 0.3624)$ is assumed for our theoretical analysis;
- For $\alpha \in [0.3624, 1)$, numerical results show that the condition number of $P_l^{-1} \tilde{\mathcal{M}} P_r^{-1}$ is no more than $2\sqrt{3}$;
- Maybe our theoretical tools for analyzing the condition number of $P_l^{-1} \tilde{\mathcal{M}} P_r^{-1}$ can be further improved;
- The eigenvalue analysis of $P_l^{-1} \tilde{\mathcal{M}} P_r^{-1}$ is not completed.

Why fractional models? $_{\rm O}$

2-type difference schem

The Parallel-in-space method

Numerical experiments

(日) (四) (日) (日) (日)

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order

Performance of our strategy

Summary

hy fractional models?	L2-type difference scheme	The Parallel-in-space method	Numerical experiments	Summary
	000000 00000000 000	00000 000000 000	0000	0000

We consider Eq. (3) with $x_L = 0$, $\kappa = x_R = T = 1$ and the source term reads

$$\begin{split} f(x,t) &= \left(\frac{\Gamma(4+\alpha)}{\Gamma(4)}t^3 + \frac{\Gamma(3)}{\Gamma(3-\alpha)}t^{2-\alpha}\right)x^2(1-x)^2 + \frac{\kappa\left(t^{3+\alpha}+t^2+1\right)}{2\cos(\pi\beta/2)} \times \\ &\left\{\frac{\Gamma(3)}{\Gamma(3-\beta)}\left[x^{2-\beta}+(1-x)^{2-\beta}\right] - \frac{2\Gamma(4)}{\Gamma(4-\beta)}\left[x^{3-\beta}+(1-x)^{3-\beta}\right] + \\ & \frac{\Gamma(5)}{\Gamma(5-\beta)}\left[x^{4-\beta}+(1-x)^{4-\beta}\right]\right\}. \end{split}$$

The exact solution is $u(x,t) = (t^{3+\alpha} + t^2 + 1) x^2(1-x)^2$.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

ractional models?	L2-type difference scheme	The Parallel-in-space method	Numerical experiments	Summary
	000000 00000000 000	00000 000000 000	0000	0000

Table: Numerical errors and the observed time convergence orders for Example 1 with $N = M^{(3-\alpha)/2}$.

(α, β)	М	$\mathit{Err}_\infty(h, \tau)$	$CO_{\infty, au}$	$Err_2(h, \tau)$	$CO_{2,\tau}$
(0.1, 1.5)	10	3.3558E-04	-	2.1958E-04	-
	20	4.2391E-05	2.9848	2.7415E-05	3.0017
	40	5.3517E-06	2.9857	3.5198E-06	2.9614
	80	6.7403E-07	2.9891	4.5958E-07	2.9371
(0.4, 1.7)	10	1.0146E-03	-	6.9999E-04	-
	20	1.5215E-04	2.7373	1.0266E-04	2.7695
	40	2.4455E-05	2.6373	1.6239E-05	2.6603
	80	3.8098E-06	2.6823	2.5054E-06	2.6963
(0.7, 1.4)	10	1.2174E-03	-	8.0414E-04	-
	20	2.4993E-04	2.2842	1.6106E-04	2.3198
	40	4.9078E-05	2.3484	3.1689E-05	2.3455
	80	9.5109E-06	2.3674	6.2572E-06	2.3404
(0.9, 1.9)	10	4.0154E-03	-	2.8992E-03	-
	20	9.8220E-04	2.0315	7.0490E-04	2.0402
	40	2.3079E-04	2.0894	1.6464E-04	2.0981
	80	5.4304E-05	2.0875	3.8477E-05	2.0972

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why	fractional	models?
0		

2-type difference schem 000000 0000000 000 The Parallel-in-space method

Numerical experiments

Summary 0000

Example 1

Table: Numerical errors and the observed space convergence orders for Example 1 with M = 1024.

