Unique Solvability and Convergence Analysis of the Lagrange Multiplier Approach for Gradient Flows
Speaker
Prof. Cheng Wang
University of Massachusetts Dartmouth (USA)
Abstract

The unique solvability analysis and error estimate of the Lagrange multiplier approach for gradient flows is theoretically analyzed. We identify a necessary and sufficient condition that has to be satisfied for the nonlinear algebraic equation arising from the original Lagrange multiplier approach to admit a unique solution in the neighborhood of its exact solution. In turn, a modified Lagrange multiplier approach is proposed so that the computation can continue even if the aforementioned condition is not satisfied. Using Cahn-Hilliard equation as an example, we rigorously establish the unique solvability analysis and optimal error estimates of a second-order Lagrange multiplier scheme assuming this condition and that the time step size is sufficiently small. 

About the Speaker

王成教授, 1993年本科毕业于中国科技大学, 2000年在美国坦普尔大学获博士学位, 2000-2003年在美国印尼安纳大学从事博士后研究, 2003-2008年在美国田纳西大学任助理教授, 2008-2012年在美国麻省大学达特茅斯分校仟助理教授, 2012年晋升为副教授, 2019年晋升为教授。主要研究领域是应用数学与计算数学, 包括数值分析、偏微分方程、流体力学、计算电磁学等, 目前已在Journal of Computational Physics, SIAM Journal on Numerical Analysis, Mathematics of Computation, Numerische Mathematik 等期刊上发表论文 120 余篇。

Date&Time
2024-12-19 10:00 AM
Location
Room: A203 Meeting Room
CSRC 新闻 CSRC News CSRC Events CSRC Seminars CSRC Divisions