- Speaker
- A/Prof. Zheng Ma
- Shanghai Jiao Tong University
- Abstract
In this work we develop a neural network for the numerical simulation of time-dependent linear transport equations with diffusive scaling and uncertainties. The goal of the network is to resolve the computational challenges of curse-of-dimensionality and multiple scales of the problem. We first show that a standard Physics-Informed Neural Network (PINN) fails to capture the multiscale nature of the problem, hence justifies the need to use Asymptotic-Preserving Neural Networks (APNNs). We show that not all classical AP formulations are fit for the neural network approach. We construct a micro-macro decomposition based neural network, and also build in a mass conservation mechanism into the loss function, in order to capture the dynamic and multiscale nature of the solutions. Numerical examples are used to demonstrate the effectiveness of this APNNs.
- About the Speaker
马征博士,上海交通大学数学科学学院副教授,2012年与2017年分别本科、博士毕业于上海交通大学;2017-2020年美国普渡大学数学系Golomb访问助理教授,2020年9月入职上海交通大学数学科学学院。主要研究方向:机器学习在科学计算中的应用,动理学方程的快速数值算法,机器学习的数学理论。目前发表与预发表学术论文十余篇(PNAS, JCP, RIMS等)。入选RIMS五年来最佳论文、上海交通优秀博士毕业生等。
- Date&Time
- 2022-11-24 2:00 PM
- Location
- Room: Tencent Meeting