(α, β)	Ν	$\mathit{Err}_\infty(h, \tau)$	$\mathcal{CO}_{\infty, au}$	$Err_2(h, \tau)$	$CO_{2,\tau}$
(0.1, 1.5)	10	3.1533E-03	-	2.1393E-03	-
	20	7.3035E-04	2.1102	4.8195E-04	2.1502
	40	1.7021E-04	2.1013	1.1044E-04	2.1256
	80	3.9928E-05	2.0918	2.5825E-05	2.0964
(0.4, 1.7)	10	4.1944E-03	-	2.9495E-03	-
	20	9.9378E-04	2.0775	6.8541E-04	2.1054
	40	2.3585E-04	2.0751	1.5982E-04	2.1005
	80	5.6098E-05	2.0718	3.7467E-05	2.0928
(0.7, 1.4)	10	2.4866E-03	-	1.6468E-03	-
	20	5.7380E-04	2.1156	3.7013E-04	2.1536
	40	1.3363E-04	2.1023	8.5825E-05	2.1086
	80	3.1405E-05	2.0892	2.0534E-05	2.0634
(0.9, 1.9)	10	5.4166E-03	-	3.9271E-03	-
	20	1.3277E-03	2.0285	9.5644E-04	2.0377
	40	3.2529E-04	2.0291	2.3276E-04	2.0388
	80	7.9708E-05	2.0289	5.6655E-05	2.0386

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Why fractional models? $_{\rm O}$

2-type difference schem 000000 00000000 000 The Parallel-in-space method

Numerical experiments

イロト 不得 トイヨト イヨト ニヨー

Summary 0000

Outline

Why fractional models?

L2-type difference scheme

Introduction

Time-stepping schemes

Stability and convergence of IDS

The Parallel-in-space method

L2-type AaO system Preconditioning technique Condition number

Numerical experiments

Convergence order Performance of our strategy

Summary

/hy fractional models?	L2-type difference scheme	The Parallel-in-space method 00000 000000 000	Numerical experiments	Summary 0000
	0000000		0000	

Consider Eq. (3) with $\kappa = T = 1$, $x_L = -1$, $x_R = 1$ and the source term

$$\begin{split} f(x,t) &= \frac{\Gamma(4+\alpha)}{\Gamma(4)} t^3 (1+x)^2 (1-x)^2 + \frac{\kappa \left(t^{3+\alpha}+1\right)}{2 \cos(\pi\beta/2)} \Big\{ \frac{4 \, \Gamma(3)}{\Gamma(3-\beta)} \Big[(1+x)^{2-\beta} \\ &+ (1-x)^{2-\beta} \Big] - \frac{4 \, \Gamma(4)}{\Gamma(4-\beta)} \left[(1+x)^{3-\beta} + (1-x)^{3-\beta} \right] + \\ &- \frac{\Gamma(5)}{\Gamma(5-\beta)} \left[(1+x)^{4-\beta} + (1-x)^{4-\beta} \right] \Big\}. \end{split}$$

The exact solution is $u(x,t) = (t^{3+\alpha}+1)(1+x)^2(1-x)^2$.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Why fractional models? O	L2-type difference scheme	The Parallel-in-space method	Numerical experiments	
	000	000	0000	

Table: Results of various methods for M = N for Example 2.

		BS	BFSM	I		\mathcal{P}	
(α, β)	N	Time	Time	(Iter1, Iter2)	Time	(Iter1, Iter2)	Time
(0.1, 1.1)	128	6.268	0.111	(56.0, 61.0)	1.021	(7.0, 5.0)	0.537
	256	1160.576	0.524	(80.0, 89.0)	5.141	(7.0, 5.0)	1.831
	512	> 5 hours	5.097	(114.0, 137.0)	29.161	(8.0, 5.0)	5.985
	1024	OoM	50.948	(162.0, 191.0)	261.795	(8.0, 5.0)	20.847
	2048	OoM	537.730	(228.0, 283.0)	1605.622	(8.0, 6.0)	89.736
<i></i>						<i></i>	
(0.2, 1.7)	128	6.220	0.116	(113.0, 233.0)	7.692	(6.0, 4.0)	0.447
	256	1092.552	0.534	(202.0, 438.0)	48.579	(6.0, 5.0)	1.873
	512	> 5 hours	5.057	(360.0, 829.0)	307.938	(6.0, 5.0)	5.786
	1024	OoM	48.755	†	†	(6.0, 5.0)	20.128
	2048	OoM	537.980	t	†	(7.0, 6.0)	86.305
(0.35, 1.5)	128	6.210	0.110	(78.0. 189.0)	6.426	(6.0, 5.0)	0.539
(****, ***)	256	1277 143	0.526	(1160 3100)	34 513	(60, 50)	1 835
	512	> 5 hours	4.963	(163.0, 569.0)	212.494	(6.0, 5.0)	5.789
	1024	OoM	51.936	t	†	(6.0, 5.0)	20.159
	2048	OoM	582.579	ŧ	ŧ	(6.0, 6.0)	86.159
(0.9, 1.9)	128	6.211	0.127	†	†	(3.0, 4.0)	0.459
	256	1805.931	0.604	†	†	(3.0, 4.0)	1.534
	512	> 5 hours	5.588	†	†	(3.0, 4.0)	4.831
	1024	OoM	52.250	t	t	(3.0, 4.0)	16.527
	2048	OoM	599.093	†	t	(3.0, 4.0)	60.787

