- Speaker
- Prof. Dan Hu
- Shanghai Jiao Tong University
- Abstract
Deep learning has achieved wide success in solving Partial Differential Equations (PDEs), with particular strength in handling high dimensional problems and problems with irregular geometries. In this work, we report a residual-informed neural network (RINN) for PDEs. Compared to Physics-informed neural networks, RINN avoids computation of high order derivatives of the network, thus can significantly accelerate the training process. Meanwhile, we propose a non-uniform random walk to generate adaptive samples (Nurvas) for solving PDEs with low-regularity solutions. In Nurvas, the adaptive samples are obtained without additional computational cost and without an explicit representation of the desired probability density function.
- About the Speaker
胡丹, 上海交通大学数学科学学院教授, 博士生导师, 2017年教育部青年长江学者。主要从事血管与血流、生命科学中的稀有事件等问题的建模、模拟和分析和人工智能基础理论研究。主持/完成了国家重大研究计划重点支持项目、面上项目、上海市科技创新行动计划项目等。代表性工作发表于Phys. Rev. Lett., Nature Commun.和PLoS Biol.等顶级杂志, 其中关于血管适应性生长方面的工作被Nature选为年度工作亮点。
- Date&Time
- 2024-08-08 3:00 PM
- Location
- Room: A203 Meeting Room