- Speaker
- A/Prof. Wen-Qi Yao
- South China University of Technology
- Abstract
The system of transient Wigner-Poisson equations (TWPEs) is a common model to describe carrier transport in quantum devices. In this paper, we design a second-order semi-implicit time integration scheme for TWPEs with the inflow boundary conditions, and a hybrid sinc-Galerkin/finite-difference method [H. Jiang, T. Lu, and W. Zhang, J. Comput. Appl. Math., 409 (2022), 114152] is applied for the spatial discretization. The fully discretized system is rigorously proved to be unconditionally L2-stable, and the computational cost is comparable with that of the second-order explicit Runge-Kutta scheme (ERK2).The numerical method is applied to study a double-barrier resonant tunneling diode (RTD), where representative characteristics of RTDs, including the resonant tunneling effect, bistability and the intrinsic high-frequency current oscillation, are simulated successfully.
- About the Speaker
姚文琦,华南理工大学数学学院副教授,2009年于华中科技大学获得理学学士学位,2014年于北京大学获得理学博士学位,2014年至2016年期间在新加坡国立大学数学系从事博士后工作。主要研究方向包括复杂流体,半导体器件模拟以及稀有事件,在计算数学相关杂志J. Comput. Phys., J. Chem. Phys., J. Sci. Comput.等SCI期刊发表十余篇学术论文。
- Date&Time
- 2022-10-10 3:30 PM
- Location
- Room: Tencent Meeting