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

fractional models?	L2-type difference scheme	The Parallel-in-space method	Numerical experiments	Summary
	000000 00000000 000	00000 000000 000	0000 0000	0000

Table: The condition numbers of $\tilde{\mathcal{M}}$ and $P_l^{-1}\tilde{\mathcal{M}}P_r^{-1}$ for M = N for Example 2.

(α, β)	N	$\kappa_2(\tilde{\mathcal{M}})$	$\kappa_2(P_l^{-1}\tilde{\mathcal{M}}P_r^{-1})$				
(0.1, 1.1)	16	9.86	1.23				
	32	20.63	1.30				
	64	43.64	1.36				
	128	92.89	1.42				
(0.2, 1.7)	16	38.04	1.12				
	32	123.25	1.15				
	64	400.27	1.18				
	128	1300.85	1.21				
(0.35, 1.5)	16	25.02	1.17				
	32	68.98	1.22				
	64	192.69	1.27				
	128	541.93	1.31				
(0.9, 1.9)	16	70.45	1.04				
	32	243.78	1.06				
	64	870.27	1.07				
	128	3171.08	1.08				
			Image: A	►	- (三) - (-)	★ Ξ ► ★ Ξ ►	★ E ► ★ E ► E

Conclusion and remarks

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- An implicit with the accuracy of O(τ_t^{3-α} + h²) has been developed for TSFBTEs;
- Convergence and stability of the IDS have been investigated;
- A bilateral parallel preconditioning is established for the L2-type all-at-once linar systems;
- Efficient implementaion of preconditioned Krylov subspace solver and the condition number of the preconditioned matrix are investigated in details.

Why fractional models? O	L2-type difference scheme	The Parallel-in-space method 00000 000000 000	Numerical experiments 0000 0000

Future work

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Extend the efficient implicit numerical schemes with preconditioned iterative solvers for high-dimensional nonlinear problems;
- Eigenvalue analysis of the preconditioned matrix is still open but meaningful;
- How to design the bilateral parallel preconditioning for (nonlinear) high-dimensional VO time-fractional PDEs, especially fractional wave equations.

.2-type difference schem

Numerical experime

Summary 0000

References I

[Alikhanov & Huang, AMC21] A. A. Alikhanov, C. Huang, A high-order L2 type difference scheme for the time-fractional diffusion equation, Appl. Math. Comput. 411 (2021) 126545.

[Çelik & Duman, JCP12] C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys. 231 (2012) 1743-1750.

[Jiang, et al. CiCP17] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21 (2017) 650-678.

[Sun et al. AMC16] H. Sun, Z.-Z. Sun, G.-H. Gao, Some high order difference schemes for the space and time fractional Bloch-Torrey equations, Appl. Math. Comput. 281 (2016) 356-380.

[Lin, et al. JCP21] X.-L. Lin, M. K. Ng, Y. Zhi, A parallel-in-time two-sided preconditioning for all-at-once system from a non-local evolutionary equation with weakly singular kernel, J. Comput. Phys. 434 (2021) 110221.

[Bini & Benedetto, SPAA'90] D. Bini, F. Benedetto, A new preconditioner for the parallel solution of positive definite Toeplitz systems, in: Proceedings of the

Why	fractional	models?	
0			

2-type difference schem 00000 0000000 00 The Parallel-in-space method

Numerical experiments

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

References II

Second Annual ACM Symposium on Parallel Algorithms and Architectures, New York, 1990, pp. 220-223. [Lin et al. TCS04] F.-R. Lin, W.-K. Ching, M. K. Ng, Fast inversion of triangular Toeplitz matrices, Theor. Comput. Sci. 315 (2004) 511-523. [Zhao, et al. arXiv21] Y.-L. Zhao, X.-M. Gu, H. Li, On the bilateral preconditioning for an L2-type all-at-once system arising from time-space fractional Bloch–Torrey equations. arXiv preprint arXiv:2109.06510, 2021. Why fractional models? \circ

2-type difference scheme 000000 00000000 000 The Parallel-in-space method

lumerical experiments

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Summary 0000

Thank you for your attention!

Any questions or comments?